

Rapport

Etude technico-économique pour l'atteinte du bon état sur la Bisten

Rapport n° A105435/Version F – 1^{er} septembre 2020

Projet suivi par Xavier VILLEMINOT – 06 84 78 90 88 – <u>xavier.villeminot@irh.fr</u>

Fiche signalétique

CLIENT	SITE
GAZEL ENERGIE	GAZEL ENERGIE
Centrale Emile HUCHET	Centrale Emile HUCHET
57 500 Saint Avold	57 500 Saint Avold
Marie HEIM	Marie HEIM
Responsable Unité Technique et Administratif	Responsable Unité Technique et Administratif
Tél: 03.87.83.39.17	Tél: 03.87.83.39.17
Mail: marie.heim@gazelenergie.com	Mail: marie.heim@gazelenergie.com

RAPPORT D'ANTEA GROUP				
Responsable du projet	Xavier VILLEMINOT			
Interlocuteur commercial	Xavier VILLEMINOT/Pierre KLEIN			
	Implantation de Ludres			
Implantation chargée du suivi du projet	03.83.50.50.16			
	lorraine@irh.fr			
Rapport n°	A105435			
Version n°	Version F			
Votre commande et date	Commande N° : 4300068014 Date : 20.05.2020			
Projet n°	LORP200236			

	Nom	Fonction	Date	Signature
Rédaction	Aude AGUERGARY	Ingénieur de projet	01/09/2020	aucear
Validation	Xavier VILLEMINOT	Chef de Projets Traitement des Eaux Industrielles	01/09/2020	Jun 1
Approbation	Pierre KLEIN	Responsable Adjoint Traitement des Eaux Industrielles	01/09/2020	6
Relecture qualité	Myriam MICHAUD	Secrétaire	01/09/2020	

Suivi des modifications

Indice	Date	Nombre	Nombre	Objet des madifications	
Version	de révision	de pages	d'annexes	Objet des modifications	
F	01/09/2020	156	4	Correctif p.139	
D	24/08/2020	156	4	Version finale	
С	18/08/2020	156	4	Ajout du plan d'actions Gazel Energie	
В	04/08/2020	156	4	Correctifs et commentaires	
Α	17/07/2020	139	4	Envoi initial pour discussion avec Gazel Energie	

Sommaire

Rés	umé i	non technique	12
1.	Proj	jet et objectif de votre commande	14
	1.1.	Contexte et objectifs	14
	1.2.	Objet de ce rapport	14
2.	Prés	sentation du site	15
	2.1.	Situation géographique	15
	2.2.	Présentation du site	16
	2.3.	Activité du site	16
	2.4.	Contexte réglementaire du site	17
3.	Gest	tion de l'eau sur le site	18
	3.1.	Approvisionnement, usages et consommations	18
		Objectifs de qualité d'eau	
		3.2.1. TAR groupe 6	
		3.2.2. TAR groupe 7 et 8	20
		3.2.3. Eau de process	20
	3.3.	Qualité des eaux distribuées	21
	3.4.	Descriptif des rejets	24
	3.5.	Contexte réglementaire des rejets	28
4.	Cara	actéristiques des rejets du site	30
	4.1.	Forage de dépollution	30
	4.2.	Diesen et Capfuides	30
		4.2.1. Débit	30
		4.2.2. Paramètres organiques	31
		4.2.3. MES	32
		4.2.4. Azote global (NGL)	33
		4.2.5. Phosphore total	33
		4.2.6. Arsenic total	
		4.2.7. Cadmium total	
		4.2.8. Chrome hexavalent et total	
		4.2.9. Cuivre total	
		4.2.10. Mercure	
		4.2.11. Nickel total	
		4.2.12. Etain total	
		4.2.14. Plomb total	
		4.2.15. AOX	

		4.2.16.	Indice hydrocarbures	42
		4.2.17.	Sulfates	42
		4.2.18.	Chlorures	43
		4.2.19.	Synthèse de l'exploitation	43
5.	Cara	ctéristic	ques de la Bisten	44
	5.1.	Contex	te hydrologique	44
	5.2.	Suivi d	es débits de la Bisten	46
		5.2.1.	Station de mesure de débit	46
		5.2.2.	Débit au droit des rejets	47
	5.3.	Object	ifs du bon état	48
		5.3.1.	Objectifs de qualité pour la Bisten	48
		5.3.2.	Définition des objectifs de qualité par paramètre	48
	5.4.	Suivi d	e la qualité de la Bisten	51
		5.4.1.	Etat écologique	52
		5.4.2.	Etat chimique	55
6.	Cam	pagne o	de mesures	56
	6.1.	Points	de mesures	56
		6.1.1.	Rejets Gazel Energie	56
		6.1.2.	Milieu naturel	58
		6.1.3.	Synoptique des points de mesures	60
	6.2.	Pluvior	métrie lors des mesures	61
	6.3.	Fonction	onnement du process lors des mesures	62
	6.4.	Résulta	ats milieu naturel	63
		6.4.1.	Jour 1	63
		6.4.2.	Jour 2	65
		6.4.3.	Commentaires	66
	6.5.	Résulta	ats Rejets Gazel Energie	68
		6.5.1.	Jour 1	
		6.5.2.	Jour 2	69
		6.5.3.	Commentaires	
	6.6.	Charge	s constatées	71
		6.6.1.	Milieu naturel	
		6.6.2.	Rejets Gazel	
		-	raison des charges en fonction des fonctionnements des tranches	
7.	Cont	tributio	n des rejets Gazel Energie	80
	7.1.	Métho	dologie	
		7.1.1.	Substances étudiées	
		7.1.2.	Méthodologie de calcul	
		7.1.3.	Impact des rejets du site	
		7.1.4.	Abattement à atteindre	94

8.	Recr	ierche (des solutions de traitement	96
	8.1.	Métho	dologie des essais	96
	8.2.	Princip	e de la coagulation - floculation	99
		8.2.1.	Coagulation	99
		8.2.2.	Floculation	99
		8.2.3.	Séparation des flocs	99
	8.3.	Procéd	lés membranaires	101
	8.4.	Analys	es préliminaires	104
	8.5.	Essais	de traitement par voie physico-chimique	105
		8.5.1.	Neutralisation	105
		8.5.2.	Insolubilisants pour métaux lourds	108
	8.6.	Traiter	ments membranaires	112
		8.6.1.	Appoint des 30 000	112
		8.6.2.	Effluents de régénération des adoucisseurs des Groupes 7 et 8	116
		8.6.3.	Effluents ODEX	119
9.	Exan	nen des	solutions envisageables	123
	9.1.	Rappe	l du Programme d'actions initial	123
	9.2.	Abatte	ments nécessaires	124
	9.3.	Invent	aire des solutions complémentaires au plan d'actions EGIS	125
	9.4.	Traiter	nent de l'eau d'appoint	126
		9.4.1.	Solution proposée : traitement membranaire	126
		9.4.2.	Qualité attendue en sortie de traitement	127
		9.4.3.	Qualité estimée au niveau des rejets	128
		9.4.4.	Impact estimé sur la Bisten	129
		9.4.5.	Chiffrage des installations membranaires	131
	9.5.	Traiter	ment des eaux rejetées par ODEX	132
		9.5.1.	Solutions proposées	132
		9.5.2.	Qualité attendue en sortie de traitement	132
		9.5.3.	Qualité estimée au niveau des rejets	133
		9.5.4.	Impact estimé sur la Bisten	
		9.5.5.	Chiffrage de la solution membranaire	
		9.5.6.	Chiffrage des installations physico-chimiques	
10.	Réca	pitulati	if	138

Table des annexes

Annexe I: La Bisten à Creutzwald (fiche banque hydro)

Annexe II: La Bisten à Creutzwald (état écologique)

Annexe III: La Bisten à Creutzwald (état chimique)

Annexe IV: Donnés moyennes et maximales années 2018

Table des figures

Figure 1 : Localisation de la centrale Emile Huchet	15
Figure 2 : Plateforme pétrochimique de Carling	
Figure 3 : Heures de fonctionnement Groupes 6, 7, 8 de 2017 à 2019	16
Figure 4: Heures de fonctionnement et consommation du Groupes 6 6	19
Figure 5 : Schéma des rejets	25
Figure 6 : Schéma simplifié du réseau des rejets aqueux de la centrale Emile Huchet	26
Figure 7 : Carte de situation générale	
Figure 8 : Evolution des débits moyens rejetés entre 2017 et 2020	30
Figure 9 : Evolution des concentrations moyennes du rejet en DCO entre 2017 et 2020	31
Figure 10 : Evolution des concentrations moyennes du rejet en DBO5 entre 2017 et 2020	
Figure 11 : Evolution des concentrations moyennes du rejet en Arsenic total entre 2017 et 2020 .	
Figure 12 : Evolution des concentrations moyennes du rejet en Azote Global entre 2017 et 2020 .	33
Figure 13 : Evolution des concentrations moyennes du rejet en phosphore total entre 2017 et 20	2033
Figure 14 : Evolution des concentrations moyennes du rejet en arsenic total entre 2017 et 2020	
Figure 15: Evolution des concentrations moyennes du rejet en cadmium total entre 2017 et 2020	
Figure 16 : Evolution des concentrations moyennes du rejet en chrome hexavalent entre 2017 et	
2020	
Figure 17 : Evolution des concentrations moyennes du rejet en chrome total entre 2017 et 2020.	36
Figure 18 : Evolution des concentrations moyennes du rejet en cuivre total entre 2017 et 2020	
Figure 19 : Evolution des concentrations moyennes du rejet en mercure entre 2017 et 2020	
Figure 20 : Evolution des concentrations moyennes du rejet en nickel total entre 2017 et 2020	
Figure 21 : Evolution des concentrations moyennes du rejet en étain total entre 2017 et 2020	
Figure 22 : Evolution des concentrations moyennes du rejet en zinc total entre 2017 et 2020	
Figure 23 : Evolution des concentrations moyennes du rejet en plomb total entre 2017 et 2020	
Figure 24 : Evolution des concentrations moyennes du rejet en AOX entre 2017 et 2020	
Figure 25 : Evolution des concentrations moyennes du rejet en hydrocarbures entre 2017 et 2020	
Figure 26 : Evolution des concentrations moyennes du rejet en sulfates entre 2017 et 2020	
Figure 27 : Evolution des concentrations moyennes du rejet en chlorures entre 2017 et 2020	
Figure 28 : Contexte hydrologique (source Eaufrance)	
Figure 29 : Le ruisseau le Leibsbach (source Eaufrance)	
Figure 30 : Le ruisseau de Guerting (Source Eaufrance)	
Figure 31 : Le ruisseau de Diesen (Source Eaufrance)	45
Figure 32 : Le ruisseau Bruchbach (Source Eaufrance)	
Figure 33 : Positionnement de la station de mesure de débit	
Figure 34: Bassins versants de la Bisten et du Froschenpfuhl	
Figure 35 : Valeurs des limites des classes d'état pour les paramètres physico-chimiques générau	
pour les cours d'eau (Arrêté du 27 juillet 2018)	
Figure 36 : Valeurs guides du bon état - paramètres DCO, MES, NTK - Guide technique 01/12/15 .	
Figure 37 : Positionnement de la station de mesure qualité	
Figure 38 : Photographies des points de mesures Gazel Energie	
Figure 39 : Photographies des points de mesures sur les milieux naturels	
Figure 40 : Localisation des points de mesure	
Figure 41 : Synoptique des points de mesures campagnes de mesures Antea Group 2020	
Figure 42 : Localisation des points de suivi pluviométriques (Site internet : météo ciel)	
Figure 43 : Suivi des précipitations journalières à proximité du site mois de mai 2020	
Figure 44 : Volumes journaliers rejetés durant la campagne de mesures	
Figure 45 : Photographies témoignant d'une longue période sèche	
Figure 46 : Etat de la Bisten à la station HYDRO de Creutzwald	
Figure 47 : Etat de la Bisten en amont de la station communale	
Figure 48 : Localisation des points de mesure	
O	

