

$\label{thm:condition} \textbf{Gutachten zur Standorteignung von Windenergieanlagen}$

nach DIBt 2012 für den Windpark Förderstedt

Deutschland

Bericht-Nr.: I17-SE-2020-377 Rev.02

Gutachten zur Standorteignung von WEA nach DIBt 2012 für den Windpark Förderstedt

Bericht-Nr.: I17-SE-2020-377 Rev.02

Auftraggeber: Windwärts Energie GmbH

Hanomaghof 1

D- 30449 Hannover

Auftragnehmer: I17-Wind GmbH & Co. KG

Am Westersielzug 11

25840 Friedrichstadt

Tel.: 04881 - 936 498 - 0 Fax.: 04881 - 936 498 - 19

E-Mail: mail@i17-wind.de Internet: www.i17-wind.de

Datum: 07. Juli 2021

Haftungsausschluss und Urheberrecht

Das vorliegende Gutachten wurde unabhängig, unparteiisch und nach bestem Wissen und Gewissen nach derzeitigem Stand der Technik erstellt. Für vom Auftraggeber und vom Anlagenhersteller bereitgestellte Daten, die nicht von der I17-Wind GmbH & Co. KG erhoben oder ermittelt wurden, kann keine Gewähr für deren Korrektheit übernommen werden. Diese werden als richtig vorausgesetzt.

Urheber des vorliegenden Gutachtens zur Standorteignung von WEA nach DIBt 2012 ist die I17-Wind GmbH & Co. KG. Der Auftraggeber erhält nach § 31 Urheberrechtsgesetz das einfache Nutzungsrecht, welches nur durch Zustimmung des Urhebers übertragen werden kann. Eine Bereitstellung zum uneingeschränkten Download in elektronischen Medien ist ohne gesonderte Zustimmung des Urhebers nicht gestattet.

Die I17-Wind GmbH & Co. KG ist Mitglied im Sachverständigenbeirat des Bundesverbandes WindEnergie (BWE) e.V. und erfüllt damit die Voraussetzung zur Anerkennung der gutachterlichen Stellungnahme eines Sachverständigen gemäß Anlage 2.7/12 Fußnote 2 der Musterliste der Technischen Baubestimmungen über die örtlich auftretende Turbulenzbelastung und über die Zulässigkeit von vorgesehenen Abständen zu benachbarten Windenergieanlagen in Bezug auf die Standsicherheit der geplanten und bestehenden Anlagen.

Anmerkung zu Typenprüfung und Anlagenparametern der WEA

Wenn zum Zeitpunkt der Gutachtenerstellung die Typenprüfung oder Einzelprüfung für die geplanten WEA noch nicht vorlag, wurde der Vergleich auf Basis vom Hersteller übermittelter Auslegungswerte der geplanten WEA durchgeführt. Es besteht die Möglichkeit, dass die im Genehmigungsverfahren eingereichten Dokumente bezüglich der Auslegungswerte der betrachteten WEA nicht mit den im vorliegenden Gutachten zitierten Dokumenten übereinstimmen. Die zitierten Dokumente entsprechen dem aktuellen Stand zum Zeitpunkt der Gutachtenerstellung. Bei abweichenden Dokumenten behält das vorliegende Gutachten dennoch seine Gültigkeit, wenn die im Gutachten berücksichtigten Auslegungswerte durch die im Rahmen des Genehmigungsverfahrens eingereichten Auslegungswerte abgedeckt sind. Im Folgenden ist der Begriff Einzelprüfung stets durch den Begriff Typenprüfung mit abgedeckt, auch wenn dies nicht explizit erwähnt wird.

Änderungen der berücksichtigten Anlagenparameter wie c_t -Kurve und Schnelllaufzahl λ sind dem Anlagenhersteller vorbehalten und bedürfen einer neuen Berechnung und Bewertung. Bei einer Änderung der Anlagenparameter gegenüber dem Stand zum Zeitpunkt der Gutachtenerstellung verliert das vorliegende Gutachten seine Gültigkeit.

Revisionsnummer	Datum	Änderung	Verfasser
0	15.09.2020	Erste Ausgabe - ENTWURF	Lenz
1	28.12.2020	Änderung der Windparkkonfiguration	Lenz
2	07.07.2021	Änderung der Nennleistung und der Entwurfslebensdauer der WEA W1 – W6 und Änderung der Koordinate der WEA W3	Lenz

Verfasser:

M. Sc. Kristine Lenz, Sachverständige Friedrichstadt, 07.07.2021

Geprüft:

B. Eng. Heiko Pauls, Sachverständiger Friedrichstadt, 07.07.2021

Freigegeben:

M. Sc. Guido Köhler, Sachverständiger Friedrichstadt, 07.07.2021

Dieses Dokument wurde digital signiert und die Integrität des Dokuments wurde überprüft. Das zugehörige Zertifikat kann von der I17-Wind GmbH & Co. KG auf Anfrage gerne zur Verfügung gestellt werden.

Inhaltsverzeichnis

1	Vor	bemerkung	7
	1.1	Allgemeines	7
	1.2	Geführte Nachweise	7
	1.2. Ver	Nachweis der Standorteignung an topografisch nicht komplexen Standorten der Windbedingungen	
	1.2. der	2 Nachweis der Standorteignung an topografisch komplexen Standorten durch \ Windbedingungen	_
	1.2	.3 Verfahren bei Überschreitungen – Nachweis durch Vergleich der Lasten	9
	1.3	Abweichungen von den Richtlinien	10
	1.4	Modellunsicherheiten	11
2	Auf	gabenstellung und Standort	12
	2.1	Umfang des Gutachtens	12
	2.2	Standortbeschreibung	12
	2.3	Auslegungswindbedingungen der geplanten WEA	12
3	Ver	gleich der Windbedingungen	16
	3.1	Grundlagen	16
	3.2	Vergleich v_{ave} und v_{m50}	17
	3.2	1 Vergleich der mittleren Windgeschwindigkeit v _{ave}	17
	3.2	2 Vergleich der 50-Jahres-Windgeschwindigkeit v _{m50}	17
	3.3	Vergleich der effektiven Turbulenzintensität I _{eff}	18
	3.3	1 Auslegungswindbedingungen hinsichtlich der Turbulenzintensität	18
	3.3	2 Ermittlung der Umgebungsturbulenzintensität	20
	3.3	$I_{\rm eff}$ Ermittlung der effektiven Turbulenzintensität $I_{\rm eff}$	22
4	Zus	ammenfassung	27
	4.1	Neu geplante WEA	27
	4.2	Bestehende WEA	28
5	Sta	ndortbesichtigung	29
Αl	bkürzu	ngs- und Symbolverzeichnis	30
Li	teratur	verzeichnis	32

Abbildungsverzeichnis

Abbildung 2.1: Zu untersuchende Windparkkonfiguration; Kartenmaterial: [19.1, 19.2]	15
Tabellenverzeichnis	
Tabelle 2.1: Zu untersuchende Windparkkonfiguration	13
Tabelle 2.2: Auslegungswindbedingungen der neu geplanten WEA	14
Tabelle 3.1: Windverhältnisse am Standort [22.1]	16
Tabelle 3.2: Vergleich der mittleren Windgeschwindigkeit v _{ave} auf Nabenhöhe der geplanten WEA	17
Tabelle 3.3: Vergleich der 50-Jahres-Windgeschwindigkeit v_{m50} auf Nabenhöhe der geplanten WEA	18
Tabelle 3.4: Richtlinienabhängige Auslegungswindbedingungen hinsichtlich der Turbulenzintensität	t 1 9
Tabelle 3.5: Komplexitätskriterien nach DIN EN 61400-1:2011-08 [7]	21
Tabelle 3.6: Anzusetzende Turbulenzstrukturparameter nach [7]	21
Tabelle 3.7: Repräsentative Turbulenzintensität für einen Standort	22
Tabelle 3.8: Ermittelte effektive Turbulenzintensitäten I _{eff} (Teil 1)	25
Tabelle 3.9: Ermittelte effektive Turbulenzintensitäten I _{eff} (Teil 2)	26
Tabelle 4.1: Zusammenfassung der Ergebnisse geplante WEA	27
Tabelle 4.2: Zusammenfassung der Ergebnisse Bestands-WEA	28

1 Vorbemerkung

1.1 Allgemeines

Das Deutsche Institut für Bautechnik DIBt hat Anfang des Jahres 2013 die Fassung Oktober 2012 der "Richtlinie für Windenergieanlagen – Einwirkungen und Standsicherheitsnachweise für Turm und Gründung" veröffentlicht und im März 2015 eine korrigierte Fassung herausgegeben [1.1], auf deren Grundlage das vorliegende Gutachten erstellt wurde.

Aufgrund fehlender Kriterien für einen Immissionsgrenzwert für die durch benachbarte Windenergieanlagen verursachten erhöhten Turbulenzbelastungen an einer WEA, können ersatzweise die Kriterien der Standorteignung bezüglich der effektiven Turbulenzintensität für eine Turbulenzimmissionsprognose im Rahmen eines Antrages nach dem Bundes-Immissionsschutz-Gesetz (BImSchG) herangezogen werden. Eine Reduktion der Lebenszeit und der zusätzliche Verschleiß der WEA sind zumutbar, solange die Standorteignung hinsichtlich der Auslegungswerte der Turbulenzintensität oder hinsichtlich der Auslegungslasten gewährleistet bleibt. Somit stellt das vorliegende Gutachten zur Standorteignung von WEA zusätzlich eine Turbulenzimmissionsprognose im Sinne des BImSchG dar und kann als Bestandteil der Antragsstellung nach dem BImSchG verwendet werden.

1.2 Geführte Nachweise

Die Richtlinie DIBt 2012 [1.1] fordert in Kapitel 16 ein alternatives, vereinfachtes Verfahren zum Nachweis der Standorteignung von WEA, das jedoch nur angewendet werden darf, wenn die Standorte der geplanten WEA nach DIN EN 61400-1:2011-08 [7] als nicht topografisch komplexe Standorte zu bezeichnen sind. Sind vereinzelte Standorte neu geplanter WEA als topografisch komplex zu bezeichnen, wird der vereinfachte Nachweis der Standorteignung um die Kriterien nach DIN EN 61400-1:2011-08 [7] oder IEC 61400-1 ed.4 [6], jeweils Abschnitt 11.9, erweitert. Die folgenden Abschnitte stellen beide Verfahrensweisen dar. Die Vergleiche der Auslegungswerte für die zu untersuchenden Größen mit den im Rahmen dieses Gutachtens ermittelten Werten sind nach der DIBt Richtlinie Fassung Oktober 2012 nur für neu geplante Anlagen zu führen [1.1]. Für bestehende Anlagen, die nach der DIBt 1993 [3] oder DIBt 2004 [2] typengeprüft wurden, darf im Falle einer Parkänderung / erweiterung der Nachweis der Standorteignung auch weiterhin nach dem Verfahren der DIBt 2004 erbracht werden [1.1].

Die Richtlinie DIBt 2012 [1.1] lässt folgende Möglichkeiten, bzw. mögliche auftretende Konfigurationen, in Bezug auf die Typenprüfung und die dieser zu Grunde gelegten Richtlinie, unberücksichtigt:

- i. Der geplanten Anlage liegt eine Typenprüfung nach der Richtlinie DIBt 2004 [2] zu Grunde.
- ii. Einer oder mehrerer zu berücksichtigender Bestandsanlagen liegt eine Typenprüfung nach der DIBt 2012 [1.1] Richtlinie zu Grunde.