Figure 49	: Synoptiques des charges rejetées durant i audit SRR 2017	/5
Figure 50	: Synoptiques des charges rejetées durant les mesures Antea Group 2020	76
Figure 51	Répartition des flux dirigés vers Capfluides (SRR 2017)	77
Figure 52	: Répartition des flux dirigés vers Capfluides (Mesures Antea Group 2020)	78
	: Calcul des impacts sur le milieu des rejets 2018 (valeurs moyennes)	
Figure 54	: Calcul des impacts sur le milieu des rejets 2018 (valeurs maximales)	87
Figure 55	: Calcul des impacts sur le milieu des rejets 2020 (valeurs moyennes)	89
Figure 56	: Calcul des impacts sur le milieu des rejets 2020 (mesures 2020)	91
Figure 57	: Calcul des impacts sur le milieu des rejets 2020 (mesures 2020)	92
Figure 58	: Abattement à atteindre pour l'atteinte du bon état écologique de la Bisten	95
Figure 59	: Jar-test de laboratoire	96
Figure 60	: Courbe de précipitation des métaux	97
Figure 61	: Montage des essais laboratoire pour le traitement membranaire	98
	: Pilote de traitement membranaire	
Figure 63	: Schémas des systèmes de séparation	100
Figure 64	: Principe de l'osmose inverse	102
Figure 65	: Types de membranes	103
Figure 66	: Seuil de coupure des procédés membranaires	103
Figure 67	: Photographies des essais de neutralisation	106
	: Photographies des essais avec insolubilisant	
Figure 69	: Photographies de l'essai Métalsorb PCZ et HCO avec FeCl3	109
	: photographies de l'essai Métalsorb + neutralisation + floculation	
	: Evolution du débit de Perméat – Appoint 30 000	
Figure 72	: Photographies de l'essai membranaire sur l'appoint 30 000	113
Figure 73	Exploitation du logiciel LPLWin – Appoint 30 000	115
Figure 74	Exploitation du logiciel LPLWin – Appoint 30 000	116
Figure 75	Evolution du débit de Perméat – Effluents de régénération Adoucisseurs Groupes 7 et	
Figure 76	: Photographies essais membranaires : Effluents de régénération Adoucisseurs Groupes	7
Figure 77	: Evolution du débit de Perméat – Effluents ODEX	120
Figure 78	: Photographies – Effluents ODEX	120
Figure 79	: Principe de traitement proposé par EGIS	123
Figure 80	: Impacts sur le milieu en considérant l'atteinte du bon état et la mise en place d'un	
traitemen	t de l'eau d'appoint	130

Table des tableaux

Tableau 1 : Heures de l'onctionnement des groupes 6, 7, 8	10
Tableau 2: Rubriques ICPE de la Centrale Emile Huchet	
Tableau 3: Arrêtés préfectoraux complémentaires liés à l'eau	
Tableau 4 : Consommation en eau de forages (m³/an) – Années 2017, 2018, 2019	
Tableau 5 : Qualité nécessaire sur les TAR du group 6	19
Tableau 6 : Qualité nécessaire sur les TAR du group 7 et 8	20
Tableau 7 : Qualité nécessaire sur le process	
Tableau 8 : Caractéristiques de l'eau brute forages 30 000- Année 2019	22
Tableau 9 : Caractéristiques de l'eau brute forages F239 et F240 - Année 2019	23
Tableau 10 : Tableau VLE (AP du 25/01/2008)	
Tableau 11 : Tableau VLE (autres paramètres) (AP du 25/01/2008)	
Tableau 12 : Tableau Paramètres à suivre pour la surveillance pérenne (AP du 18/10/2012)	
Tableau 13 : Concentrations moyennes dans les forages de dépollution (année 2019)	30
Tableau 14 Synthèse des données La Bisten à Creutzwald (source des données : Banque Hydro)	47
Tableau 15 :Débits au droit des rejets	48
Tableau 16 : Objectifs de qualité pour la Bisten	48
Tableau 17 : Polluants spécifiques de l'état écologiques et les normes de qualité environnement	tales
(Arrêté du 27 juillet 2018)	49
Tableau 18 : Polluants et normes de qualité environnementale correspondantes état chimique	
(Arrêté du 27 juillet 2018)	50
Tableau 19 : Valeurs guides pour les paramètres Chlorures, Sulfates, hydrocarbures et manganè	ese. 50
Tableau 20 : Données de suivi de la Bisten à Creutzwald	53
Tableau 21 : Points de mesures site Gazel Energie	56
Tableau 22 : Points de mesures sur les milieux naturels	58
Tableau 23 : Coordonnées des points de mesures sur les milieux naturels	59
Tableau 24 : Temps de marche des groupes (h)	62
Tableau 25 : Concentrations mesurées le 27/05/2020 – Cours d'eaud'eau	63
Tableau 26 : Concentrations mesurées le 28/05/2020 – Cours d'eaud'eau	65
Tableau 27 : Concentrations mesurées le 27/05/2020 – Effluents Gazel	68
Tableau 28 : Concentrations mesurées le 28/05/2020 – Effluents Gazel	69
Tableau 29 : Caractéristiques des eaux de forage du BRGM (données 2019)	70
Tableau 30 : Charges calculées le 27/05/2020 – Cours d'eau	71
Tableau 31 : Charges calculées le 28/05/2020 – Cours d'eau	72
Tableau 32 : Charges calculées le 27/05/2020 – Effluents Gazel	73
Tableau 33 : Charges calculées le 28/05/2020 – Effluents Gazel	74
Tableau 34 : Composition du rejet Capfluides	79
Tableau 35 : Formule de calcul : caractéristique du rejet de l'exploitant et du milieu naturel	81
Tableau 36 : Formule de calcul : évaluation de l'impact sur le milieu	81
Tableau 37: Tableau 38: Formule de calcul: Flux et concentrations admissibles	81
Tableau 39 : NQE et VGE retenues dans le cadre de l'étude	83
Tableau 40 : Paramètres à réduire pour que les rejets site soient acceptables avec l'atteinte du	bon
état	93
Tableau 41 : Comparaison de la filtration sur sable et des principales techniques membranaires	103
Tableau 42 : Analyses préliminaires aux essais laboratoire	
Tableau 43 : Constats émis lors des essais de neutralisation	106
Tableau 44 : Résultats des essais de neutralisation	106
Tableau 45 : Abattements obtenus lors des essais de neutralisation	106
Tableau 46 : Réajustement pH suite à la neutralisation	
Tableau 47 : Résultats des essais avec les insolubilisant	
Tableau 48 : Constats émis lors de l'essai Métalsorb + neutralisation + floculation	

Tableau 49 : Résultats des essais avec insolubilisant	. 111
Tableau 50 : Abattements obtenus lors des essais avec insolubilisant	. 111
Tableau 51: Evolution des débits lors de l'essai membranaire sur l'appoint 30000	. 113
Tableau 52: Résultats de l'essai membranaire sur l'appoint 30 000	
Tableau 53: Evolution du débit de Perméat – Effluents de régénération Adoucisseurs Groupes 7 e	8 t
	. 117
Tableau 54 : Résultats essais membranaires : Effluents de régénération Adoucisseurs Groupes 7 e	t 8
	118
Tableau 55: Evolution du débit de Perméat – Effluents ODEX	
Tableau 56: Résultats essais – Effluents ODEX	121
Tableau 57 : Qualité attendue en sortie de traitement – Traitement de l'eau d'appoint	. 127
Tableau 58 : Qualité estimée au niveau des rejets-Traitement de l'eau d'appoint	128
Tableau 59 : Bases de dimensionnement - Traitement membranaire de l'eau d'appoint	
Tableau 60 : Surfaces de membranes à mettre en place - Traitement membranaire de l'eau d'appo	
Tableau 61 : Coûts d'investissement et de fonctionnement - Traitement membranaire de l'eau	
d'appoint	. 131
Tableau 62 : Qualité attendue en sortie de traitement : Traitement des eaux rejetées par ODEX	
Tableau 63 : Qualité estimée au niveau des rejets : Traitement des eaux rejetées par ODEX	133
Tableau 64 : Impact estimé sur la Bisten traitement ODEX	135
Tableau 65: Bases de dimensionnement - Traitement membranaire ODEX	
Tableau 66 : Surfaces de membranes à mettre en place - Traitement membranaire ODEX	. 135
Tableau 67: Coûts d'investissement et de fonctionnement - Traitement membranaire ODEX	136
Tableau 68 : Coûts d'investissement et de fonctionnement - Traitement des concentrats	136
Tableau 69: Bases de dimensionnement - Traitement physico chimique ODEX	. 137
Tableau 70 : Coûts d'investissement et de fonctionnement - Traitement physico chimique ODEX	. 137

Liste des documents fournis et consultés

- Note technique ANTEA Group LOP n° 110/12/A (Etude de contribution des rejets aqueux de la Centrale Emile Huchet à l'état écologique des eaux de la Bisten Note méthodologie préalable),
- Rapport « Etude des rejets Capfluides Programme d'actions » EGIS Avril 2013 (RT 34211-Révision 5),
- Rapport « Etude des rejets Capfluides Etude technico-économique » EGIS Décembre 2013 (RT 34295-Révision 1),
- Rapport « Etude technico-économique de contribution à l'atteinte du bon état écologique de la Bisten » ANTEA Group Octobre 2014 (A76719/B),
- Rapport n°LORP170473-17-184Z-RO du 27/07/2017 Rapport de mesures dans le cadre de l'audit technique des dispositifs de suivi régulier des rejets (SRR) agrés et d'autosurveillance des ouvrages épuratoires industriels à Uniper France Power – Centra Emile Huche (57)
- Données d'autosurveillance de Gazel Energie

Résumé non technique

Contexte du projet

Dans le cadre d'arrêtés préfectoraux, Gazel Energie Génération (ex Uniper France Power, ex E.ON France Power, ex SNET société Nationale d'Electricité et de Thermique), exploitant la Centrale Emile HUCHET située à SAINT-AVOLD (57), a dû envisager des solutions pour contribuer à l'amélioration de la qualité écologique du milieu récepteur (la Bisten). Plusieurs études ont déjà été menées en ce sens et notamment la recherches de substances dangereuses, l'étude technico-économique RSDE — EGIS ainsi que les études de la contribution des rejets et d'atteinte du bon état écologique - Antea Group.

Afin d'intégrer les différentes évolutions futures du site (arrêt de la Tranche 6, revente des Tranches 7 et 8), Antea Group a mis à jour les études précédentes, notamment sur l'incidence de ces évolutions sur l'impact sur le cours d'eau. Cette réactualisation de l'étude d'impact a également permis de mettre à jour le plan d'actions défini dans les études RSDE réalisées par EGIS.

Résultats de la prestation d'Antea Group

De par la qualité d'eau alimentant la Centrale Emile Huchet (délivrée et produite par la Société des Eaux de l'Est – SEE) et de l'effet de concentration obtenu par le procédé en place (refroidissement et évaporation), le site de GAZEL Energie est l'un des contributeurs sur le cours de la Bisten par une pollution subie dès l'entrée du site. Au cours de notre étude, nous avons pu estimer les différents impacts du site, notamment des tranches 7 et 8 au niveau du rejet Capfluides reprenant également des eaux de forage exploités par le BRGM pour la dépollution de la « bulle salée », grâce à une campagne de mesure.

La Tranche 6 étant en arrêts provisoires et récurrents depuis début 2019, il est plus difficile d'en estimer la contribution sur le cours d'eau. De plus, cette tranche rejette à la fois au niveau de Capfluides (TAR) et au niveau de Diesen (process et eaux pluviales).

Afin de mieux cerner les solutions d'amélioration à mettre en place sur les eaux de la Tranche 6, des essais et/ou des investigations complémentaires seraient à mener lors d'un fonctionnement normal de la tranche, notamment au niveau du rejet Diesen, dont une partie des effluents provient des eaux pluviales de l'ensemble du site.

Néanmoins, les différentes mesures et exploitation des données nous ont permis d'estimer la part théorique de la Tranche 6 sur le rejet Capfluides.

Conclusions et recommandations

Bien que la pollution soit en majeure partie subie par la Centrale Emile Huchet, afin de réduire l'impact de GAZEL Energie sur la Bisten, plusieurs solutions peuvent être envisagées avec des coûts plus ou moins importants. En fonction des solutions envisagées, les coûts de dépollution ne doivent pas être exclusivement à la charge de GAZEL Energie.

Une grande partie de la pollution métallique rejetée par GAZEL Energie provient de l'eau entrante sur le site car aucun produit contenant des métaux n'est utilisé sur place. Le traitement des eaux d'appoint permettrait de limiter les quantités rejetées. La limite de nos estimations provient des incertitudes liées au taux de concentration attendu dans les TAR et aux changements de minéralisation des eaux traitées qui peuvent engendrer plus de dissolution de métaux qu'actuellement.

Pour cette solution de traitement des eaux d'appoints, d'autres industriels de la plateforme pétrochimique de Carling ont d'ores et déjà entrepris des négociations et des études complémentaires avec la SEE afin d'améliorer la qualité des eaux distribuées et limiter les impacts de l'ensemble des

industriels sur les milieux récepteurs du secteur (Biesten, Merle, Rosselle...). Gazel Energie doit s'intégrer dans ces études afin que les frais de dépollution de l'eau d'appoint ne soient pas à la seule charge de la Centrale.

Les informations fournis par la SEE indiquent que ces études peuvent être réalisés par un groupement d'industriels et accompagnés par l'Agence de l'Eau Rhin Meuse au niveau du bassin.

En traitant uniquement les effluents issus du site, l'impact pourrait également être réduit mais seulement de la part issue de GAZEL Energie, les autres contributeurs (forage de dépollution de la « bulle salée » BRGM, zones urbaines, station d'épuration communale...) n'étant pas à la charge de la Centrale. En fonction de la solution technique retenue (traitement membranaire, traitement physicochimique), tous les paramètres ne seront pas impactés de la même façon et malgré les efforts réalisés par GAZEL Energie, certains paramètres pourraient être encore limitant pour l'atteinte du bon état sur la Bisten.

Dans les solutions envisagées, il n'est pas pris en compte la dépollution des eaux d'exhaure de la « Bulle Salée », exploitée par le BRGM et dont certains polluants peuvent représenter un impact non négligeable sur la Bisten. GAZEL Energie ne peut être tenu responsable pour une pollution qui n'est pas émise par son site.

1. Projet et objectif de votre commande

1.1. Contexte et objectifs

Dans le cadre d'arrêtés préfectoraux, Gazel Energie Génération (ex Uniper France Power, ex E.ON France Power, ex SNET société Nationale d'Electricité et de Thermique), exploitant la Centrale Emile HUCHET située à SAINT-AVOLD (57), a dû envisager des solutions pour contribuer à l'amélioration de la qualité écologique du milieu récepteur (la Bisten). Plusieurs études ont déjà été menées en ce sens et notamment la recherches de substances dangereuses, l'étude technico-économique RSDE — EGIS ainsi que les études de la contribution des rejets et d'atteinte du bon état écologique - Antea Group.

Afin d'intégrer les différentes évolutions futures du site (arrêt de la Tranche 6, revente des Tranches 7 et 8), Gazel Energie souhaite actualiser les études précédentes, notamment sur l'incidence de ces évolutions sur l'impact sur le cours d'eau. Cette réactualisation de l'étude d'impact doit également permettre de mettre à jour le plan d'actions défini dans les études RSDE réalisées par EGIS.

Antea Group a ainsi été mandaté par Gazel Energie pour la réalisation de cette étude qui sera réalisée selon la méthodologie suivante :

- Caractérisation des effluents unitaires ;
- Evaluation de l'impact des rejets du site sur le milieu naturel : plusieurs simulations ont été réalisées et devront permettre à la DREAL de définir les seuils de rejets applicables aux rejets de GAZEL Energie dans la situation actuelle, en cas d'arrêt de la Tranche 6, en cas de revente des Tranches 7 et 8, en cas d'un regroupement des 2 exutoires;
- Mise à jour du plan d'actions proposé dans les rapports n°RT34211-Rev5 et RT34295-Rev1 de la société EGIS: En fonction des résultats obtenus lors de la campagne de caractérisation et lors des essais laboratoire, il s'agira de mettre à jour le plan d'actions proposé en étoffant l'inventaire avec les actions déjà réalisées par la société GAZEL ENERGIE. La mise à jour du plan d'actions prend en considération le contexte du site (qualité des eaux entrantes, impact réel), les moyens propres à GAZEL Energie ainsi que les investigations réalisées à l'échelle de la plateforme pétrochimique de Carling.

1.2. Objet de ce rapport

Ce rapport rend compte de l'ensemble de la prestation Antea Group.

2. Présentation du site

2.1. Situation géographique

Le site est situé à Saint Avold (57).

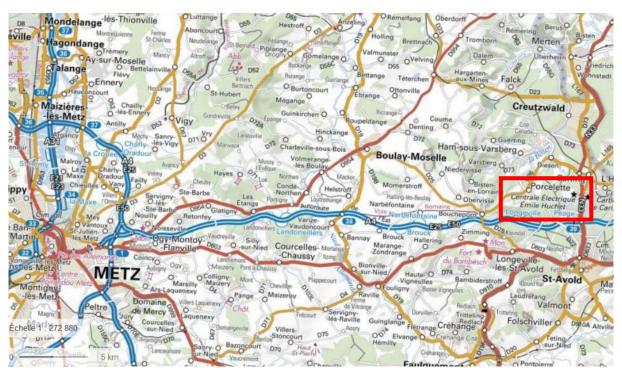


Figure 1 : Localisation de la centrale Emile Huchet

La centrale est située sur la plateforme pétrochimique de Carling.

Figure 2 : Plateforme pétrochimique de Carling

2.2. Présentation du site

Le site industriel Emile Huchet s'inscrit depuis 60 ans dans l'histoire industrielle de la Lorraine.

- 1952: MSI des tranches 1 et 2, de 110MW;
- 1959: MSI des tranches 3 et 4 de 125MW;
- 1972 : MSI de la tranche 5, de 250 MW raccordée à 3 turbines à gaz ce qui augmente la puissance à 330MW ;
- 1981: MSI de la Tranche 6, centrale à charbon (600MW);
- 1983 : Mise à l'arrêt définitif des tranches 1 et 2 ;
- 1990 : MSI de la Tranche 4 Chaudière à lit fluidisé circulant (115MW) ;
- 2003 : Mise à l'arrêt définitif de la tranche 3 ;
- 2007: MSI des installations de désulfurisation et de dénitrification sur la tranche 6);
- 2010 : MSI des tranches 7 et 8, centrale combiné gaz CCGT (828 MW) ;
- 2015 : Arrêt définitif des tranches 4 et 5.

En 2017 restent en fonctionnement la tranche 6 et les tranches 7 et 8 (soit 1400MW).

2.3. Activité du site

Les trois tranches encore en fonctionnement connaissent des fonctionnements fluctuants depuis les 3 dernières années (cf. Tableau 1 et Figure 3). Le temps de fonctionnement du groupe 6 est fortement réduit en 2019.