Für diese zwei beschriebenen Fälle, die nicht durch die DIBt 2012 [1.1] abgedeckt sind, werden folgende Verfahrensweisen gemäß [1.2] als Quasistandard angewandt:

- Liegt einer neu geplanten Anlage eine Typenprüfung gemäß DIBt 2004 [2] zu Grunde, wird der Nachweis der Standorteignung basierend auf dem vereinfachten Verfahren nach DIBt 2012 [1.1], beschrieben in Abschnitt 1.2.1, geführt. Dieser Nachweis entspricht den Mindestanforderungen der zum Nachweis der Standorteignung der Typenprüfung nach DIBt 2004 [2] zu Grunde gelegten Richtlinie DIN EN 61400-1:2004 [8], bzw. IEC 61400-1 ed.2 [4].
- ii. Da davon auszugehen ist, dass für bereits genehmigte, bzw. bestehende Anlage mit einer Typenprüfung nach DIBt 2012 [1.1] die Standorteignung in deren Genehmigungsverfahren nachgewiesen wurde, werden nur durch hinzukommende Anlagen beeinflusste Parameter geprüft und mit den Auslegungswerten verglichen. Dies entspricht lediglich der effektiven Turbulenzintensität $I_{\rm eff}$, welche durch einen Zubau erhöht werden kann.

1.2.1 Nachweis der Standorteignung an topografisch nicht komplexen Standorten durch Vergleich der Windbedingungen

Der nach der DIBt Richtlinie Fassung 2012 [1.1] vereinfachte Nachweis zur Standorteignung verlangt folgende Nachweise der Windbedingungen auf Nabenhöhe der geplanten WEA:

- i. Vergleich der mittleren Windgeschwindigkeit.
 - (1) Die mittlere Windgeschwindigkeit am Standort ist um mindestens 5 % kleiner als gemäß Typen-/Einzelprüfung, oder
 - (2) die mittlere Windgeschwindigkeit ist kleiner als gemäß Typen-/Einzelprüfung und für den Formparameter k der Weibull-Funktion gilt: $k \ge 2$.
- ii. Vergleich der effektiven Turbulenzintensität nach DIN EN 61400-1:2011-08 [7] zwischen 0.2 v_{m50} (h) und 0.4 v_{m50} (h) mit der Auslegungsturbulenz nach NTM.
- iii. Vergleich der 50-Jahreswindgeschwindigkeit.
 - (1) Die Windzone gemäß Typen-/Einzelprüfung deckt die Windzone des betrachteten Standortes entsprechend der Windzonenkarte ab (die detaillierten Regelungen gemäß DIN EN 1991-1-4, Absatz 4.3.3 einschließlich NA [9] für nicht ebene Geländelagen sind ggf. zu beachten), oder
 - (2) die 50-Jahreswindgeschwindigkeit v_{m50} (h) gemäß Typen-/Einzelprüfung deckt die 50-Jahreswindgeschwindigkeit am Standort ab (z.B. Nachweis durch eine Extremwindabschätzung).

1.2.2 Nachweis der Standorteignung an topografisch komplexen Standorten durch Vergleich der Windbedingungen

Handelt es sich nach Abschnitt 11.2 der DIN EN 61400-1:2011-08 [7] um einen als topografisch komplex zu bezeichnenden Standort und liegt der zu untersuchenden WEA eine Typenprüfung nach DIBt 2012 [1.1] zu Grunde, wird der vereinfachte Nachweis zur Standorteignung nach Abschnitt 1.2.1 um folgende Nachweise der Windbedingungen auf Nabenhöhe der geplanten WEA, basierend auf DIN EN 61400-1:2011-08 [7] oder IEC 61400-1 ed.4 [6] erweitert.

- i. Das Maximum bzw. Minimum der Schräganströmung δ darf den vorgegebenen Wert von +/- 8°, bzw. den in der Typenprüfung angegebenen Wert, nicht überschreiten bzw. unterschreiten.
 - (1) Die IEC 61400-1 ed.4 [6] sieht für den Nachweis zur Standorteignung bezüglich der Schräganströmung den Vergleich des energiegewichteten Mittelwertes aller Richtungen mit dem vorgegebenen Wert von +/- 8°, bzw. dem in der Typenprüfung angegebenen Wert vor. Der Vergleich erfolgt dann auf Basis der nach [6] ermittelten Ausgleichsebene mit Radius 5z_{hub}, erweitert um 2z_{hub} hinter der WEA.
 - (2) Die DIN EN 61400-1:2011-08 [7] sieht für den Nachweis der Standorteignung bezüglich der Schräganströmung den Vergleich des sektoriellen Maximal- bzw. Minimalwertes mit einem vorgegebenen Wert von +/- 8°, bzw. dem in der Typenprüfung angegebenen Wert vor. Der Vergleich erfolgt dann auf Basis der nach [7] ermittelten Ausgleichsebene mit Radius 5z_{hub}.
- ii. Der Standortmittelwert des Höhenexponenten α darf den vorgegebenen Minimal- bzw. Maximalwert nicht unter- bzw. überschreiten:
 - (1) Die IEC 61400-1 ed.4 [6] fordert für den Nachweis zur Standorteignung bezüglich des Höhenexponenten den Vergleich des energiegewichteten Mittelwertes über alle Richtungen mit dem vorgegebenen Wert von $0.05 \le \alpha \le 0.25$, bzw. dem in der Typenprüfung angegebenen Wert.

- (2) Die DIN EN 61400-1:2011-08 [7] fordert für den Nachweis zur Standorteignung bezüglich des Höhenexponenten den Vergleich des sektoriellen Maximal- bzw. Minimalwertes von $0 \le \alpha \le 0.2$ oder dem in der Typenprüfung angegebenen Wert.
- iii. Der Standortmittelwert der Luftdichte ρ darf bei allen Windgeschwindigkeiten größer gleich der Nennwindgeschwindigkeit den Wert 1.225 kg/m³ oder den in der Typenprüfung angegebenen Wert nicht überschreiten [7]. Die IEC 61400-1 ed.4 [6] fordert für den Nachweis zur Standorteignung bezüglich der Luftdichte die Einhaltung folgender Ungleichung:

$$\rho_{\text{Auslegung}} * v_{\text{ave,Auslegung}}^2 \ge \rho_{\text{Standort}} * v_{\text{ave,Standort}}^2$$

- iv. Die standortspezifische extreme Turbulenz muss nach [7] ermittelt und der Nachweis erbracht werden, dass die Auslegungswerte des ETM im Sektor mit der höchsten mittleren Windgeschwindigkeit nicht überschritten werden. Nach [6] ist der Nachweis zu erbringen, dass die Auslegungswerte des ETM in der Nachlaufsituation mit der höchsten Nachlaufturbulenz, im Zentrum des Nachlaufs, nicht überschritten werden.
- v. Der standortspezifische Extremwert des horizontalen Windgradienten darf den Extremwert nach [7], Kapitel 6.3.2.6 nicht überschreiten. Die IEC 61400-1 ed.4 [6] sieht diesen Nachweis nicht mehr vor.

1.2.3 Verfahren bei Überschreitungen – Nachweis durch Vergleich der Lasten

Kann der vereinfachte Nachweis der Windbedingungen nach DIBt 2012 [1.1] aus Abschnitt 1.2.1 nicht geführt werden, da die zu prüfenden Parameter nicht eingehalten werden, kann die Standorteignung auf Basis eines Lastvergleiches unter Berücksichtigung der standortspezifischen Windbedingungen aus Abschnitt 1.2.1 durchgeführt werden. Demnach ist bei einer Überschreitung der mittleren Windgeschwindigkeit $v_{\rm ave}$, oder bei Überschreitung der effektiven Turbulenzintensität $l_{\rm eff}$, der Nachweis der Standorteignung der jeweiligen WEA auf Basis eines Lastvergleiches der Betriebsfestigkeitslasten (Vergleich der standortspezifischen Lasten mit den Lastannahmen der Typenprüfung) zu führen. Bei einer Überschreitung der 50-Jahreswindgeschwindigkeit $v_{\rm m50}$ (h) ist der Nachweis der Standorteignung der jeweiligen WEA auf Basis eines Lastvergleiches der Extremlasten (Vergleich der standortspezifischen Lasten mit den Lastannahmen der Typenprüfung) zu führen.

Kann der Nachweis der Windbedingungen an einem als topografisch komplex zu bezeichnenden Standort nach Abschnitt 1.2.1 und Abschnitt 1.2.2 nicht geführt werden, da die zu prüfenden Werte nicht eingehalten werden, kann die Standorteignung entsprechend DIN EN 61400-1:2011-08 [7] und IEC 61400-1 ed.4 [6] auf Basis eines Lastvergleiches unter Berücksichtigung der standortspezifischen Windbedingungen aus Abschnitt 1.2.1 und Abschnitt 1.2.2 durchgeführt werden. Demnach ist der Nachweis der Standorteignung der jeweiligen WEA auf Basis eines Lastvergleiches der Betriebsfestigkeitslasten und der Extremlasten zu führen.

In beiden Fällen werden die der Typenprüfung zu Grunde gelegten Auslegungslasten mit den standortspezifischen Lasten, die auf Basis der standortspezifischen Windbedingungen aus dem vorliegenden Gutachten ermittelt werden, verglichen. Wenn sich zeigt, dass die standortspezifischen Lasten die Auslegungslasten nicht überschreiten oder diese einhalten, ist eine Standorteignung durch den Vergleich der Lasten nachgewiesen. Werden die Auslegungslasten nicht eingehalten, muss die Anlage gegebenenfalls mit einer sektoriellen Betriebseinschränkung betrieben werden, um die Lasten soweit zu reduzieren, dass sie innerhalb der Auslegungslasten liegen, oder die Standorteignung kann nicht durch einen Vergleich der Lasten nachgewiesen werden.

Die Berechnung der standortspezifischen Lasten erfolgt in der Regel durch den/die Hersteller der betrachteten WEA. Der zugehörige Bericht zur durchgeführten Lastberechnung wird der I17-Wind GmbH & Co. KG im Rahmen einer Geheimhaltungsvereinbarung vorgelegt. Die Berichte werden von der I17-Wind GmbH & Co. KG dahingehend überprüft, ob die Eingangsdaten korrekt übernommen und angesetzt wurden. Das Ergebnis der Lastberechnung wird als richtig vorausgesetzt.

1.3 Abweichungen von den Richtlinien

Folgende, von der DIBt 2012 Richtlinie [1.1] und der DIN EN 61400-1:2011-08 [7] abweichende, Verfahren wurden für das vorliegende Gutachten zur Standorteignung von WEA gewählt:

- I. Entsprechend der DIBt 2012 [1.1] ist es für eine Prüfung der Standorteignung Voraussetzung, dass für die WEA eine Typenprüfung bzw. eine Einzelprüfung vorliegt. Ist dies nicht der Fall, wird der Vergleich auf Basis von vorläufigen Auslegungswerten, für die die Typenprüfung voraussichtlich angestrebt wird, durchgeführt. Somit behält das vorliegende Gutachten im Falle einer Typenprüfung bzw. Einzelprüfung, welche die zu Grunde gelegten Auslegungsparameter abdeckt, seine Gültigkeit.
- II. Der Vergleich des Standortwertes der mittleren Windgeschwindigkeit auf Nabenhöhe v_{ave} mit dem Auslegungswert kann nur nach [1.1] erfolgen, wenn die Auslegungswerte der zu betrachtenden WEA einen Formparameter k der Weibullverteilung von k = 2.0 ausweisen. Wenn die Auslegungswerte der zu betrachtenden WEA einen Formparameter $k \neq 2.0$ ausweisen, kann der in [1.1] geforderte Vergleich nicht mehr erfolgen. In diesem Fall wird das [7] und [6] gewählt, welches einen Wahrscheinlichkeitsdichtefunktion pdf_{NH} der standortspezifischen Windgeschwindigkeiten mit der Wahrscheinlichkeitsdichtefunktion pdf_{TP} der Typenprüfung in einem Bereich von $0.2v_{ref}$ - $0.4v_{ref}$ nach [7], bzw. in einem Bereich von v_{ave} - $2v_{ave}$ nach [6] fordert. Die zu prüfenden Bereiche aus [7] und [6] sind in der Regel annähernd deckungsgleich, es wird jedoch immer der von beiden Normen abdeckende Bereich geprüft. In dem zu untersuchenden Bereich muss die Bedingung pdf_{NH} ≤ pdf_{TP} erfüllt sein. Die Berechnung der Wahrscheinlichkeitsdichtefunktionen pdf_{NH} und pdf_{TP} erfolgt entsprechend [6] auf Basis der Standortmittelwerte A_{NH} und k_{NH} bzw. der Auslegungswerte A_{TP} und k_{TP} der zu untersuchenden WEA.
- III. Erfolgt der Nachweis der Standorteignung durch den Vergleich der Windbedingungen nach Abschnitt 1.2.1 und 1.2.2, hat der Vergleich der standortspezifischen effektiven Turbulenzintensität und der Auslegungsturbulenz nach NTM in dem Bereich zwischen $0.2v_{m50}$ (h) und $0.4v_{m50}$ (h) zu erfolgen [1.1]. Liegt einer zu betrachtenden WEA keine Auslegungsturbulenz nach NTM vor, erfolgt der Vergleich mit der in der Typenprüfung aufgeführten Auslegungsturbulenz. Ist die Leistungskurve der WEA bekannt, hat der Vergleich nach [7] in dem Bereich zwischen $0.6v_r$ und v_{out} zu erfolgen. Erfolgt der Nachweis der Standorteignung durch den Vergleich der Lasten nach Abschnitt 1.2.3, sind der Lastberechnung nach [1.1]mindestens die standortspezifischen effektiven Turbulenzintensitäten von v_{in} bis $0.4v_{m50}$ (h) bzw. von v_{in} bis v_{out} nach [7] zu Grunde zu legen. Im vorliegenden Gutachten werden die standortspezifischen effektiven Turbulenzintensitäten mindestens im Windgeschwindigkeitsbereich von 5 m/s bis 25 m/s (bzw. v_{out} wenn v_{out} < 25 m/s) ausgewiesen, was die oben beschriebenen Anforderungen für den Nachweis der Standorteignung durch den Vergleich der Windbedingungen nach [1.1], [6] und [7] abdeckt. Erfolgt der Nachweis der Standorteignung durch den Vergleich der Lasten, werden dem Anlagenhersteller grundsätzlich die standortspezifischen effektiven Turbulenzintensitäten in dem Bereich von vin bis vout zur Verfügung gestellt. Liegt einer zu prüfenden WEA eine Typenprüfung nach [2] zu Grunde, erfolgt der Vergleich mit der Turbulenzkurve für Turbulenzkategorie A nach [1.1], da dieser Verlauf den nach [2] anzusetzenden mit abdeckt.
- IV. Bezüglich der effektiven Turbulenzintensität I_{eff} werden grundsätzlich alle Anlagen im Umkreis des 10fachen Rotordurchmessers D der geplanten Anlage(n) in die Betrachtung einbezogen und nachgewiesen. Dieses Kriterium deckt alle Kriterien nach [1.1], [6] und [7] ab.
- V. Der standortspezifische Mittelwert der Luftdichte ρ wird abdeckend für alle Windgeschwindigkeiten angegeben. Kann der Nachweis der Standorteignung in Bezug auf die Luftdichte nicht nach [7] geführt werden, erfolgt ggf. eine Überprüfung und eine Bewertung auf Basis der differenzierteren Betrachtung nach [6].

- VI. Der standortspezifische Extremwert des horizontalen Windgradienten wird entsprechend der IEC 61400-1 ed.4 [6] nicht berücksichtigt.
- VII. Auf Grund der verwendeten Berechnungsprogramme und deren Zahlenausgabeformat, werden die im vorliegenden Gutachten ausgewiesenen Ergebnisse in der Regel mit dem Dezimaltrennzeichen "Punkt" versehen.
- VIII. Auf Grund der unterschiedlichen Begrifflichkeiten und Bezeichnungen identischer Größen in den zu Grunde gelegten Richtlinien und Normen, werden im vorliegenden Gutachten teilweise Begriffe und Bezeichnungen gewählt bzw. eingeführt, die, soweit möglich, eine Ähnlichkeit zu den jeweiligen Begriffen und Bezeichnungen in den Richtlinien und Normen aufweisen, um sie diesen zuordnen zu können. Die korrekte Umsetzung der in den Richtlinien und Normen geforderten Vergleiche bleibt davon unberührt.

1.4 Modellunsicherheiten

Alle im Rahmen des vorliegenden Gutachtens ermittelten Ergebnisse und Zwischenergebnisse basieren einerseits auf Angaben, die vom Auftraggeber übermittelt wurden und andererseits auf Berechnungsergebnissen, die durch die I17-Wind GmbH & Co. KG ermittelt wurden. Zu den Unsicherheiten der den Eingangsdaten vom Auftraggeber zu Grunde gelegten Berechnungsmodellen kann seitens der I17-Wind GmbH & Co. KG keine Aussage getroffen werden. Diese Eingangsdaten werden im Weiteren als richtig und repräsentativ für den betrachteten Standort vorausgesetzt.

Die in den Berechnungen herangezogenen Anlagenparameter, Schubbeiwert $c_{\rm t}$ und Schnelllaufzahl λ , werden in der Regel vom Hersteller bereitgestellt. Diese Werte werden als richtig vorausgesetzt. Die berücksichtigten Werte entsprechen dem Stand zum Zeitpunkt der Gutachtenerstellung. Änderungen sind dem Anlagenhersteller vorbehalten und bedürfen einer neuen Berechnung. Bei älteren Anlagen, für die keine Informationen vorliegen, werden konservativ abdeckende, generische Anlagenparameter angesetzt.

Den von der I17-Wind GmbH & Co. KG ermittelten Ergebnissen liegen unterschiedliche, vereinfachte physikalische Modelle zu Grunde, die nur annähernd die Realität abbilden, jedoch als konservativ zu bewerten sind. Des Weiteren werden bei den Berechnungen teilweise vereinfachende Annahmen getroffen, die jedoch allesamt ebenfalls als konservativ zu bewerten sind.

2 Aufgabenstellung und Standort

2.1 Umfang des Gutachtens

Da im geplanten Windpark kein Anlagenstandort einer nach DIBt 2012 typengeprüften Anlage nach DIN EN 61400-1:2011-08 [7], bzw. IEC 61400-1 ed.4 [6] als topografisch komplexer Standort zu bezeichnen ist, findet das vereinfachte Verfahren nach Abschnitt 1.2.1 für alle Anlagen Anwendung.

2.2 Standortbeschreibung

Der Auftraggeber plant die Errichtung von sechs WEA des Typs Vestas V162-6.0 MW auf 169.0 m Nabenhöhe und zwei WEA des Typs ENERCON E-160 EP5 E2 / 5.500 kW auf 166.6 m Nabenhöhe. Das Standortzentrum liegt südöstlich von Förderstedt, einem Ortsteil der Stadt Staßfurt im Salzlandkreis in Sachsen-Anhalt.

Die I17-Wind GmbH & Co. KG wurde damit beauftragt, ein Gutachten zur Standorteignung von WEA nach der DIBt 2012 Richtlinie [1.1] unter Berücksichtigung der in Tabelle 2.1 aufgeführten [21] und in Abbildung 2.1 dargestellten WEA zu erstellen. Tabelle 2.1 führt neben den Spezifikationen der WEA am Standort auch die der Typenprüfung zu Grunde gelegten, bzw. bei fehlender Information unterstellten, Richtlinien auf. Des Weiteren wird aufgeführt, welcher Wöhlerlinienkoeffizient m für die Berechnung der effektiven Turbulenzintensität $I_{\rm eff}$ herangezogen wurde. Die Ergebnisse in 3.3.3 berücksichtigen den jeweiligen Wöhlerlinienkoeffizienten aus Tabelle 2.1.

Die Spalte "Innerhalb 10 D" weist aus, welche WEA sich innerhalb eines Umkreises von 10 D um die geplanten WEA befinden. Für diese WEA hat nach [6] und [7] eine Bewertung der topografischen Komplexität und der effektiven Turbulenzintensität I_{eff} zu erfolgen.

Im vorliegenden Gutachten beziehen sich alle Bezeichnungen auf die interne, laufende W-Nummer. Wird eine Größe mit dem Index TP bezeichnet, handelt es sich um den Auslegungswert der zu betrachtenden WEA. Eine Bezeichnung mit dem Index NH weist auf den standortspezifischen Wert der betrachteten Anlage hin.

Im vorgegeben Windparklayout ergibt sich der geringste relative Abstand *s* einer neu geplanten WEA zu einer anderen WEA von 2.25, bezogen auf den größeren Rotordurchmesser *D*. Dies betrifft die WEA W2 und W22.

2.3 Auslegungswindbedingungen der geplanten WEA

Die Auslegungswindbedingungen werden entweder der Typenprüfung entnommen oder vom Hersteller übermittelt. Da der Vergleich der Auslegungswindbedingungen, abgesehen von $l_{\rm eff}$, mit den standortspezifischen Bedingungen nur für neu geplante WEA zu führen ist, werden in Tabelle 2.2 nur die Auslegungswindbedingungen der neu geplanten WEA aufgeführt.

Tabelle 2.1: Zu untersuchende Windparkkonfiguration

Bezeichnung	Neu /	ql	Topografisch	UTM ETRS89 Zone 32	TRS89 e 32	Hersteller	WEA TVD	NH	Q	FEH	ď	Prüfgrund-	¥	т мах, тР
Auftraggeber	Bestand	10 D	komplex	[m] x	Y [m]			E	Ε	Ξ	KW	lage DIBt		<u> </u>
WEA01	Neu	Ja	Nein	684275	5750983	Vestas	V162-6.0 MW	169.0	162.0	0.0	0009	2012	S	10
WEA02	Nen	Ja	Nein	684026	5750604	Vestas	V162-6.0 MW	169.0	162.0	0.0	0009	2012	S	10
WEA03	Nen	Ja	Nein	684700	5750815	Vestas	V162-6.0 MW	169.0	162.0	0.0	0009	2012	S	10
WEA04	Neu	Ja	Nein	684390	5750413	Vestas	V162-6.0 MW	169.0	162.0	0.0	0009	2012	S	10
WEA05	Neu	Ja	Nein	684847	5750390	Vestas	V162-6.0 MW	169.0	162.0	0.0	0009	2012	S	10
WEA06	Nen	Ja	Nein	684601	5750002	Vestas	V162-6.0 MW	169.0	162.0	0.0	0009	2012	S	10
WEA-7	Neu	Ja	Nein	684063	5751323	ENERCON	E-160 EP5 E2 / 5.500 kW	166.6	160.0	0.0	2500	2012	⋖	10
WEA-8	Neu	Ja	Nein	683877	5749616	ENERCON	E-160 EP5 E2 / 5.500 kW	166.6	160.0	0.0	2500	2012	⋖	10
Foer-E1	Bestand	Ja	Nein	682700	5750086	ENERCON	E-82 E2 / 2.300 kW	138.4	82.0	0.0	2300	2004	⋖	10
Foer-E2	Bestand	Ja	Nein	683138	5749784	ENERCON	E-82 E2 / 2.300 kW	138.4	82.0	0.0	2300	2004	⋖	10
Foer-E3	Bestand	Ja	Nein	683152	5750296	ENERCON	E-82 E2 / 2.300 kW	138.4	82.0	0.0	2300	2004	⋖	10
Foer-E4	Bestand	Ja	Nein	683385	5750095	ENERCON	E-82 E2 / 2.300 kW	138.4	82.0	0.0	2300	2004	⋖	10
Foer-E5	Bestand	Ja	Nein	683619	5749893	ENERCON	E-82 E2 / 2.300 kW	138.4	82.0	0.0	2300	2004	∢	10
Foerd HWII-01	Bestand	Ja	Nein	682667	5750624	Senvion	MM92	100.0	92.5	0.0	2050	2004	٨	10
Foerd HWII-02	Bestand	Ja	Nein	682480	5750863	Senvion	MM92	100.0	92.5	0.0	2050	2004	Α	10
Foerd HWII-03	Bestand	Nein	1	682209	5751176	Senvion	MM92	100.0	92.5	0.0	2050	2004	⋖	10
Foerd HWII-04	Bestand	Ja	Nein	682617	5751567	Senvion	MM92	100.0	92.5	0.0	2050	2004	Α	10
Foerd HWII-05	Bestand	Ja	Nein	682905	5751336	Senvion	MM92	100.0	92.5	0.0	2050	2004	۷	10
Foerd HWII-06	Bestand	Ja	Nein	683061	5751000	Senvion	MM92	100.0	92.5	0.0	2050	2004	Α	10
Foerd HWII-07	Bestand	Ja	Nein	683250	5750720	Senvion	MM92	100.0	92.5	0.0	2050	2004	Α	10
Foerd HWIII-01	Bestand	Ja	Nein	683541	5750547	Nordex	N90/2500 LS	100.0	90.0	0.0	2500	2012	Α	10
Foerd HWIII-02	Bestand	Ja	Nein	683785	5750330	Nordex	N90/2500 LS	100.0	90.0	0.0	2500	2012	Α	10
Foerd HWIII-03	Bestand	Ja	Nein	682453	5750308	Nordex	N90/2500 LS	100.0	90.0	0.0	2500	2012	Α	10
Foerd HWIII-05	Bestand	Nein	-	681863	5750864	Nordex	N90/2500 LS	100.0	0.06	0.0	2500	2012	Α	10
Foerd HWI-01	Bestand	Ja	Nein	683515	5751477	Nordex	N60/1300	85.0	0.09	0.0	1300	1993	٨	10
Foerd HWI-02	Bestand	Ja	Nein	683551	5751130	Nordex	N60/1300	85.0	0.09	0.0	1300	1993	۷	10