 Période 2017-18-19
 2017
 2018
 2019

 Unité
 Heures/an
 Heures/an
 Heures/an

 Groupe 6
 4 205
 2 908
 876

 Groupe 7
 6 744
 4 545
 5 881

 Groupe 8
 6 806
 4 137
 6 021

Tableau 1: Heures de fonctionnement des groupes 6, 7, 8

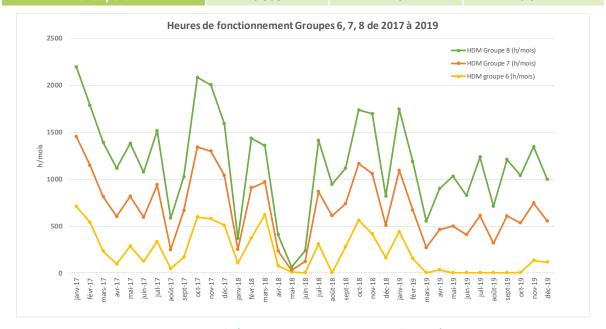


Figure 3 : Heures de fonctionnement Groupes 6, 7, 8 de 2017 à 2019

2.4. Contexte réglementaire du site

Le site est une installation classée pour la protection de l'environnement (ICPE) au titre des rubriques suivantes :

Tableau 2: Rubriques ICPE de la Centrale Emile Huchet

Rubrique	Régime	Activité	Volume autorisé
1172		DANGEREUX POUR L'ENVIRONNEMENT - A - TRES TOXIQUES (EMPLOI et STOCKAGE)	48 t
1416		Hydrogène (stockage ou emploi)	0.35 t
1418		Acétylène (stockage ou emploi)	0.5 t
1432	Autorisation	Liquides inflammables (stockage)	336 m3
1434	Autorisation	Liquides inflammables (remplissage ou distribution) autres que 1435	
1520	Autorisation	Houille, coke, etc. (dépôt)	1500000 t
1532		Bois ou matériaux combustibles analogues (dépôt de)	2800 m3
2515	Autorisation	Broyage, concassage, et autres produits minéraux ou déchets non dangereux inertes	15789 kW
2516		Produits minéraux pulvérulents non ensachés (transit)	11220 m3
2517	Autorisation	Produits minéraux ou déchets non dangereux inertes (transit)	130000 m3
2716	Autorisation	Déchets non dangereux non inertes (transit)	30000 m3
2760	Autorisation	Installation de stockage de déchets autre que 2720	27500
2771	Autorisation	Traitement thermique de déchets non dangereux	0
2910	Autorisation	Combustion	4406.8 MW
2910		Combustion	12.1 MW
2925		Charge d'accumulateurs	1277 kW
2971	Autorisation	Autres installations	0. t/h
3520	Autorisation	Pour les déchets non dangereux	0 t/h

Elle est, dans ce cadre, soumise à un arrêté préfectoral d'autorisation Arrêté 2007-DEDD/IC-150 du 22 Mai 2007 et à des arrêtés préfectoraux complémentaires pour le domaine de l'eau énumérés cidessous :

Tableau 3: Arrêtés préfectoraux complémentaires liés à l'eau

Date	Description
25/01/2008	AP 2008-DEDD/IC-30 du 25/01/2008
14/12/2009	AP n° 2009-DEDD/IC-238 Surveillance initiale action RSDE
15/12/2009	AP n° 2009-DEDD/IC-245 Bilan de fonctionnement
01/06/2010	AP n° 2010-DLP/BUPE-196
18/10/2012	AP RSDE
13/05/2013	APC

3. Gestion de l'eau sur le site

3.1. Approvisionnement, usages et consommations

Le site est alimenté en eau de forage appelée « eau brute » par la société SEE et en eau potable par la société SEE.

L'eau potable est utilisée pour les usages sanitaires.

L'eau brute est utilisée pour les circuits de refroidissement, les tours aéroréfrigérantes (TAR), la production d'eau déminéralisée. En effet, une partie de l'eau brute subit, sur le site, un adoucissement. Pour cela, 2 stations de déminéralisation sont exploitées par Gazel Energie : une pour la tranche 6 alimentée par les forages 239 et 240, une pour les tranches 7 et 8 alimentées par les forages 30 000. Dans le cadre de la vente, la station déminée 7 et 8 devrait être vendue à Total.

Des produits anticorrosion et antitartre sont injectés dans les circuits de refroidissement :

- Tranche 6: anticorrosion NALCO 3DT199 et antitartre NALCO 3DT118;
- Tranche 7/8: antitartre NALCO 3DT118.

Le produit NALCO 3DT118 contient entre 2,5 et 5% de HEDP.NA2 ($C_2H_6O_7P_2Na_2$). Le produit NALCO 3DT199 contient entre 30 et 50% de Benzotriazole de Sodium ($C_6H_4N_3Na$).

Le facteur de concentration appliqué sur les TAR des tranches 7/8 peut varier de 3,5 à 4,5 en fonction de différents paramètres (ajustement fait par l'exploitant sur demande du labo).

L'eau déminéralisée est employée dans les process de production des tranches 6, 7 et 8. L'eau déminée produite par les adoucisseurs de la tranche 6 est également utilisée pour certains usages sanitaires. C'est pourquoi, en cas d'arrêt de la tranche 6, celui-ci continuera à fonctionner et à produire des régénérations (environ 1 par semaine).

La consommation annuelle globale du site (cf. Tableau 4) a évolué entre 8 millions de m³/an en 2017 et 4 millions de m³/an en 2019, témoignant d'une diminution de la production du site notamment celle du groupe 6. En effet, la consommation est en lien direct avec la durée du fonctionnement de la tranche concernée (cf. Figure 4).

Tableau 4 : Consommation en eau de forages (m³/an) - Années 2017, 2018, 2019

Période 2017-18-19	20	017	201	.8	2019		
Unité	m³/an	Heures/an	m³/an	Heures/an	m³/an	Heures/an	
CONSOMMATION TOTALE	8 139 386		5 661 030		4 179 487		
TOTAL Groupe 7&8	3 777 558	13 550	2 437 280	8 682	3 268 016	11 902	
TOTAL Groupe 6	4 109 100	4 205	2 843 900	2 908	917 500	876	

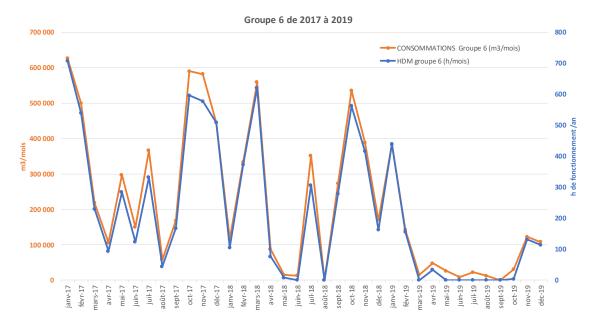


Figure 4: Heures de fonctionnement et consommation du Groupes 6

Les ratios moyens constatés sont assez stables pour les tranches 7 et 8 avec une consommation de l'ordre de 275-280 $\,\mathrm{m}^3/\mathrm{h}$ alors que la tranche 6 présente une consommation de 977 $\,\mathrm{m}^3/\mathrm{h}$ entre 2017 et 2018 qui augmente à 1 047 $\,\mathrm{m}^3/\mathrm{h}$ en 2019.

3.2. Objectifs de qualité d'eau

3.2.1. TAR groupe 6

Tableau 5 : Qualité nécessaire sur les TAR du group 6

Paramètre	Cible	Mesure <cible< th=""><th>Mesure>cible</th><th>Fréquence</th></cible<>	Mesure>cible	Fréquence
TAC	20 ± 2 °f	Augmenter le seuil du pH- mètre régulateur, pour réduire l'injection d'acide ; contrôler 4h après	Baisser le seuil du pH- mètre régulateur, pour augmenter l'injection d'acide	1/jour
тн	100 ± 5 °f	Réduire proportionnellement la purge de déconcentration	Augmenter proportionnellement la purge de déconcentration	1/jour
Inhibiteur entartrage (TAR 6)	19 ± 2,5 mg/l			Régulation Trasar
3DT199		0.2 ppm en circuit	Passivation du condenseur	1 à 2 litres/jour
рН	8,3 <ph<8,5< td=""><td></td><td></td><td>1/jour</td></ph<8,5<>			1/jour
MES				1/jour
Rapport concentration	calcul			1/jour
Chlorures	<500 mg/l		Augmenter la purge	1/jour
Sulfates	< 1000 mg/l		Augmenter la purge	1/mois

3.2.2. TAR groupe 7 et 8

Tableau 6 : Qualité nécessaire sur les TAR du group 7 et 8

Paramètre	Cible	Mesure <cible< th=""><th>Mesure>cible</th><th>Fréquence</th></cible<>	Mesure>cible	Fréquence
TAC	< 15 °f	Augmenter le seuil du pH- mètre régulateur, pour réduire l'injection d'acide ; contrôler 24h après	Baisser le seuil du pH-mètre régulateur, pour augmenter l'injection d'acide	1 /jour
ТН	< 105 °f	Réduire proportionnellement la purge de déconcentration	Augmenter proportionnellement la purge de déconcentration	1 /jour
Chlorures	<500 mg/l		Augmenter la purge	1 /jour
Inhibiteur entartrage (TAR 7/8)	19 mg/l en actif ou 30 en total			Régulation Trasar
рН	8,0 <ph<8,3< td=""><td></td><td></td><td>Mesure continue</td></ph<8,3<>			Mesure continue
MES				1 /jour
Rapport concentration	calcul			1 /jour
SULFATES	< 1000 mg/l		Augmenter la purge	1 / mois

3.2.3. Eau de process

Tableau 7 : Qualité nécessaire sur le process

Paramètres	Eau alimentaire	Basse Pression	n et Pression intermédiaire	Haute pression	Vapeur
		Traitement Ammoniac	Traitement Ammoniac et triphosphate	Traitement Ammoniac	
Conductivité cationique 25°C μs/cm	<0,2	<5	<30	<3	<0,2
pH à 25°C	≤9,8	9,5-9,8		9,3-9,5	
O ₂ (mg/l)*	<0,1				
SiO ₂ (mg/l)	<0,02				<0,02
Fe (mg/l)	<0,02				<0,02
Na (mg/l)					<0,005
PO4 (mg/l)			<6		

3.3. Qualité des eaux distribuées

L'eau distribuée par SEE doit respecter les caractéristiques suivantes en sortie du bassin 30 000 :

- 6 < pH < 9;
- Conductivité inférieure à < 400 μS/cm ;
- TH < 20 °F;
- TAC < 30 °F;</p>
- Concentration en chlorures < 60 mg/l;
- Concentration en fer < 300 μg/l;
- Concentration en manganèse total < 400 mg/l.

Les caractéristiques de l'eau distribuée en sortie du bassin 30 000 m3 pour l'année 2019 sont présentées dans le Tableau 8. Elles mettent en évidence des conductivités, des duretés (TH), des concentrations en manganèse dissous supérieures aux objectifs de traitement. L'eau contient également des teneurs significatives en zinc.