Interne	Bezeichnung	/ nəN	Innerhalb	Innerhalb Topografisch	UTM ETRS89 Zone 32	M ETRS89 Zone 32	Hersteller	WEA TVD	HN	Q	НЭЭ	P _N	-	TK	<i>М</i> тах, ТР
W-Nr.	Auftraggeber	Bestand	10 D	komplex	[m] X	Y [m]			[m]	[m]	[m]	[kW]	lage DIBt		Ξ
W27	Foerd HWI-03	Bestand	Ja	Nein	683581	5750837	Nordex	N60/1300	85.0	0.09	0.0	1300	1993	Α	10
W28	Foerd HWI-04	Bestand	Ja	Nein	682837	5750368	Nordex	N60/1300	85.0	0.09	0.0	1300	1993	Α	10
W29	Foerd HWI-05	Bestand	Ja	Nein	684011	5750011	Nordex	N60/1300	85.0	0.09	0.0	1300	1993	Α	10
W30	Sta-N-1	Bestand	Nein	-	009829	5751028	Südwind	S70/1500	65.0	70.0	0.0	1500	1993	Α	10
W31	Sta-N-2	Bestand	Nein		678270	5750718	Südwind	S70/1500	85.0	70.0	0.0	1500	1993	A	10
W32	Sta-N-3	Bestand	Nein	-	678953	5750501	Südwind	S70/1500	85.0	70.0	0.0	1500	1993	Α	10
W33	E40-1	Bestand	Nein	-	679379	5745280	ENERCON	E-40 / 6.44	65.0	44.0	0.0	900	1993	Α	10
W34	E40-2	Bestand	Nein	-	679400	5745105	ENERCON	E-40 / 6.44	65.0	44.0	0.0	900	1993	Α	10
W35	Brumby-1	Bestand	Nein	-	687650	5751909	Euroturbine	ET 500/41	50.0	41.5	0.0	200	1993	Α	10
W36	Brumby-2	Bestand	Nein	-	687744	5751794	Euroturbine	ET 500/41	50.0	41.5	0.0	200	1993	Α	10
W37	Atzendorf-1	Bestand	Nein	-	678734	5752949	Vestas	V80-2.0 MW	95.0	80.0	0.0	2000	1993	Α	10
W38	Atzendorf-2	Bestand	Nein	-	679040	5752941	Vestas	V80-2.0 MW	95.0	80.0	0.0	2000	1993	Α	10
W39	Foerd HWIII-04	Bestand	Nein	-	682203	5750545	Nordex	N90/2500 LS	100.0	90.0	0.0	2500	2012	Α	10

Tabelle 2.2: Auslegungswindbedingungen der neu geplanten WEA

		_
Quelle	[24.1] [24.2]	[24.3] [24.4]
Auslegungs- lebensdauer [a]	25	20
ETM	А	Α
ρ _{τΡ} [kg/m³]	1.224	1.225
αтр [-]	0.27	0.20
[_°] ^{d1} 9	0.8	0.8
TK	S	Α
и _{т50,ТР}	37.60	36.35
[-] <i>k</i> [±] b	2.22	2.00
V _{ave,TP} [m/s]	7.50	7.50
ЭВ	S	S
WZ	S	S
Prüf- grundlage	DIBt 2012	DIBt 2012
Interne W-Nr.	W1-W6	W7 und W8

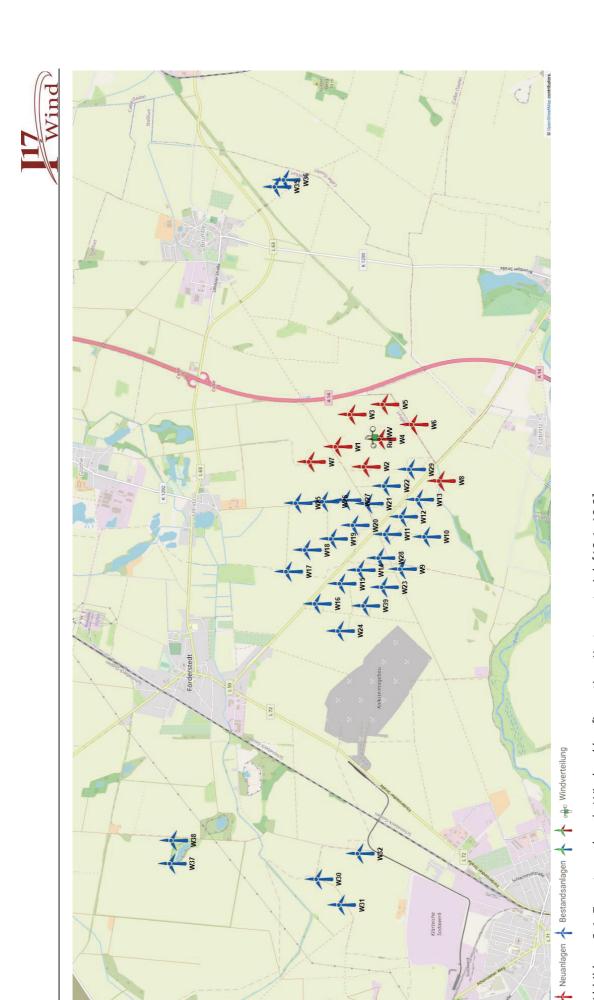


Abbildung 2.1: Zu untersuchende Windparkkonfiguration; Kartenmaterial: [19.1, 19.2]

3 Vergleich der Windbedingungen

3.1 Grundlagen

Vom Auftraggeber wurden standortbezogene Windverhältnisse, unterteilt in mindestens 12 Sektoren, übermittelt [22.1]. Diese werden als richtig und für den Standort repräsentativ vorausgesetzt.

Um die Windverhältnisse auf Nabenhöhe an jedem Anlagenstandort zu ermitteln, werden die Daten der Windverhältnisse [22.1] auf alle notwendigen Höhen umgerechnet, sofern diese nicht vorliegen. Die Umrechnung erfolgt auf Basis eines logarithmischen Windprofils und des am Standort der Windverteilung ermittelten Höhenexponenten α . Bei der vertikalen Umrechnung wird der Formparameter k als invariant mit der Höhe angenommen und lediglich der Skalenparameter k umgerechnet. Eine horizontale Umrechnung vom Standort der Winddaten zu den jeweiligen WEA Standorten erfolgt nicht. Liegen in [22.1] mehrere Windverteilungen vor, werden diese den jeweiligen WEA zugeordnet. Tabelle 3.1 führt eine der in [22.1] übermittelten Windbedingungen am Standort auf.

Tabelle 3.1: Windverhältnisse am Standort [22.1]

	Höhe: 166	m ü. Grund				
	UTM ETRS	89 Zone 32		Α	k	p
X [m]	684408	Y [m]	5750576	[m/s]	[-]	[%]
Sek	tor	Windrick	ntung [°]			
ľ	7	C)	6.18	2.21	4.8
NN	NO	3	0	6.20	2.34	4.8
O	NO	6	0	6.35	2.38	5.0
()	9	0	7.17	2.59	6.9
09	SO	12	20	7.18	2.49	7.0
SS	00	15	50	6.39	2.23	5.7
9	6	180		7.07	2.13	6.2
SS	W	210		8.73	2.87	9.6
WS	WSW		10	9.02	3.19	13.8
V	V	27	70	8.96	2.55	14.1
W	W	30	00	8.36	2.59	14.7
NN	ıw	33	30	7.00	2.42	7.3
	Ges	amt		7.84	2.43	99.9
	v ave [m/s]			6.9	

3.2 Vergleich v_{ave} und v_{m50}

3.2.1 Vergleich der mittleren Windgeschwindigkeit vave

Liegt der Typenprüfung einer entsprechend Abschnitt 1.2.1 zu untersuchenden WEA ein Formparameter k mit k = 2.0 zu Grunde, ist der Vergleich der Windverhältnisse in Bezug auf die mittlere Windgeschwindigkeit v_{ave} auf Nabenhöhe jeder geplanten WEA so zu führen, dass gilt:

i. $v_{\text{ave, NH}} / v_{\text{ave, TP}} \le 0.95$ oder

ii. $0.95 < v_{\text{ave, NH}} / v_{\text{ave, TP}} \le 1.00 \text{ und } k_{\text{NH}} \ge 2.00$

Liegt der Typenprüfung einer entsprechend Abschnitt 1.2.1 zu untersuchenden WEA ein Formparameter k mit $k \neq 2.0$ zu Grunde, ist der Vergleich der Windverhältnisse in Bezug auf die mittlere Windgeschwindigkeit v_{ave} jeder geplanten WEA wie folgt zu führen:

i. Vergleich der Wahrscheinlichkeitsdichtefunktion der standortspezifischen Windgeschwindigkeiten pdf_{NH} mit der Wahrscheinlichkeitsdichtefunktion der Typenprüfung pdf_{TP} in einem Bereich von $0.2v_{ref}$ - $0.4v_{ref}$ nach [7], bzw. in einem Bereich von v_{ave} - $2v_{ave}$ nach [6]. In dem zu untersuchenden Bereich muss die Bedingung pdf_{NH} \leq pdf_{TP} erfüllt sein.

Das Ergebnis der Berechnung der mittleren Windgeschwindigkeit v_{ave} und der Formparameter k der Weibullverteilung auf Nabenhöhe jeder neu geplanten WEA sind in Tabelle 3.2 dargestellt und werden mit den Auslegungswindbedingungen der jeweiligen WEA verglichen.

Tabelle 3.2: Vergleich der mittleren Windgeschwindigkeit vave auf Nabenhöhe der geplanten WEA

Interne W-Nr.	v _{ave, NH} [m/s]	v _{ave, TP} [m/s]	<i>k</i> _{NH} [-]	<i>к</i> _{тр} [-]	Wenn $k_{TP} = 2$: $v_{ave, NH} / v_{ave, TP}$ [-]	Wenn k _{TP} ≠ 2: pdf _{NH} ≤ pdf _{TP}	Nachweis möglich (gemäß 1.2.1)	Lastvergleich erforderlich (gemäß 1.2.3)
W1 – W6	6.93	7.50	2.43	2.22	-	Nein	Nein	Ja
W7 und W8	6.92	7.50	2.43	2.00	0.92	-	Ja	Nein

3.2.2 Vergleich der 50-Jahres-Windgeschwindigkeit $v_{\rm m50}$

Der Vergleich der 50-Jahreswindgeschwindigkeit $v_{m50, \, NH}$ auf Nabenhöhe der geplanten WEA mit dem Auslegungswert kann auf zwei Wegen erfolgen. Wenn die WEA in einer Windzone errichtet werden soll, die niedriger oder gleich der Windzone ist, die der Typenprüfung zu Grunde liegt, reicht der Nachweis, dass die Windzone gemäß Typenprüfung die Windzone des betrachteten Standortes abdeckt [1.1]. Ist dies nicht der Fall, muss nachgewiesen werden, dass die 50-Jahreswindgeschwindigkeit $v_{m50, \, TP}$ gemäß Typenprüfung die 50-Jahreswindgeschwindigkeit auf Nabenhöhe der geplanten WEA am Standort abdeckt [1.1, 4, 5]. Hierzu muss die 50-Jahreswindgeschwindigkeit $v_{m50, \, NH}$ mittels einer geeigneten Methode (z.B. der Gumbel-Methode [10]) am Standort ermittelt werden.

Den nachzuweisenden Standorten wird nach DIBt 2012 [1.1], bzw. nach DIN EN 1991-1-4/NA:2010-12 mit DIN EN 1991-1-4:2010-12 [9] die in Tabelle 3.3 aufgeführte Windzone entsprechend [11] und die Geländekategorie, basierend auf den durch den Standortbesuch gewonnenen Erkenntnissen und den verwendeten Satellitendaten [13], zu Grunde gelegt. Da, nach [1.1], in Übergangsgebieten der Geländekategorien stets die Gleichungen der niedrigeren Kategorie anzusetzen sind, wird der Vergleich in solchen Fällen auf Basis der Gleichungen für die niedrigere Geländekategorie durchgeführt.

In der folgenden Tabelle 3.3 werden die Auslegungswindbedingungen hinsichtlich v_{m50} mit den standortspezifischen Windbedingungen verglichen. Wenn die geplanten WEA in einer Windzone errichtet werden sollen, die durch die Auslegungswindbedingungen abgedeckt ist, ist die Standorteignung hinsichtlich v_{m50} nachgewiesen. Ist der Standort nicht durch die Auslegungswindbedingungen $v_{m50, TP}$ der geplanten WEA abgedeckt, erfolgt der Nachweis über eine standortspezifische Extremwindabschätzung [22.2]. Die Ergebnisse der standortspezifischen

Extremwindabschätzung werden als richtig und repräsentativ für den Standort vorausgesetzt. Kann der Nachweis durch keine der beiden Verfahrensweisen erbracht werden, kann der Nachweis ggf. durch einen Lastvergleich der Extremlasten nach Abschnitt 1.2.3 erbracht werden.

Tabelle 3.3: Vergleich der 50-Jahres-Windgeschwindigkeit v_{m50} auf Nabenhöhe der geplanten WEA

Interne W-Nr.	WZ _{TP}	GK _{TP}	v _{m50, TP} [m/s]	WZ _{NH}	GK _{NH}	ν _{m50, NH} [1.1] [m/s]	ν _{m50, NH} [22.2] [m/s]	Nachweis möglich (gemäß 1.2.1)	Lastvergleich erforderlich (gemäß 1.2.3)
W1 – W6	S	S	37.60	2	П	39.30	30.40 ¹	Ja	Nein
W7 und W8	S	S	36.35	2	Ш	39.21	30.40 ¹	Ja	Nein

3.3 Vergleich der effektiven Turbulenzintensität *I*_{eff}

3.3.1 Auslegungswindbedingungen hinsichtlich der Turbulenzintensität

Für die Turbulenzintensität auf Nabenhöhe einer nach der DIBt 2012 [1.1] typengeprüften WEA gibt es windgeschwindigkeitsabhängige Auslegungswerte in vier Kategorien, welche in der DIN EN 61400-1:2011-8 [7] aufgeführt sind und der Typenprüfung zu Grunde gelegt werden müssen. Bei den Turbulenzkategorien wird zwischen den vorgegebenen Kategorien A, B, C und der durch den WEA-Hersteller definierbaren Kategorie S unterschieden. Mit der IEC 61400-1 ed.4 [6] wurde eine weitere Turbulenzkategorie A+ eingeführt.

Für WEA die nach der DIBt 2004 [2] typengeprüft sind, muss die windgeschwindigkeitsabhängige Turbulenzkategorie A, welche in der DIN EN 61400-1:2004 [8] definiert ist, als Auslegungswindbedingung hinsichtlich der Turbulenzintensität zu Grunde gelegt sein. Für WEA die nach der DIBt 1993 [3] typengeprüft sind, ist eine konstante, mittlere effektive Turbulenzintensität $I_{\rm eff}$ von 0.20 als Auslegungswindbedingung anzusetzen.

In Tabelle 3.4 sind die unterschiedlichen Turbulenzkategorien und deren Verläufe dargestellt.

-

¹ In [22.2] wird $v_{m50,NH}$ auf einer Nabenhöhe von 166.0 m ausgewiesen. Eine Erhöhung der Nabenhöhe um 3.0 m bzw. 0.6 m wird zu keiner derartigen Erhöhung führen, dass der Auslegungswert $v_{m50,TP}$ überschritten wird.

Tabelle 3.4: Richtlinienabhängige Auslegungswindbedingungen hinsichtlich der Turbulenzintensität

	DIBt 1993 [3]	DIBt 2004 [2]	IEC 61400-1 ed.4 [6]		DIBt 20	12 [1.1]	
v _{hub} [m/s]	Konstanter Mittelwert	NTM A [8] [-]	NTM A+ [6] [-]	NTM A [5, 6, 7] [-]	NTM B [5, 6, 7] [-]	NTM C [5, 6, 7] [-]	s [-]
2		0.570	0.639	0.568	0.497	0.426	-
3		0.420	0.471	0.419	0.366	0.314	-
4		0.345	0.387	0.344	0.301	0.258	-
5		0.300	0.337	0.299	0.262	0.224	-
6		0.270	0.303	0.269	0.236	0.202	-
7		0.249	0.279	0.248	0.217	0.186	-
8		0.233	0.261	0.232	0.203	0.174	-
9		0.220	0.247	0.220	0.192	0.165	-
10		0.210	0.236	0.210	0.183	0.157	-
11		0.202	0.227	0.201	0.176	0.151	-
12		0.195	0.219	0.195	0.170	0.146	-
13		0.189	0.213	0.189	0.165	0.142	-
14		0.184	0.207	0.184	0.161	0.138	-
15		0.180	0.202	0.180	0.157	0.135	-
16	-	0.176	0.198	0.176	0.154	0.132	-
17		0.173	0.194	0.173	0.151	0.130	-
18		0.170	0.191	0.170	0.149	0.127	-
19		0.167	0.188	0.167	0.146	0.125	-
20		0.165	0.185	0.165	0.144	0.124	-
21		0.163	0.183	0.163	0.142	0.122	-
22		0.161	0.181	0.161	0.141	0.121	-
23		0.159	0.179	0.159	0.139	0.119	-
24		0.158	0.177	0.157	0.138	0.118	-
25		0.156	0.175	0.156	0.136	0.117	-
26		0.155	0.174	0.154	0.135	0.116	-
27		0.153	0.172	0.153	0.134	0.115	-
28		0.152	0.171	0.152	0.133	0.114	-
29		0.151	0.170	0.151	0.132	0.113	-
30		0.150	0.169	0.150	0.131	0.112	-
Konstanter Mittelwert	0.200	-	-	-	-	-	-

Der Vergleich des standortspezifischen Turbulenzverlaufes mit den windgeschwindigkeitsabhängigen Auslegungswerten erfolgt bei WEA die nach der DIBt 2004 [2] typengeprüft sind, auf Basis der Werte für die Turbulenzkategorie A nach [1.1, 5, 6, 7], da diese die Werte nach [8] mit abdecken.

3.3.2 Ermittlung der Umgebungsturbulenzintensität

3.3.2.1 Datengrundlage

Im Wesentlichen hängt die Umgebungsturbulenz I_{amb} von den Windverhältnissen, der Orographie und der Geländerauigkeit ab. Die Windverhältnisse aus [22.1] enthalten keinerlei Informationen zur Umgebungsturbulenzintensität vor Ort, somit wurde diese auf Basis der vorliegenden Informationen zur Bodenbedeckung [13] und der Topografie [14] am Standort auf Nabenhöhe ermittelt.

3.3.2.2 Vorgehensweise

Die Umgebungsturbulenzintensität Iamb beschreibt im Allgemeinen die Schwankung der Windgeschwindigkeit in einem Zeitintervall von 600 s um ihren Mittelwert. Sie ist als der Quotient aus der Standardabweichung σ der Windgeschwindigkeit und der zugehörigen mittleren Windgeschwindigkeit ν_{ave} in einem 600 s Intervall zu bilden [6, 7, 8]. Liegen Daten einer Windmessung am Standort vor, kann direkt. bzw. I_{char} durch Addition der 1fachen Standardabweichung I_{amb} Umgebungsturbulenzintensität σ_{σ} [4, 8] und I_{rep} durch Addition der 1.28fachen Standardabweichung der Umgebungsturbulenzintensität σ_{σ} [6, 7] zu I_{amb} ermittelt werden. Durch Ermittlung der Windscherung, kann die auf Messhöhe ermittelte charakteristische, bzw. repräsentative Turbulenzintensität auf Nabenhöhe extrapoliert werden. Liegt keine Messung vor, muss die Umgebungsturbulenzintensität rechnerisch ermittelt werden.

Zur Berechnung von I_{amb} werden an jedem zu untersuchenden WEA Standort die flächenmäßigen Informationen zur Bodenbedeckung aus dem CORINE Datensatz [13] mit 20 km Radius um den Standort zu Grunde gelegt. Die in [13] enthaltenen Flächen verschiedener Bodenbedeckung werden nach den Empfehlungen des Europäischen Wind Atlas [12] in Flächen mit einer Rauigkeitslänge z_0 konvertiert. Alle innerhalb eines Sektors liegenden Rauigkeitselemente werden abschließend nach Abstand und Größe gewichtet und in einen, für diesen Sektor, repräsentativen Rauigkeitswert umgerechnet. Aus den sektoriell vorliegenden Rauigkeitslängen wird mittels eines von der Rauigkeitslänge z_0 abhängigen Profils die Umgebungsturbulenzintensität auf Nabenhöhe der jeweiligen WEA berechnet.

Da in der Richtlinie des Deutschen Instituts für Bautechnik DIBt 2012 [1.1] für die Ermittlung der Standorteignung bezüglich der effektiven Turbulenzintensitäten Turbulenzwerte für verschiedene Windgeschwindigkeiten gefordert sind, wird den ermittelten Werten für Umgebungsturbulenzintensität das NTM nach [6, 7] zu Grunde gelegt. Der ermittelten Turbulenzkurve wird in Anlehnung an das vom Risø DTU National Laboratory entwickelte Verfahren im Windfarm Assessment Tool eine windgeschwindigkeitsabhängige Standardabweichung σ_{σ} unterstellt, die ebenfalls dem NTM Verlauf folgt [15]. Die Werte für die Standardabweichung Umgebungsturbulenzintensität σ_{σ} die der sind SO gewählt, dass Summe Referenzturbulenzintensität nach NTM und dem 1fachen σ_{σ} die Referenzkurve nach [6, 7] ergibt.

Die repräsentative Turbulenzintensität I_{rep} wird nach dem beschriebenen Verfahren für jede zu betrachtende, nach DIBt 2012 [1.1] typen-/einzelgeprüfte, WEA auf Nabenhöhe ermittelt und den weiteren Berechnungen zu Grunde gelegt. Für Anlagen, deren Typen-/Einzelprüfung auf der Richtlinie DIBt 2004 [2] oder DIBt 1993 [3] basiert, findet die charakteristische Turbulenzintensität I_{char} Anwendung.

3.3.2.3 Untersuchung der topografischen Komplexität der Anlagenstandorte

Das verwendete Höhenmodell aus dem SRTM Datensatz [14] liegt in einer Auflösung von ca. 30 m vor und wird für die Ermittlung der topografischen Komplexität der Standorte herangezogen.