Tableau 8 : Caractéristiques de l'eau brute forages 30 000- Année 2019

Point E (CI 109 Eau mélangée 30000)

FUILL (CI 103 Lau II	iciangee	30000													
Date de prélèvement		Objectif	28/01/19	28/02/19	22/03/19	30/04/19	28/05/19	27/06/19	18/07/19	20/08/19	19/09/19	21/10/19	14/11/19	16/12/19	Moyenne
Volume mensuel livré	m³		158 437	130 362	69 605	137 513	128 769	127 651	147 580	148 659	109 449	61 290	97 935	29 478	112 227
рН	Unité pH	6 <ph<9< td=""><td>6,7</td><td>6,5</td><td>7</td><td>6,9</td><td>7,1</td><td>7,1</td><td>7</td><td>7,6</td><td>7,6</td><td>7,2</td><td>7,4</td><td>7</td><td>7</td></ph<9<>	6,7	6,5	7	6,9	7,1	7,1	7	7,6	7,6	7,2	7,4	7	7
Conductivité	μs/cm	< 400	490	610	560	540	530	540	520	620	530	600	550	510	550
Résidu sec	mg/l		322	420	360	206	338	338	364	386	364	242	339	362	337
TH	°F	< 20	17,2	23,1	20,4	20,4	19,7	19,9	19,9	21,7	20	23,2	18,7	19,2	20
TAC	°F	< 30	6,8	6,1	6,2	7,5	9	9,4	8,3	8,2	10,3	11	7,2	6,8	8
Calcium	mg/l		49	63	58	55	54	54	54	60	54	62	53	51	56
Magnésium	mg/l		13	18	15	17	15	16	16	17	16	19	14	15	16
Chlorures	mg/l	< 60	57	57	56	42	54	51	58	55	45	45	58	48	52
Sulfates	mg/l		76	150	110	120	79	87	84	120	84	98	85	96	99
Fer total	μg/l	< 300	120	410	48	220	180	270	210	240	1500	180	150	200	311
Fer dissous	μg/l		6,1	4,8	2,2	8,1	3,3	< 1	2,3	< 1	2,1	2,9	3	2,7	4
Manganèse total	μg/l	< 400	409	960	717	675	270	404	353	670	278	458	429	461	507
Manganèse dissous	μg/l		396	870	697	643	264	371	331	665	250	422	355	409	473
Cuivre	μg/l		0,64	0,4	<0,15	0,3	0,44	0,59	0,51	0,22	0,59	0,18	0,23	0,35	0
Zinc	μg/l		288	362	325	230	14,4	218	203	257	175	234	217	240	230
Nickel	μg/l		15,4	23,3	15,5	16,9	10,7	14,1	14,2	18,5	9,6	14,1	14,8	15,2	15
Température moyenne mensuelle	°C		9,0	9,0	10,0	11,0	11,0	11,0	12,0	12,0	11,0	10	10	10	11

En rouge, les valeurs supérieures aux objectifs de traitement.

Les caractéristiques de l'eau distribuée sont présentées dans le Tableau 9 en page suivante.

Tableau 9 : Caractéristiques de l'eau brute forages F239 et F240 - Année 2019

Point F239 et F240

			janv- 19	févr- 19	mars-19	avr-19	mai-19	juin-19	juil-19	août-19	sept-19	oct-19	nov-19	déc-19	Moyenne
	Cuivre	μg/l			n.a	0	0	0	0	0	2,24	0	0,17		0,30
	Zinc	μg/l			93	60	82	44	85	69	48	65	97,3		71,5
F239	Nickel	μg/l			n.a	4	7	4	7	8	4	5	6,2		5,7
F259	Fer	μg/l			27	7	13	10	36	36	16	26	35		22,9
	Fer dissous	μg/l			5	4	5	1	12	36	3	5	10		9,0
	Manganèse	μg/l			5	3	6	4	4	5	2	4	7		4,4
	Manganèse dissous	μg/l			4	3	5	3	4	5	2	4	5		3,9
	Cuivre	μg/l			n.a	0,52	0	n.a	0,17	0	1,79	0,16	0		0,4
	Zinc	μg/l			25	29	25	n.a	40	29	27	31	36		30,3
F240	Nickel	μg/l			n.a	4	4	n.a	4	4	3	4	5		4,0
F240	Fer	μg/l			490	210	340	n.a	270	210	210	440	85		282
	Fer dissous	μg/l			17	69	3	n.a	141	3	145	92	3		59,1
	Manganèse	μg/l			55	46	57	n.a	57	60	49	87	67		59,8
	Manganèse dissous	μg/l			44	44	46	n.a	55	57	47	71	66		53,8

3.4. Descriptif des rejets

Les eaux produites par le site de la Centrale Emile Huchet sont récoltées selon 2 réseaux distincts :

- Réseau Capfluides : les eaux récoltées dans ce réseau sont principalement issues :
 - o du bac d'expédition « Capfluides » ;
 - o de la station de désulfurisation des fumées du groupe 6 ;
 - o de la déconcentration des TAR 6, 7 et 8 ;
 - des régénérations de la station de déminéralisation des tranches 7/8 (pas de fréquence de régénération donnée);
 - o de la dépollution de Diesen (forages P1, P2, P3 et P4bis : « bulle salée »).

Les eaux du réseau Capfluides sont rejetées en amont du Lac de Creutzwald (à environ 4,3 km de la centrale).

A noter que ces eaux sont mélangées avec des eaux de forages de dépollution de la nappe phréatique de Diesen (forages de dépollution de la « Bulle salée » BRGM-DREAL), en amont du point de rejet. Le rapport BRGM/RP-57049-FR décrit l'utilisation de ces forages dans le dispositif de déchloruration de la « bulle salée » de Diesen.

« Les Houillères du Bassin de Lorraine (HBL) ont utilisé de 1952 à 1990 plusieurs bassins de décantation de suies situés sur la commune de Diesen (57). Ces bassins contenaient des eaux chlorurées qui, au fil du temps, se sont infiltrées dans la nappe des GTi, créant une pollution en chlorures au droit et à l'aval de ces bassins. Cette pollution est aussi appelée «bulle salée de Diesen».

Les 4 forages de dépollution en service sont localisés à l'aval hydraulique des bassins de décantation.

Les eaux pompées par le dispositif de dépollution ont été utilisées pour assurer l'alimentation d'équilibre du lac de Creutzwald [soutien d'étiage de la Bisten]. Cette disposition doit être maintenue jusqu'au constat du drainage de la nappe des GTi en amont du point de rejet du lac par les tronçons dits « perchés » de la rivière Bisten l'alimentant. Cette obligation prendra fin, au plus tard, le 31 décembre 2026. »

Rapport annuel d'activité DPSM 2018 BRGM/RP-69247-FR Août 2019

- **Réseau Diesen** : ce réseau est composé de 2 sous-réseaux :
 - Réseau Nord-Ouest : les eaux récoltées dans ce réseau sont principalement constituées :
 - d'eaux issues du bassin des eaux chargées 6-SEO recevant notamment les eaux chargées GR.6;
 - des régénérations de la station de déminéralisation de la tranche 6,
 - d'eaux chargées (puisard 114) de la DTPS ;
 - d'une partie des eaux du réfrigérant 6 après réutilisation dans la centrale (1 régénération tous les 1400 m³);
 - d'eaux sanitaires en sortie de fosses septiques ;
 - d'eaux pluviales issues :
 - o de la zone des groupes 6, 7 et 8;
 - o de la zone fioul lourd;
 - du sécheur 2 et du bâtiment de distribution ;
 - o de la zone 4 LFC;
 - o de la zone sud du groupe 5;
 - o de la zone sud-est des groupes 3, 4 et 5;

- Réseau Nord-Est : les eaux récoltées dans ce réseau sont principalement constituées :
 - d'eaux sanitaires en sortie de fosses septiques ;
 - d'eaux pluviales issues :
 - du bassin Sud DTPS;
 - de la zone DTPS;
 - o du parc à charbon, parc à cendres et préparation pulpe ;
 - o de la zone des groupes 1, 2, 3, 4 et 5;
 - o de la zone de la station NEU GR.4-GR.5;
 - o du secteur nord-est (atelier, parking, magasin);
 - du sécheur de cendres UPPC.

Les eaux des 2 sous-réseaux, du réseau Diesen, se rejoignent dans le bassin de décantation Diesen 3 (à environ 1,3 km de la centrale). Elles transitent ensuite dans le bassin de décantation Diesen 1 puis sont rejetées dans le Froschenpfuhl qui rejoint les bassins Bisten dont les eaux transitent ensuite vers le Lac de Creutzwald.



Figure 5 : Schéma des rejets

Un schéma simplifié de la gestion de l'eau sur le site est présenté en page suivante.

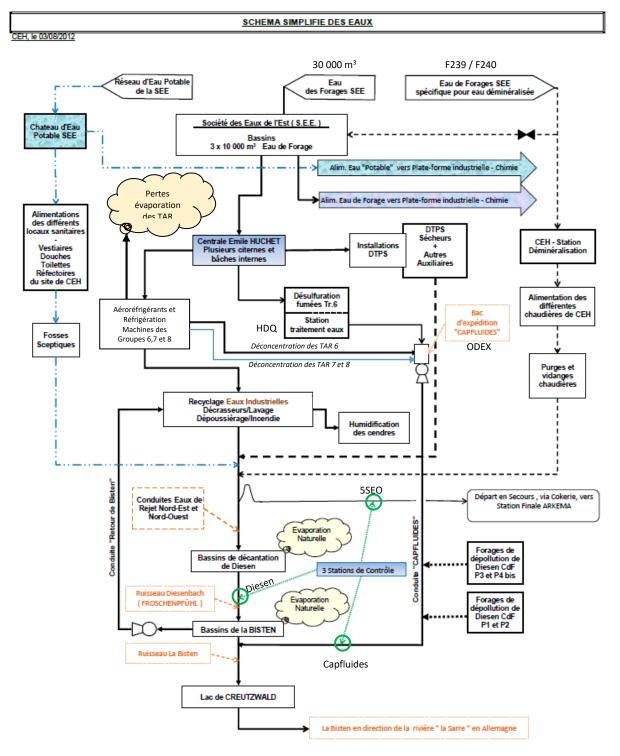


Figure 6 : Schéma simplifié du réseau des rejets aqueux de la centrale Emile Huchet

Le plan de localisation et le schéma des rejets sont respectivement présentés ci-après.

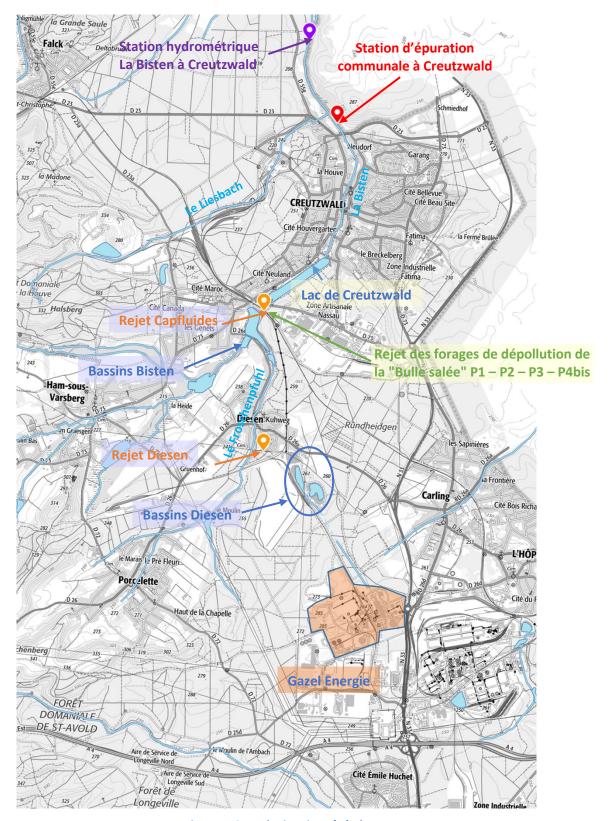


Figure 7 : Carte de situation générale

3.5. Contexte réglementaire des rejets

L'Arrêté 2008-DEDD/IC-30 du 25 Janvier 2008 fixe les prescriptions applicables aux rejets et les valeurs limites de rejet.