Die Standorte aller zu betrachtenden Anlagen werden basierend auf den Vorgaben der geltenden Norm DIN EN 61400-1:2011-08 [7] auf topografische Komplexität untersucht. Die topografische Komplexität des Standortes wird dargestellt durch die Neigung des Geländes und die Abweichungen der Topografie des Geländes von einer dem Gelände angenäherten Ebene. Die Beurteilungskriterien sind in Tabelle 3.5 dargestellt.

Tabelle 3.5: Komplexitätskriterien nach DIN EN 61400-1:2011-08 [7]

Abstand von der betrachteten WEA [m]	Sektoramplitude [°]	Größte Neigung der angenäherten Ebene	Größte Geländeabweichung [m]
< 5NH	360		< 0.3NH
< 10NH	30	< 10	< 0.6NH
< 20NH	30		< 1.2NH

Ein Standort wird als topografisch komplex eingestuft, wenn 15 % der Windenergie aus Sektoren kommt, die die Kriterien in Tabelle 3.5 nicht erfüllen [7].

3.3.2.4 Ermittlung des Turbulenzstrukturparameters

Um der Deformation der turbulenten Anströmung durch die Topografie Rechnung zu tragen, erfolgt die Einführung des von der Energieverteilung abhängigen Turbulenzstrukturparameters C_{CT} . Hierfür wird nach DIN EN 61400-1:2011-08 [7] der Komplexitätsindex i_{C} ermittelt und angesetzt, siehe Tabelle 3.6. Bei der Ermittlung von i_{C} werden alle Energieanteile aus den Sektoren aufsummiert, welche die Kriterien aus Tabelle 3.5 nicht erfüllen. Der errechnete Turbulenzstrukturparameter C_{CT} kommt dann in jedem dieser Sektoren zum Tragen. Dieser wird auf Basis des verwendeten Höhenmodells [14] und der übermittelten Windverhältnisse [22.1] berechnet.

Tabelle 3.6: Anzusetzende Turbulenzstrukturparameter nach [7]

Anteil an der Energieverteilung [%]	Komplexitätsindex i _C [-]	Turbulenzstrukturparameter C _{CT} [-]
0 - 5	0	1.000
6	0.1	1.015
7	0.2	1.030
8	0.3	1.045
9	0.4	1.060
10	0.5	1.075
11	0.6	1.090
12	0.7	1.105
13	0.8	1.120
14	0.9	1.135
15	1	1.150
16 - 100	1	1.150

3.3.2.5 Repräsentative Turbulenzintensität

In Tabelle 3.7 werden die sektoriell nach dem in Abschnitt 3.3.2.2 beschriebenen Verfahren ermittelten, repräsentativen, Turbulenzintensitäten, bezogen auf eine Windgeschwindigkeit von 15 m/s, für eine Anlagenposition aufgeführt.

Tabelle 3.7: Repräsentative Turbulenzintensität für einen Standort

Standort: W4	<i>NH</i> : 169 m	I _{rep}
Sektor	Windrichtung [°]	[-]
N	0	0.114
NNO	30	0.111
ONO	60	0.116
0	90	0.109
oso	120	0.114
SSO	150	0.121
S	180	0.114
SSW	210	0.111
wsw	240	0.116
W	270	0.114
WNW	300	0.111
NNW	330	0.107

3.3.3 Ermittlung der effektiven Turbulenzintensität I_{eff}

3.3.3.1 Grundlagen

Die effektive Turbulenzintensität $I_{\rm eff}$ ist definiert als die mittlere Turbulenzintensität, die über die Lebensdauer einer WEA dieselbe Materialermüdung verursacht, wie die am Standort herrschenden, verschiedenen Turbulenzen. Die Materialkennzahl, die maßgeblich in die Berechnung der effektiven Turbulenzintensität einfließt, ist der Wöhlerlinienkoeffizient m. Im vorliegenden Gutachten liegt jeder zu betrachtenden WEA der anlagenspezifische Wöhlerlinienkoeffizient zu Grunde, der die strukturschwächste Komponente repräsentiert. Hierbei handelt es sich im Regelfall um die Rotorblätter einer WEA, welche durch Wöhlerlinienkoeffizienten zwischen m=10 für glasfaserverstärkte Verbundwerkstoffe und m=15 für kohlefaserverstärkte Verbundwerkstoffe abgedeckt werden. Dadurch werden alle Komponenten einer WEA in die Betrachtung mit einbezogen.

Grundsätzlich setzt sich die effektive Turbulenzintensität $I_{\rm eff}$ an einer WEA aus der Umgebungsturbulenzintensität und der durch den Nachlauf anderer WEA induzierten Turbulenzintensität, dem sogenannten "Wake-Effekt", zusammen. Hierbei sind je nach zu Grunde gelegter Richtlinie unterschiedliche Berücksichtigungen der Standardabweichung der Umgebungsturbulenzintensität σ_{σ} zu berücksichtigen.

Die Berechnung der induzierten Turbulenzintensität erfolgt nach den Ausarbeitungen in [10], Kapitel 2.4.4, wenn alle hierfür erforderlichen Anlagenparameter vorliegen oder konservativ abdeckend ermittelt werden konnten. Andernfalls erfolgt die Berechnung der induzierten Turbulenzintensität nach den Ausarbeitungen in [16], sowie den informativen Anhängen in [6] und [7]. Die generelle Vorgehensweise zur Ermittlung der effektiven Turbulenzintensität $I_{\rm eff}$ erfolgt in beiden Fällen entsprechend den Anforderungen aus [6] und [7].

Die induzierte Turbulenzintensität wird in [10] als eine Funktion beschrieben, die von den Abständen der WEA untereinander, der Umgebungsturbulenzintensität und von anlagenspezifischen Kenngrößen abhängig ist. Diese Kenngrößen sind einerseits der windgeschwindigkeitsabhängige Schubbeiwert c_t , als auch die windgeschwindigkeitsabhängige Schnelllaufzahl λ der turbulenzinduzierenden WEA. Das Modell bildet sowohl den voll ausgebildeten Nachlauf als auch den nicht voll ausgebildeten Nachlauf Bericht-Nr.: 117-SE-2020-377 Rev.02

hinter einer WEA ab. Die anlagenspezifischen Werte c_t und λ sind vom Anlagenhersteller übermittelt. Wenn für eine zu betrachtende WEA diese Werte nicht vorliegen, werden Sie, wenn möglich, auf Basis der Anlagenparameter wie Drehzahl und Rotordurchmesser ermittelt, oder durch eine konservativ abdeckende Standardkurve ersetzt. Der Ermittlung von $I_{\rm eff}$ werden die am Standort herrschenden geometrischen Verhältnisse, sowie die am Standort herrschenden Windbedingungen zu Grunde gelegt. Da in [10] keine Aussage zum berücksichtigenden Einflussbereich der WEA untereinander getroffen wird, werden sowohl die Bereiche im Volleinfluss (Rotor der WEA steht voll im Nachlauf einer anderen WEA), als auch die Bereiche im Teileinfluss (Rotor der WEA steht nur teilweise im Nachlauf einer anderen WEA) bei der Berechnung von $I_{\rm eff}$ berücksichtigt, was somit den konservativsten Ansatz darstellt.

Die induzierte Turbulenzintensität wird in [16] als eine Funktion beschrieben, die von den Abständen s der WEA untereinander und vom windgeschwindigkeitsabhängigen Schubbeiwert c_t abhängig ist. Die anlagenspezifischen c_t Werte sind vom Anlagenhersteller übermittelt. Wenn für eine zu betrachtende WEA diese Werte nicht vorliegen, werden Sie durch eine konservativ abdeckende Standardkurve ersetzt. Der Ermittlung von $I_{\rm eff}$ werden die am Standort herrschenden geometrischen Verhältnisse, sowie die am Standort herrschenden Windbedingungen zu Grunde gelegt. Da in [16] eine eindeutige Aussage zum berücksichtigenden Einflussbereich der WEA untereinander getroffen wird, wird genau dieser Bereich bei der Berechnung von $I_{\rm eff}$ berücksichtigt.

Die Ermittlung der induzierten Turbulenzintensität muss durchgeführt werden, solange sich eine WEA in einem Abstand kleiner 10 D von der zu betrachtenden Anlage befindet [6, 7, 8]. Ist der Abstand aller WEA im Umfeld grösser 10 D, bezogen auf die jeweils turbulenzinduzierende WEA, muss deren Einfluss nicht mehr berücksichtigt werden.

Die Ergebnisse der ermittelten, effektiven Turbulenzintensitäten bei Anlagenabständen von unter 2.0 D können nicht für eine standortspezifische Lastrechnung (siehe Abschnitt 1.2.3) herangezogen werden. In diesen Nachlaufsituationen ist in jedem Fall eine Abschaltung erforderlich. Die Ergebnisse der ermittelten, effektiven Turbulenzintensitäten bei Anlagenabständen von mindestens 2.3 D können uneingeschränkt für eine standortspezifische Lastrechnung (siehe Abschnitt 1.2.3) herangezogen werden. Bei relativen Anlagenabständen zwischen 2.0 D und 2.3 D wird nach einschlägigen Kriterien im Einzelfall entschieden, ob die Ergebnisse für eine Lastrechnung verwendet werden können, oder nicht. In der Einzelfallprüfung werden folgende Größen im Bereich der zu untersuchenden Nachlaufsituation bewertet:

- Der Formparameter der Weibullverteilung k
- Der Energieanteil
- Die Kriterien nach Tabelle 3.5

Ergibt die Einzelfallprüfung, dass die Ergebnisse nicht für eine Lastrechnung herangezogen werden können, werden sektorielle Abschaltungen oder Betriebsbeschränkungen gefordert, um die Standorteignung hinsichtlich der effektiven Turbulenzintensität nachzuweisen.

Die ermittelten Werte für $I_{\rm eff}$ werden den Auslegungswerten, die der Typen-/Einzelprüfung der betrachteten Anlage zu Grunde liegen, gegenübergestellt. Liegen die ermittelten Werte nicht oberhalb der Auslegungswerte, gilt eine Standorteignung hinsichtlich der effektiven Turbulenzintensität als nachgewiesen. Liegen die Werte über den Auslegungswerten, kann eine Standorteignung hinsichtlich der effektiven Turbulenzintensität nicht durch den Vergleich mit den Auslegungswerten nachgewiesen werden. Der Nachweis der Standorteignung kann in diesem Fall jedoch durch eine standortspezifische Lastrechnung seitens des Anlagenherstellers oder eines unabhängigen Dritten erfolgen.

3.3.3.2 Berücksichtigte sektorielle Betriebsbeschränkungen (WSM)

Bei der Berechnung der effektiven Turbulenzintensität I_{eff} können sektorielle Betriebsbeschränkungen (WSM) an WEA berücksichtigt werden. Die Betriebsbeschränkungen können sich aus zu geringen Abständen und einer negativen Einzelfallprüfung nach Abschnitt 3.3.3.1 ergeben, oder an bereits bestehenden WEA Bestandteil der Genehmigung sein. Des Weiteren kann ein WSM dafür genutzt werden, den Einfluss einer neu geplanten WEA auf den zu berücksichtigenden Bestand derart zu reduzieren, dass die geplante WEA keinen signifikanten Einfluss mehr auf die effektive Turbulenzintensität I_{eff} einer Bestandsanlage hat oder um Überschreitungen der effektiven dieser zu verhindern. Die im Folgenden Turbulenzintensität *I*_{eff} an Betriebsbeschränkungen stellen immer eine Mindestanforderung dar, deren technische Umsetzbarkeit nicht geprüft wurde. Wenn möglich, wird für jedes WSM an einer beeinflussenden WEA ein alternatives WSM an der beeinflussten WEA ausgewiesen. Hierbei handelt es sich in der Regel um eine Abschaltung an der beeinflussten WEA, da die Lasten an einer abgeschalteten WEA geringer sind, als die Lasten im frei angeströmten Betrieb. Die ausgewiesenen Alternativen stellen einen Vorschlag dar, werden aber nicht in der Berechnung der effektiven Turbulenzintensität I_{eff} berücksichtigt. Soll eine ausgewiesene Alternative berücksichtigt werden, erfordert dies eine neue Bewertung hinsichtlich der effektiven Turbulenzintensität Ieff.

Bei der Berechnung der effektiven Turbulenzintensität I_{eff} wurden keine sektoriellen Betriebsbeschränkungen berücksichtigt.

3.3.3.3 Ergebnis

Die folgende Tabelle 3.8 und Tabelle 3.9 stellen die ermittelten effektiven Turbulenzintensitäten nach Zubau der geplanten WEA in Abhängigkeit von der Windgeschwindigkeit dar. Die nach der jeweils zu Grunde gelegten Richtlinie ermittelten effektiven Turbulenzintensitäten werden der Referenzkurve nach DIBt 2012 [1.1] oder der Referenzkurve der jeweiligen Typenprüfung gegenübergestellt. Überschreitungen sind *fett kursiv* dargestellt. Für WEA die nach der Richtlinie DIBt 1993 [3] typengeprüft sind, ist nur die mittlere konstante effektive Turbulenzintensität am unteren Ende der Tabelle relevant.

Tabelle 3.8: Ermittelte effektive Turbulenzintensitäten leff (Teil 1)

W2[S]	w3[s]	W4[S]	W5[S]	[s]9M	W7[A]	W8[A]	W9[A]	W10[A]	W11[A]	W12[A]	W13[A]	Referenz Klasse S	Referenz Klasse A
0.318	0.316	0.328	0.312	0.304	0.311	0.291	0.283	0.289	0.317	0.327	0.358	0.370	0.419
0.282	0.277	0.289	0.274	0.263	0.272	0.244	0.253	0.241	0.270	0.280	0.301	0.340	0.344
0.275	0.269	0.281	0.268	0.251	0.265	0.219	0.244	0.213	0.243	0.253	0.269	0.306	0.299
0.255	0.255	0.267	0.255	0.235	0.249	0.200	0.210	0.193	0.222	0.233	0.246	0.281	0.269
0.236	0.238	0.248	0.239	0.217	0:230	0.186	0.196	0.178	0.207	0.218	0.225	0.260	0.248
0.220	0.225	0.233	0.227	0.202	0.214	0.174	0.181	0.165	0.194	0.204	0.205	0.243	0.232
0.203	0.210	0.216	0.212	0.186	0.197	0.166	0.169	0.156	0.185	0.196	0.193	0.230	0.220
0.183	0.189	0.193	0.191	0.166	0.174	0.159	0.160	0.147	0.176	0.188	0.183	0.216	0.210
0.167	0.169	0.172	0.171	0.150	0.154	0.153	0.151	0.141	0.169	0.181	0.175	0.192	0.201
0.155	0.153	0.155	0.154	0.138	0.140	0.137	0.141	0.128	0.149	0.155	0.152	0.168	0.195
0.141	0.142	0.143	0.143	0:130	0.131	0.127	0.128	0.121	0.137	0.137	0.136	0.158	0.189
0.131	0.134	0.135	0.135	0.124	0.125	0.121	0.121	0.116	0.131	0.127	0.127	0.147	0.184
0.125	0.128	0.128	0.129	0.120	0.120	0.118	0.116	0.113	0.126	0.121	0.121	0.142	0.180
0.120	0.123	0.123	0.124	0.116	0.116	0.115	0.112	0.110	0.121	0.116	0.116	0.136	0.176
0.116	0.119	0.119	0.120	0.113	0.113	0.112	0.109	0.108	0.117	0.112	0.112	0.133	0.173
0.112	0.115	0.116	0.116	0.111	0.110	0.110	0.107	0.106	0.114	0.109	0.109	0.129	0.170
0.109	0.111	0.112	0.113	0.109	0.107	0.108	0.105	0.105	0.111	0.107	0.107	0.127	0.167
0.107	0.108	0.109	0.110	0.107	0.105	0.107	0.103	0.104	0.109	0.104	0.105	0.124	0.165
0.105	0.105	0.107	0.107	0.106	0.103	0.105	0.102	0.102	0.108	0.103	0.104	0.123	0.163
0.104	0.103	0.104	0.105	0.104	0.102	0.104	0.100	0.101	0.106	0.101	0.102	0.122	0.161
0.102	0.101	0.103	0.103	0.103	-	-	0.099	0.100	0.104	0.100	0.101	0.120	0.159
0.101	0.100	0.101	0.101	0.102	1	ı	0.098	0.099	0.103	0.099	0.100	0.118	0.157
,	1	,			1		0.097	0.099	0.102	0.098	0.099	,	0.156

Tabelle 3.9: Ermittelte effektive Turbulenzintensitäten leff (Teil 2)

Vhub	W14[A]	W15[A]	W17[A]	W18[A]	W19[A]	W20[A]	W21[A]	W22[A]	W23[A]	W25[A]	W26[A]	W27[A]	W28[A]	W29[A]	Referenz Klasse A
3	0.316	0.322	0.295	0.308	0.315	0.310	0.327	0.336	0.328	ı	-	-	1	-	0.419
4	0.279	0.282	0.251	0.264	0.270	0.275	0.292	0.299	0.284	0.249	0.259	0.290	0.291	0.287	0.344
5	0.255	0.250	0.216	0.228	0.232	0.257	0.275	0.291	0.263	0.221	0.232	0.279	0.266	0.264	0.299
9	0.228	0.224	0.197	0.208	0.211	0.224	0.244	0.268	0.232	0.202	0.213	0.245	0.241	0.242	0.269
7	0.214	0.208	0.182	0.193	0.196	0.208	0.227	0.246	0.215	0.186	0.197	0.229	0.227	0.223	0.248
8	0.201	0.195	0.171	0.183	0.184	0.194	0.211	0.228	0.200	0.174	0.185	0.214	0.213	0.206	0.232
6	0.190	0.183	0.162	0.173	0.173	0.182	0.198	0.209	0.188	0.164	0.174	0.201	0.204	0.194	0.220
10	0.182	0.175	0.155	0.167	0.166	0.173	0.188	0.190	0.178	0.156	0.165	0.191	0.196	0.183	0.210
11	0.169	0.161	0.142	0.152	0.151	0.161	0.175	0.177	0.169	0.146	0.153	0.176	0.187	0.174	0.201
12	0.156	0.149	0.132	0.139	0.138	0.147	0.158	0.161	0.152	0.137	0.143	0.161	0.165	0.157	0.195
13	0.142	0.136	0.125	0.130	0.129	0.135	0.144	0.146	0.138	0.131	0.135	0.145	0.147	0.143	0.189
14	0.133	0.128	0.120	0.124	0.123	0.128	0.135	0.136	0.130	0.125	0.129	0.136	0.137	0.135	0.184
15	0.126	0.122	0.116	0.120	0.119	0.122	0.129	0.130	0.125	0.121	0.124	0.129	0.131	0.129	0.180
16	0.121	0.117	0.112	0.115	0.115	0.117	0.124	0.125	0.121	0.117	0.119	0.123	0.125	0.124	0.176
17	0.116	0.114	0.110	0.112	0.112	0.114	0.120	0.121	0.117	0.114	0.116	0.119	0.121	0.120	0.173
18	0.113	0.111	0.107	0.109	0.109	0.111	0.117	0.118	0.115	0.111	0.113	0.115	0.118	0.117	0.170
19	0.110	0.108	0.105	0.106	0.107	0.108	0.114	0.115	0.113	0.109	0.110	0.112	0.115	0.115	0.167
20	0.108	0.106	0.103	0.104	0.105	0.106	0.112	0.113	0.111	0.107	0.109	0.110	0.112	0.112	0.165
21	0.106	0.105	0.102	0.103	0.103	0.105	0.110	0.111	0.109	0.105	0.107	0.108	0.110	0.111	0.163
22	0.105	0.103	0.100	0.101	0.102	0.103	0.108	0.109	0.108	0.104	0.105	0.107	0.109	0.109	0.161
23	0.103	0.102	660'0	0.100	0.101	0.102	0.107	0.108	0.107	0.103	0.104	0.105	0.107	0.107	0.159
24	0.102	0.101	0.098	0.099	0.100	0.101	0.106	0.107	0.106	0.102	0.103	0.104	0.106	0.106	0.157
25	-	-	-	-	-	-	0.104	0.106	0.105	0.100	0.102	0.101	0.104	0.105	0.156
DIBt 1993	1	1	1	1	1	1	1	1	ı	0.162	0.170	0.197	0.195	0.191	0.200

4 Zusammenfassung

4.1 Neu geplante WEA

Es wurden die Standortbedingungen nach Abschnitt 1.2.1 für die neu geplanten WEA ermittelt und mit den Auslegungswerten verglichen. Dieser Vergleich hat gezeigt, dass

- i. W7 und W8 keine Überschreitung der mittleren Windgeschwindigkeit $v_{\text{hub, NH}}$ im Vergleich zur Auslegungswindgeschwindigkeit $v_{\text{hub, TP}}$ aufweisen (siehe Abschnitt 3.2.1),
- ii. W1 W6 eine Überschreitung der Wahrscheinlichkeitsdichtefunktion der standortspezifischen Windgeschwindigkeiten pdf_{NH} im Vergleich zur Wahrscheinlichkeitsdichtefunktion der Typenprüfung pdf_{TP} aufweisen (siehe Abschnitt 3.2.1),
- iii. W1 W8 an einem Standort errichtet werden sollen, der den Auslegungswert der 50-Jahreswindgeschwindigkeit $v_{m50, TP}$ nicht überschreitet (siehe Abschnitt 3.2.2) und
- iv. W1 W8 keine Überschreitungen der effektiven Turbulenzintensität I_{eff} gegenüber den Auslegungswerten aufweisen (siehe Abschnitt 3.3.3.3).

Die Standorteignung gemäß DIBt 2012 [1.1] ist für die WEA W7 und W8 durch das vorliegende Gutachten nachgewiesen.

Für die WEA W1 – W6 hat eine seitens des Herstellers Vestas durchgeführte Überprüfung der standortspezifischen Lasten der WEA, in der geplanten Konfiguration nach Tabelle 2.1, anhand der dem Hersteller zur Verfügung gestellten Ergebnisse aus Kapitel 3 ergeben, dass die Auslegungslasten der WEA nicht überschritten werden [25]. Die Ergebnisse in [25] wurden von der I17-Wind GmbH & Co. KG hinsichtlich der berücksichtigten Eingangsdaten geprüft und werden als richtig vorausgesetzt.

Die Standorteignung gemäß DIBt 2012 [1.1] ist für die WEA W1 – W6 unter Berücksichtigung der standortspezifischen Lastrechnung [25] durch das vorliegende Gutachten nachgewiesen.

Tabelle 4.1: Zusammenfassung der Ergebnisse geplante WEA

Interne W-Nr.	Hersteller	Anlagentyp	NH [m]	FEH [m]	Standorteignung gemäß DIBt 2012 nachgewiesen
W1	Vestas	V162-6.0 MW	169.0	0.0	Ja
W2	Vestas	V162-6.0 MW	169.0	0.0	Ja
W3	Vestas	V162-6.0 MW	169.0	0.0	Ja
W4	Vestas	V162-6.0 MW	169.0	0.0	Ja
W5	Vestas	V162-6.0 MW	169.0	0.0	Ja
W6	Vestas	V162-6.0 MW	169.0	0.0	Ja
W7	ENERCON	E-160 EP5 E2 / 5.500 kW	166.6	0.0	Ja
W8	ENERCON	E-160 EP5 E2 / 5.500 kW	166.6	0.0	Ja

4.2 Bestehende WEA

Für die Bestands-WEA W9 – W15, W17 – W23 und W25 – W29 konnte die nach DIBt 2012 [1.1] nachzuweisende Standorteignung hinsichtlich der effektiven Turbulenzintensität durch den Vergleich mit den Auslegungswerten nachgewiesen werden.