« <u>Article 20 – Dispositions générales</u>

 $20.1 \dots / \dots$ la consommation journalière de l'ensemble des unités de la Centrale Emile HUCHET est limitée à $88\,000\,\mathrm{m}^3$.

Article 21 – Seuils de rejet dans le milieu naturel

Les rejets dans le milieu naturel sont issus des réseaux suivants :

- Réseau dit « Capfluides » : Ce réseau qui se rejette dans le lac de Creutzwald reçoit les effluents suivants :
 - ✓ Eaux de déconcentration chimique du groupe 6 (circuit de refroidissement, installations de désulfuration ...),
 - ✓ Purges des tours aéroréfrigérantes des cycles combinés gaz.

Les eaux issues des forages P1, P2, P3 et P4bis de dépollution de la nappe de DIESEN, gérés par Charbonnages de France rejoignent et également ce réseau.

- Réseau d'égouts interne à la centrale (réseaux Nord-Ouest et Nord-Est) : Ce réseau reçoit les effluents suivants :
 - ✓ Eaux de ruissellement du site,
 - ✓ Eaux de lavage des installations,
 - ✓ Eaux de process.

Seuils limites de rejet

L'exploitant est tenu de respecter, au point de rejet des bassins de DIESEN dans la rivière le Froschenpfuhl (également appelée Diesenbach) et au point de rejet de la conduite CAPFLUIDES dans le lac de Creutzwald, les valeurs limites en concentration ci-dessous définies.

Tableau 10 : Tableau VLE (AP du 25/01/2008)

	Concentration maximale (mg/l)
Température	En moyenne journalière 30 ℃
•	
pH	Entre 5,5 et 8,5
DCO	55
DBO₅	30
Nglobal	30
Ptotal	10
MeS	30
Arsenic	0,05
Cadmium	0,05
Chrome hexavalent	0,1
Chrome	0,5
Cuivre	0,5
Mercure	0,05
Nickel	0,5
Etain	2
Zinc	2
Plomb	0,1
AOX	0,5

	Concentration maximale (mg/l) En moyenne journalière
Hydrocarbures totaux	5
Sulfates	350 vers les bassins de Diesen / 2 000 via Capfluides
Chlorures	250 vers les bassins de Diesen / 1 500 via Capfluides

Surveillance du rejet

La détermination du débit rejeté se fait par mesures en continu.

Une mesure journalière est réalisée conformément aux normes en vigueur pour les polluants énumérés ci-après, à partir d'un échantillon prélevé sur une durée de 24 heures proportionnellement au débit, dès lors que les flux rejetés se situent au-dessus de ces seuils.

Tableau 11 : Tableau VLE (autres paramètres) (AP du 25/01/2008)

	Flux déclenchant une mesure journalière
MeS	100 kg/j
Cadmium	10 kg/an
Plomb	1 kg/j
Mercure	2,5 kg/an
Nickel	1 kg/j
Cuivre	1 kg/j
Chrome	1 kg/j
DCO	300 kg/j
AOX	1 kg/j
Hydrocarbures	10 kg/j

Pour les autres polluants et ceux listés dans le tableau pour lesquels le flux rejeté est inférieur à la valeur seuil, la surveillance est réalisée à partir de l'analyse d'un échantillon moyen mensuel constitué à partir de prélèvements proportionnels au débit du rejet. .../...
Les rejets doivent être compatibles avec l'objectif de qualité de la Bisten. »

Le site a été concerné par la Recherche des Substances Dangereuses dans l'Eau (RSDE) :

Arrêté 2012-DLP-BUPE-506 du 18 octobre 2012

« **Article 3** Mise en œuvre de la surveillance pérenne

L'exploitant met en œuvre sous 3 mois à compter de la notification du présent arrêté, et pendant une durée minimale de 2 ans et demi, le programme de surveillance au point de rejet des effluents industriels de l'établissement dans les conditions suivantes :

Tableau 12 : Tableau Paramètres à suivre pour la surveillance pérenne (AP du 18/10/2012)

	Paramètres	Périodicité
Point de rejet des bassins DIESEN	Arsenic Zinc	1 mesure par trimestre
Point de rejet	Nickel	1 mesure par
CAPFLUIDES	Zinc	trimestre

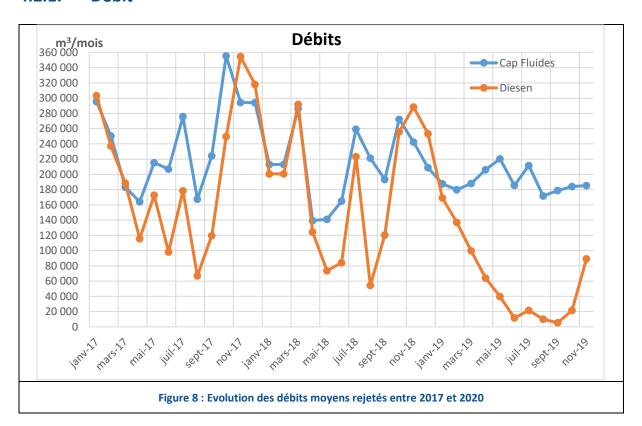
A l'issue de la période minimale de 2 ans et demi et au vu de l'évolution des flux rejetés pour l'arsenic, le zinc et le nickel, une actualisation de la surveillance pourra être engagée à la demande de l'exploitant.

4. Caractéristiques des rejets du site

4.1. Forage de dépollution

Le BRGM réalise un suivi des forages de dépollution avant rejet vers Capfluides. Les paramètres suivis sont le débit, les chlorures, les sulfates, le pH, les MES et la DCO.

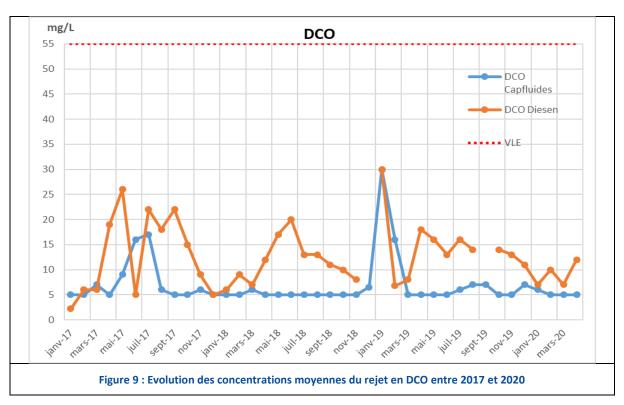
Les valeurs moyennes sur l'année 2019 sont reprises dans le tableau ci-dessous :

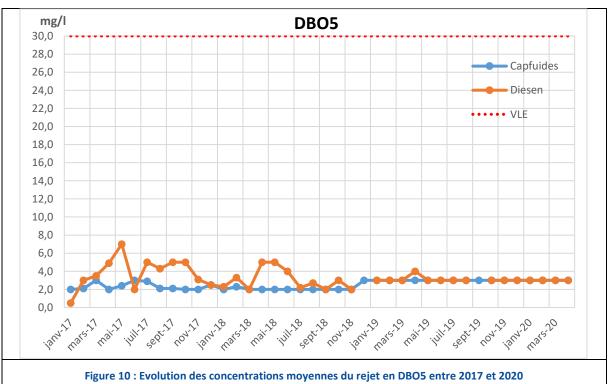

Tableau 13 : Concentrations moyennes dans les forages de dépollution (année 2019)

	Volume mensuel (m³)	Chlorures (mg/l)	Sulfates (mg/I)	MES (mg/l)	DCO (mg/l O2)
P1	35 659	302	190	<2	4
P2	27 593	221	213	2	3
Р3	34 618	286	198	<2	<5
P4 bis	32 301	224	190	10	<5

4.2. Diesen et Capfuides

Les données d'autosurveillances (analyses mensuelles) ont été étudiées paramètres par paramètres pour les années 2017, 2018, 2019 et 2020. Les graphiques suivants présentent les évolutions des valeurs de concentrations au rejet. La synthèse de l'exploitation est située en §4.2.18.


4.2.1. **Débit**



Les rejets sont cycliques avec des périodes de forte activité en période hivernale (entre novembre et mars). Les 2 rejets ont tendance à avoir une progression similaire, sauf à partir de début 2019 où les rejets Diesen ont fortement chuté, dû aux arrêts de la tranche 6.

4.2.2. Paramètres organiques

La DCO et la DBO₅ constatées sur Capfluides sont stables quel que soit la période de l'année. Des pics sont cependant visibles entre juin et août 2017 et entre décembre et mars 2019.

La DCO et la DBO₅ sont plus fluctuantes au niveau du rejet Diesen, notamment du fait de recevoir des eaux pluviales.

Les concentrations rejetées sont largement en dessous de la limite réglementaire, à savoir 55 mg/l pour la DCO et 30 mg/l pour la DBO₅.

Les concentrations moyennes constatées sont les suivantes :

- Capfluides: 2,5 mg/l pour la DBO₅ et 7 mg/l pour la DCO;
- Diesen: 3,3 mg/l pour la DBO₅ et 13 mg/l pour la DCO.

4.2.3. MES

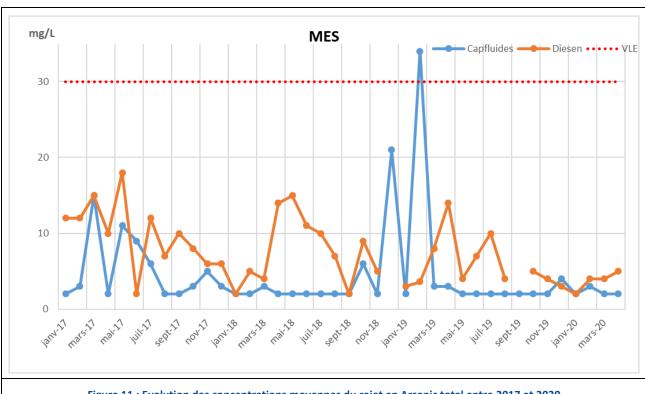
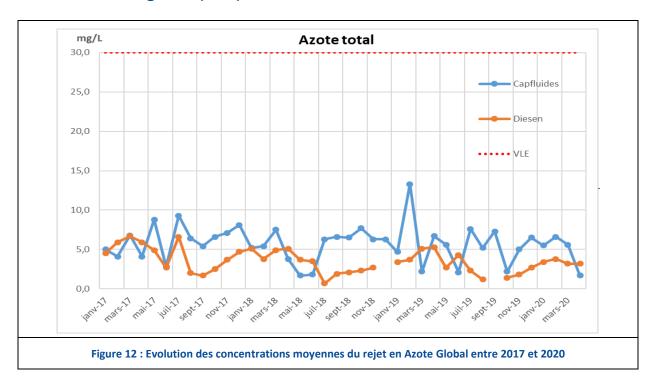


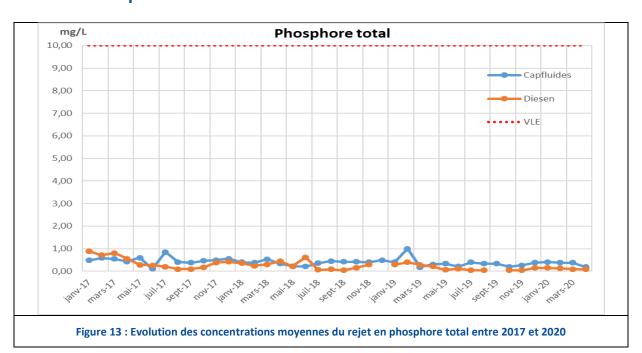
Figure 11 : Evolution des concentrations moyennes du rejet en Arsenic total entre 2017 et 2020


Les variations constatées sur les MES sont assez similaires de celles constatées sur les paramètres organiques : les variations de concentrations en DCO représentent donc de la charge organique particulaire. Ces fluctuations sont principalement visibles sur les rejets Diesen alors que ceux de Capfluides sont beaucoup plus stables. Seuls des pics sur les périodes hivernales sont constatées. Un seul dépassement de la valeur limite est constaté en février 2019.