Tabelle 4.2: Zusammenfassung der Ergebnisse Bestands-WEA

Interne W-Nr.	Hersteller	Anlagentyp	NH [m]	FEH [m]	Standorteignung gemäß DIBt 2012 nachgewiesen
W9	ENERCON	E-82 E2 / 2.300 kW	138.4	0.0	Ja
W10	ENERCON	E-82 E2 / 2.300 kW	138.4	0.0	Ja
W11	ENERCON	E-82 E2 / 2.300 kW	138.4	0.0	Ja
W12	ENERCON	E-82 E2 / 2.300 kW	138.4	0.0	Ja
W13	ENERCON	E-82 E2 / 2.300 kW	138.4	0.0	Ja
W14	Senvion	MM92	100.0	0.0	Ja
W15	Senvion	MM92	100.0	0.0	Ja
W17	Senvion	MM92	100.0	0.0	Ja
W18	Senvion	MM92	100.0	0.0	Ja
W19	Senvion	MM92	100.0	0.0	Ja
W20	Senvion	MM92	100.0	0.0	Ja
W21	Nordex	N90/2500 LS	100.0	0.0	Ja
W22	Nordex	N90/2500 LS	100.0	0.0	Ja
W23	Nordex	N90/2500 LS	100.0	0.0	Ja
W25	Nordex	N60/1300	85.0	0.0	Ja
W26	Nordex	N60/1300	85.0	0.0	Ja
W27	Nordex	N60/1300	85.0	0.0	Ja
W28	Nordex	N60/1300	85.0	0.0	Ja
W29	Nordex	N60/1300	85.0	0.0	Ja

5 Standortbesichtigung

Entsprechend der Forderung in der Richtlinie DIBt Fassung Oktober 2012 [1.1] nach einer Standortbesichtigung wurde diese am 20.08.2020 durch den Auftraggeber durchgeführt [23].

Die Standortbesichtigung dient zur Ermittlung, bzw. zum Abgleich von Geländebeschaffenheit mit vorhandenen Satellitendaten zur Rauigkeit [13] und ggf. zu den Höhenlinien [14]. Mögliche turbulenzrelevante Einzelstrukturen wurden untersucht und dokumentiert. Die Standortdokumentation bestätigt die zu Grunde gelegten Rauigkeiten und die Ergebnisse zur Komplexität.

Abkürzungs- und Symbolverzeichnis

Abkürzung	Bedeutung
BImSchG	Bundes-Immissionsschutzgesetz
DIBt	Deutsches Institut für Bautechnik
DIN	Deutsches Institut für Normung
EN	Europäische Norm
ETM	Extremes Turbulenzmodell
ETRS89	Europäisches Terrestrisches Referenzsystem von 1989
GK	Gauß-Krüger, Geländekategorie
IEC	International Electrotechnical Commission
NA	Nationaler Anhang
NTM	Normales Turbulenzmodell
PEL	Pseudo-Äquivalente-Last
pdf	Wahrscheinlichkeitsdichtefunktion
TK	Turbulenzkategorie, Auslegungsturbulenz
TP	Typenprüfung
UTM	Universal Transverse Mercator Projection
WEA	Windenergieanlage(n)
WGS84	World Geodetic System (letzte Revision in 2004)
WSM	Wind Sector Management, Sektorielle Betriebsbeschränkung
WZ	Windzone

Symbol	Bedeutung	Einheit
Α	Skalenparameter der Weibullverteilung	[m/s]
C _{CT}	Turbulenzstrukturparameter	[-]
<i>C</i> _t	Schubbeiwert	[-]
D	Rotordurchmesser	[m]
FEH	Fundamenterhöhung	[m]
I _{amb}	Umgebungsturbulenzintensität	[-]
i _C	Komplexitätsindex	[-]
I _{char}	Charakteristische Turbulenzintensität	[-]
I _{eff}	Effektive Turbulenzintensität auf Nabenhöhe	[-]
I _{rep}	Repräsentative Turbulenzintensität	[-]
k	Formparameter der Weibullverteilung	[-]
λ	Schnelllaufzahl	[-]
m	Wöhlerlinienkoeffizient	[-]
NH	Nabenhöhe	[m]
р	Sektorielle Häufigkeit	[%]
P_{N}	Nennleistung	[kW]
S	Dimensionsloser Abstand zwischen WEA, bezogen auf den jeweils größeren Rotordurchmesser	[-]
V ave	Jahresmittel der Windgeschwindigkeit auf Nabenhöhe	[m/s]
v_{hub}	Windgeschwindigkeit auf Nabenhöhe	[m/s]
v _{in}	Einschaltwindgeschwindigkeit der WEA	[m/s]
<i>v</i> _{m50}	10-Minuten Mittelwert der 50-Jahres-Windgeschwindigkeit auf Nabenhöhe	[m/s]
$v_{\rm out}$	Abschaltwindgeschwindigkeit der WEA	[m/s]
<i>v</i> _r	Nennwindgeschwindigkeit der WEA	[m/s]

Symbol	Bedeutung	Einheit
V _{ref}	Auslegungswert des 10-Minuten Mittelwerts der 50-Jahres-Windgeschwindigkeit	[m/s]
Χ	Rechtswert	[m]
Υ	Hochwert	[m]
<i>Z</i> ₀	Rauigkeitslänge	[m]
Z _{hub}	Nabenhöhe der betrachteten WEA	[m]
α	Höhenexponent	[-]
δ	Schräganströmung	[°]
ρ	Luftdichte	[kg/m³]
σ	Standardabweichung der Windgeschwindigkeit	[m/s]
σ_{σ}	Standardabweichung der Turbulenzintensität	[-]

Literaturverzeichnis

[1.1]	Deutsches Institut für Bautechnik – DIBt -, Berlin; Referat I 8 Bautechnisches Prüfamt Grundlagen der Standsicherheit; Richtlinie für Windenergieanlagen – Einwirkungen und Standsicherheitsnachweise für Turm und Gründung; Fassung Oktober 2012 und korrigierte Fassung März 2015;
[1.2]	DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik; DKE/AK 383.0.01/Untergruppe DIBt2012 an die PG "Windenergieanlagen" des DIBt; Anwendung der DIBt 2012 zur Prüfung der Standorteignung, 30.01.2015;
[2]	Deutsches Institut für Bautechnik – DIBt -, Berlin; Richtlinie für Windenergieanlagen – Einwirkungen und Standsicherheitsnachweise für Turm und Gründung; Fassung März 2004; Schriften des Deutschen Instituts für Bautechnik Reihe B, Heft 8;
[3]	Deutsches Institut für Bautechnik – DIBt -, Berlin; Richtlinie für Windkraftanlagen – Einwirkungen und Standsicherheitsnachweise für Turm und Gründung; Fassung Juni 1993; 2. Überarbeitete Auflage 1995; Schriften des Deutschen Instituts für Bautechnik Reihe B, Heft 8;
[4]	International Electrotechnical Comission (IEC); IEC 61400-1 Edition 2.0 International Standard Wind turbine generator systems – Part 1: Safety requirements;
[5]	International Electrotechnical Comission (IEC); IEC 61400-1 Edition 3.0 International Standard Windturbines – Part 1: Design requirement; Mit Implementierung von 61400-1/A1, Amendment 1, 2009;
[6]	International Electrotechnical Commission (IEC); IEC 61400-1 Edition 4.0 International Standard Wind energy generation systems – Part 1: Design requirements; Februar 2019;
[7]	Deutsches Institut für Normung; DIN EN 61400-1:2011-08 Windenergieanlagen – Teil 1: Auslegungsanforderungen (IEC 61400-1:2005 + A1:2012); Deutsche Fassung EN 61400-1:2005 + A1:2010;
[8]	Deutsches Institut für Normung; DIN EN 61400-1:2004 Windenergieanlagen – Teil 1: Sicherheitsanforderungen (IEC 61400-1:1999); Deutsche Fassung EN 61400-1:2004;
[9]	Deutsches Institut für Normung; DIN EN 1991-1-4/NA:2010-12 mit DIN EN 1991-1-4:2010-12; Nationaler Anhang – Eurocode 1: Einwirkungen auf Tragwerke – Teil 1-4: Allgemeine Einwirkungen: Windlasten;
[10]	ECN Solar & Wind Energy, J.W.M. Dekker und J.T.G. Pierik [Hrsg.]: European Wind Turbine Standards II, Petten, (NLD), 1998;
[11]	Deutsches Institut für Bautechnik; Windzonen nach Verwaltungsgrenzen; Windzonen_Formular_nach_Verwaltungsgrenzen.xlsx; Stand 27.09.2018;
[12]	European Wind Atlas, Risø National Laboratory, Roskilde (DK), 1989 Troen, Ib; Petersen, Erik L.;
[13]	European Environment Agency; Corine Land Cover (CLC) 2012, Version 18.5.1; Veröffentlicht am 19.09.2016;
[14]	U.S. Geological Survey Earth Resources Observation & Science Center (EROS); SRTM 1 Arc-Sec Global; Download am 02.12.2016;
[15]	Risø DTU National Laboratory for Sustainable Energy, Windfarm Assessment Tool Version 3.3.0.128;
[16]	Frandsen, Sten T. (2007): Turbulence and turbulence-generated structural loading in wind

turbine clusters. Roskilde (DK);

[17] EMD International A/S; WindPRO / ENERGY; Modelling of the variation of air density with altitude through pressure, humidity and temperature; 12.05.2014; EMD online Katalog oder Anlagendokumentation der Hersteller; [18] [19.1] OpenStreetMap und Mitwirkende; SRTM | Kartendarstellung: OpenTopoMap (CC-BY-SA); Siehe auch: https://creativecommons.org; [19.2] Microsoft Corporation; © 2019 Digital Globe © CNES (2019) Distribution Airbus DS; Siehe auch: https://www.microsoft.com/en-us/maps/product; [20] Rodenhausen M., Moser W., Hülsmann C., Bergemann C., Könker M., McKenna R.; Prüfung der Standorteignung für Windenergieanlagen: Ein pragmatischer Ansatz; Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin. Bautechnik 93 (2016) Heft 10; [21] Windwärts Energie GmbH; E-Mail mit dem Betreff: "AW: Entwurfsbericht Projekt Förderstedt" vom 25.09.2020; Daten zur Verfügung gestellt in WakeGuard® Layout-ID: 1184754; E-Mail mit dem Betreff: "AW: Förderstedt / WEA 8" vom 17.11.2020 und E-Mails mit dem Betreff: "Auftrag Gutachterliche Stellungnahme | WP Förderstedt Rev.02" vom 19.05.2021 und 01.06.2021; Windwärts Energie GmbH; E-Mail mit dem Betreff: "AW: Entwurfsbericht Projekt Förderstedt" [22.1] vom 25.09.2020; Daten zur Verfügung gestellt in WakeGuard® Layout-ID: 1184754; Bezeichnung: "WWE 2018"; [22.2] anemos Gesellschaft für Umweltmeteorologie mbH; Extremwindabschätzung auf Basis des anemos Windatlas für Deutschland am Standort Förderstedt; Berichts-Nr.: 20-170-7020435-Rev.00-EX-MS; 24.08.2020; [23] Windwärts Energie GmbH; Standortdokumentation für ein Gutachten zur Standorteignung nach DIBt 2012 für den Windpark Förderstedt; Bericht-Nr.: I17-SV-2020-203; 20.08.2020; [24.1] Vestas Wind Systems A/S; Performance Specification EnVentus™ V162-6.0 MW 50/60 Hz; Document no.: 0098-0840 V03; 07.12.2020; [24.2] Vestas Wind Systems A/S; Gutachterinformation Auslegungswerte Turbulenz V162-5.6 MW 50/60 Hz 25 Jahre; Dokumentennr.: 0079-4774 V01; 31.03.2020; [24.3] ENERCON GmbH; General Design Conditions ENERCON Windenergieanlage E-160 EP5 E2 / 5500 kW; Dokument-ID: D0921389-2; 08.05.2020; ENERCON GmbH; D0924875-0_#_de;en_#_Ansichtszeichnung_E-160_EP5_E2-MST-166-FB-C-[24.4] 01.pdf; 11.02.2020; [25] Vestas Wind Systems A/S; Vestas Site Specific Load Calculation Förderstedt – Germany Revision 03; WS-Loads-C4C: 42914; T13 0101-3175 Ver 03; 29.06.2021;