Les concentrations moyennes constatées sont les suivantes :

Diesen: 7,4 mg/l;Capfluides: 4,5 mg/l.

4.2.4. Azote global (NGL)

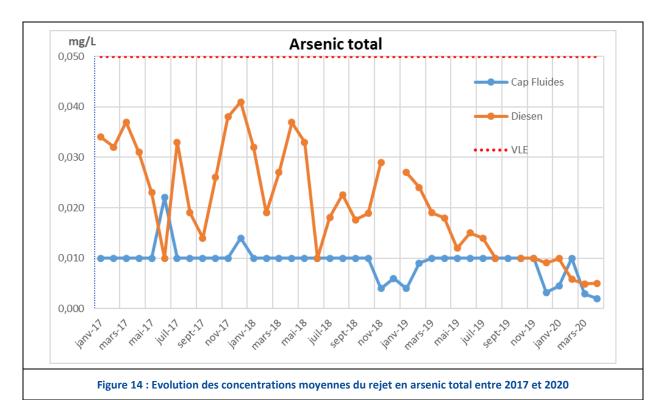


Les concentrations en Azote global sont relativement stables sur toute la période étudiée. Les concentrations sont légèrement plus importantes sur le rejet Capfluides que sur le rejet Diesen.

Les concentrations moyennes constatées sont les suivantes :

Diesen: 3,6 mg/l;Capfluides: 5,7 mg/l.

4.2.5. Phosphore total

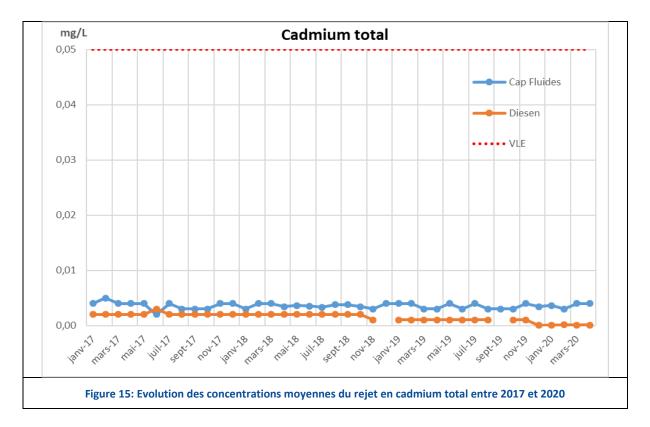


Les concentrations en Phosphore sont similaires sur les 2 rejets. Aucune fluctuation importante n'est constatée sur toute la période. Toutes les valeurs mesurées respectent le seuil de rejet.

Les concentrations moyennes constatées sont les suivantes :

Diesen: 0,26 mg/l;Capfluides: 0,41 mg/l.

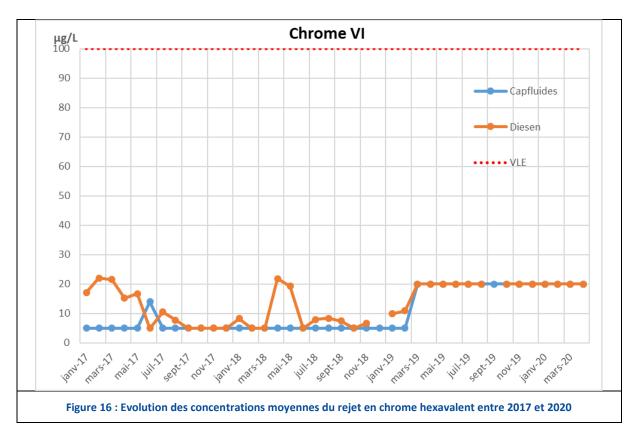
4.2.6. Arsenic total

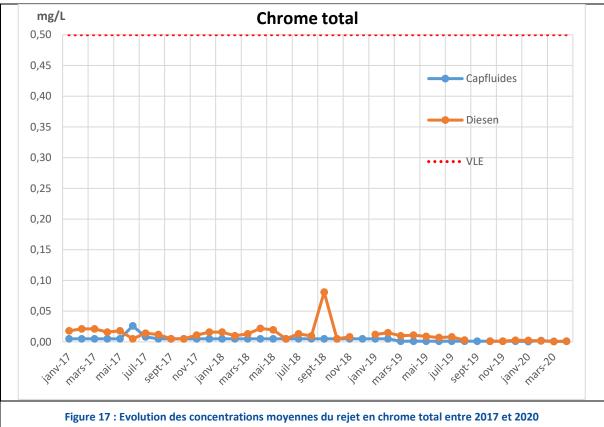

Les concentrations moyennes constatées sont les suivantes :

Diesen: 0,021 mg/l;Capfluides: 0,009 mg/l.

Les rejets respectent les valeurs seuils avec des fluctuation importantes sur le rejet Diesen. Les effluents de Diesen sont composés d'eaux pluviales ce qui semble avoir un impact non négligeable sur ce paramètre.

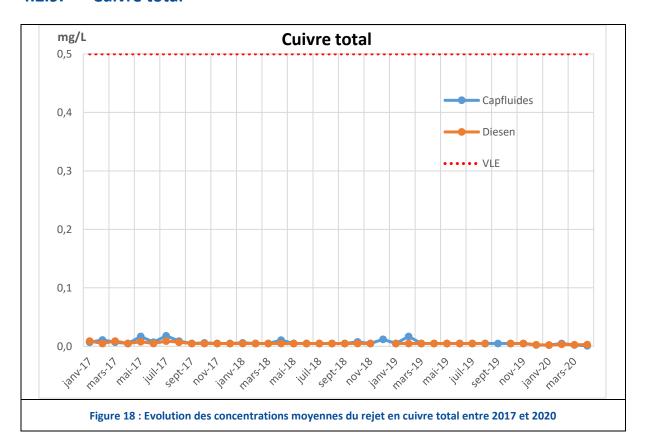
4.2.7. Cadmium total


Les concentrations en Cadmium sont stables et inférieures aux Valeurs Limites d'Emission.


Les concentrations moyennes constatées sont les suivantes :

Diesen: 0,001 mg/l;Capfluides: 0,004 mg/l.

4.2.8. Chrome hexavalent et total

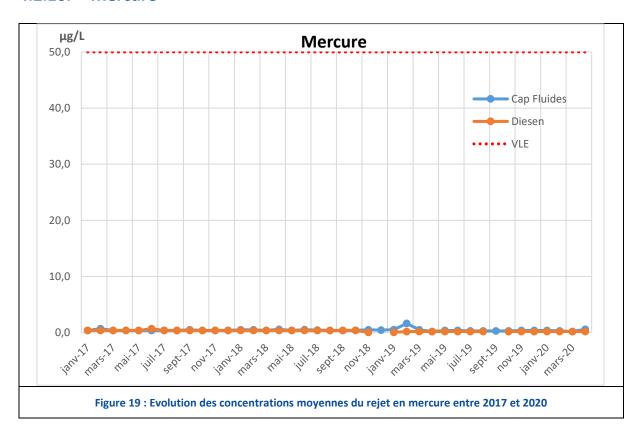

Les concentrations en ChromeVI et en Chrome total sont constantes et très inférieures aux seuils de rejet.

Les concentrations moyennes constatées sont les suivantes :

- Diesen: 13,6 μg/l pour le chrome VI et 12 μg/L pour le chrome total;
- Capfluides: 10,5 μg/l pour le chrome VI et 4 μg/L pour le chrome total.

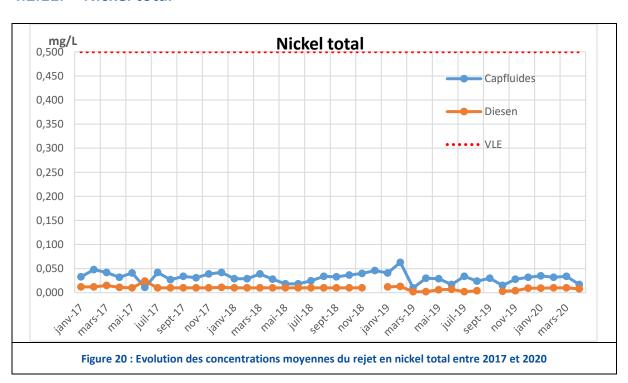
A noter que la quasi-totalité des valeurs sont inférieurs à la limite de quantification, ce qui explique les différences incohérentes scientifiquement des moyennes observées.

4.2.9. Cuivre total


La teneur en Cuivre des effluents rejetés est stable et très inférieure aux valeurs limites attendues pour les 2 rejets.

Les concentrations moyennes constatées sont les suivantes :

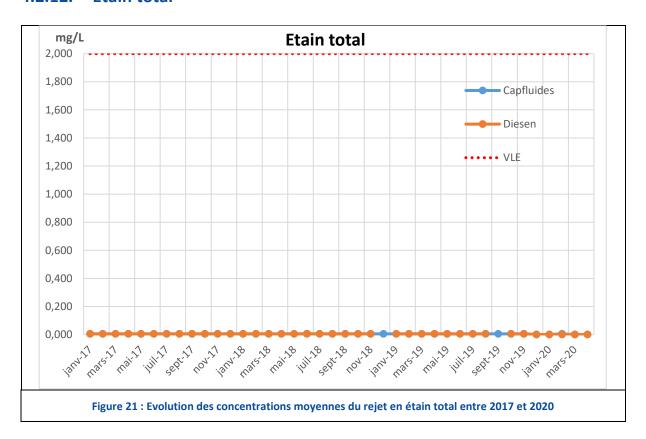
Diesen: 0,005 mg/l;Capfluides: 0,01 mg/l.



4.2.10. Mercure

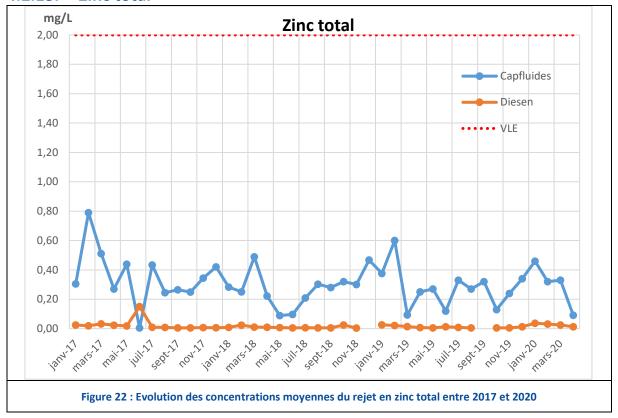
Les rejets Diesen et Capfluides ne contiennent pas de Mercure. Les concentrations mesurées sont toutes inférieures à la limite de quantification du laboratoire.

4.2.11. Nickel total



Les concentrations en Nickel sont stables sur toute la période étudiée et sont faibles :

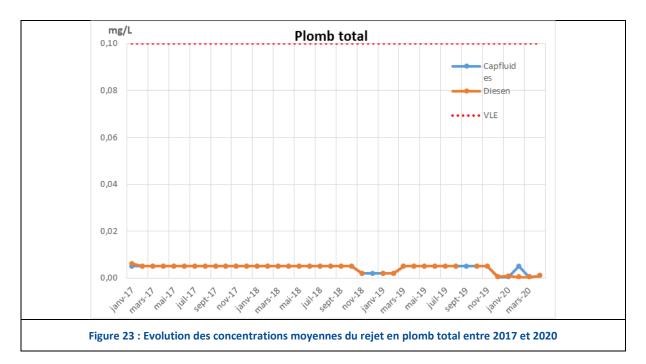
Diesen: 0,009 mg/l;Capfluides: 0,03 mg/l.


4.2.12. Etain total

L'étain n'est jamais détecté dans les rejets Diesen et Capfluides. Les concentrations sont toujours inférieures à la LQ.

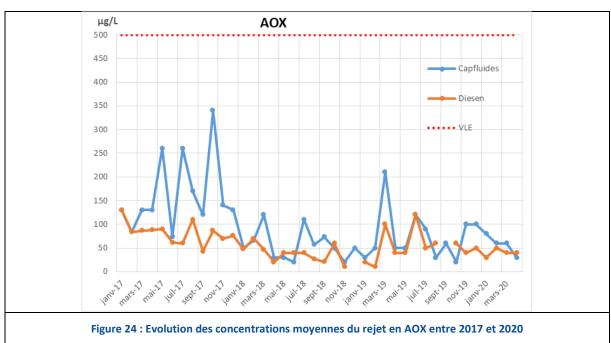
Zinc total 4.2.13.

Les concentrations en Zinc dans le rejet Diesen sont très faibles et proches de la limite de quantification.


Les concentrations moyennes constatées sont les suivantes :

Diesen: 0,017 mg/l; Capfluides: 0,3 mg/l.

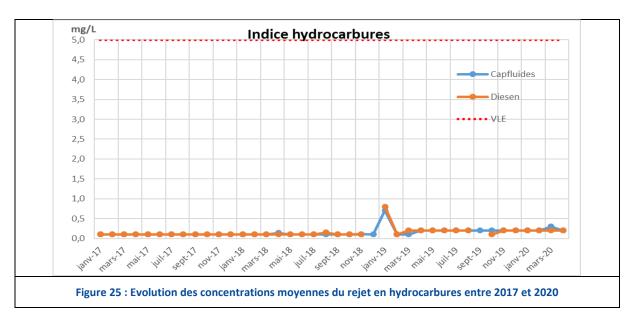
Pour Capfluides, les variations sont plus importantes avec un maximum compris entre 0,6 et 0,8 mg/L entre 2017 et 2019. Cependant, aucun dépassement de la Valeur Limite n'est constaté sur l'ensemble de la période.


4.2.14. Plomb total

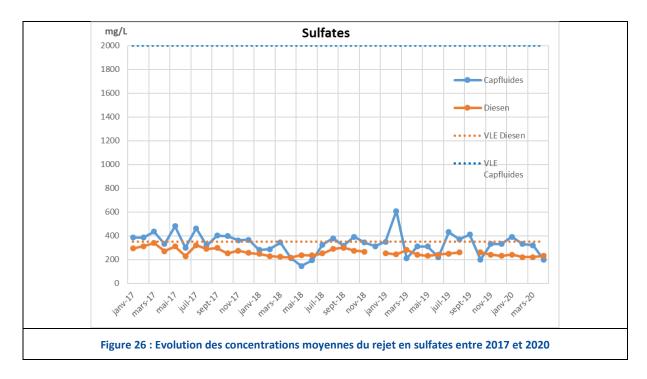
Le Plomb n'est pas détecté dans les rejets Diesen et Capfluides. Les concentrations moyennes constatées sont les suivantes :

Diesen: 0,004 mg/l;Capfluides: 0,004 mg/l.

4.2.15. AOX


Les AOX sont assez stables sur le rejet Diesen alors qu'ils sont plus fluctuants sur le rejet Capfluides. Les concentrations moyennes constatées sont les suivantes :

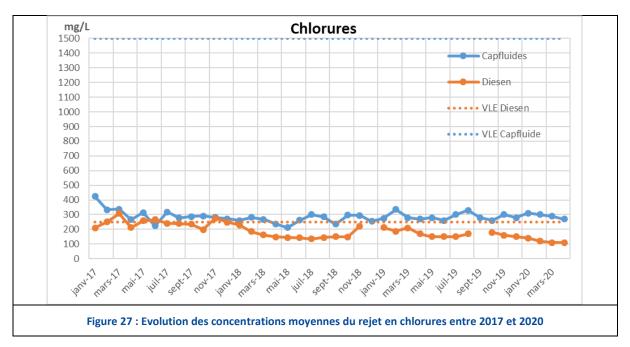
Diesen : 56,8 μg/l ;Capfluides : 95 μg/l.


Aucun dépassement des valeurs limites n'est constaté sur ce paramètre.

4.2.16. Indice hydrocarbures

Aucun hydrocarbure n'est constaté sur les effluents Diesen et Capfluides. L'ensemble des analyses sont inférieures à la limite de quantification.

4.2.17. Sulfates


La teneur en Sulfates est stable sur les 2 rejets avec des concentrations similaires.

Diesen: 259 mg/l;Capfluides: 336 mg/l.

Les concentrations en Sulfates sont toutes inférieures aux 2 seuils réglementaires fixés sur les rejets (350 mg/l pour Diesen et 2 000 mg/l pour Capfluide).

4.2.18. Chlorures

Les rejets en chlorures sont stables, on observe 4 dépassements de la Valeur Limite d'Emissions au niveau du bassin Diesen.

Les moyennes constatées sont les suivantes :

Diesen: 188 mg/l;Capfluides: 286 mg/l.

4.2.19. Synthèse de l'exploitation

Dans l'ensemble, les paramètres sont en dessous ou même largement inférieurs aux Valeurs Limites d'Emissions. Assez peu de dépassements des seuils de rejet sont constatés, seul les MES et les chlorures sont concernés pour ces dépassements ponctuels.

Les pics de MES et des paramètres organiques sont liés entre eux et avec le débit. L'explication peut être météorologique.

Certains paramètres comme le plomb, le mercure et l'étain sont inférieurs aux limites de quantification ainsi que le cadmium pour le rejet DIESEN et le chrome VI et chrome total pour CAPFLUIDES.

5. Caractéristiques de la Bisten

5.1. Contexte hydrologique

La Bisten est un cours d'eau naturel non navigable sur 19 tronçons inconnue sur 7 tronçons de 15,83 km. Il prend sa source dans la commune de Bisten-en-Lorraine au niveau de la commune de Merten.



Figure 28: Contexte hydrologique (source Eaufrance)

Ses affluents sont:

 Ruisseau le Leibsbach, cours d'eau naturel non navigable de 5,74 km. Il prend sa source dans la commune de Ham-sous-Varsberg et se jette dans La Bisten au niveau de la commune de Creutzwald.

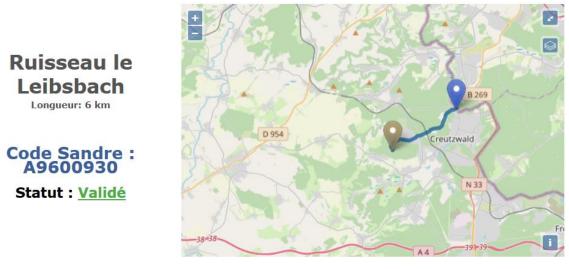


Figure 29: Le ruisseau le Leibsbach (source Eaufrance)

 Ruisseau de Guerting, cours d'eau naturel non navigable de 5,23 km. Il prend sa source dans la commune de Coume et se jette dans La Bisten au niveau de la commune de Ham-sous-Varsberg.

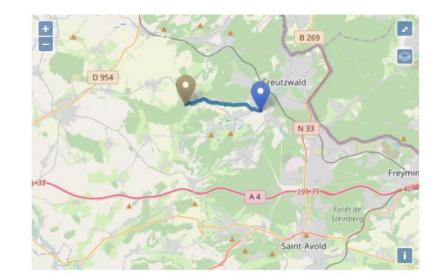


Figure 30 : Le ruisseau de Guerting (Source Eaufrance)

• Ruisseau de Diesen, cours d'eau naturel non navigable de 5,04 km. Il prend sa source dans la commune de Porcelette et se jette dans La Bisten au niveau de la commune de Creutzwald.

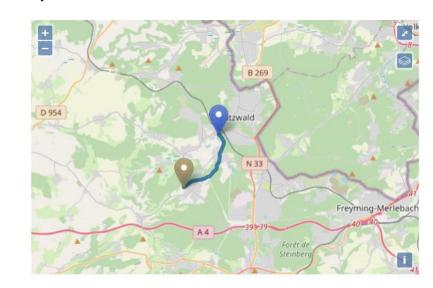


Figure 31 : Le ruisseau de Diesen (Source Eaufrance)

• Ruisseau Bruchbach, cours d'eau naturel de 4.87 km. Il prend sa source dans la commune de Boucheporn et se jette dans La Bisten au niveau de la commune de Ham-sous-Varsberg.

Ruisseau de

Guertina

Statut : Validé

Ruisseau de Diesen

Longueur: 5 km

Code Sandre : A9600820 Statut : Validé Ruisseau Bruchbach

Longueur: 5 km

Code Sandre: A9600440

Statut : Validé



Figure 32: Le ruisseau Bruchbach (Source Eaufrance)

5.2. Suivi des débits de la Bisten

5.2.1. Station de mesure de débit

Une station hydrométrique est présente sur la Bisten : la Bisten à Creutzwald (code station : A9612010 – bassin versant de 55,8 km²), avec des données sur 41 ans (banques de données HYDRO et SIERM). La fiche de synthèse est disponible en annexe n°1 du présent rapport.

Elle est localisée à environ 10 km en aval de l'usine. Aucune station n'est présente en amont et au droit du rejet du site.

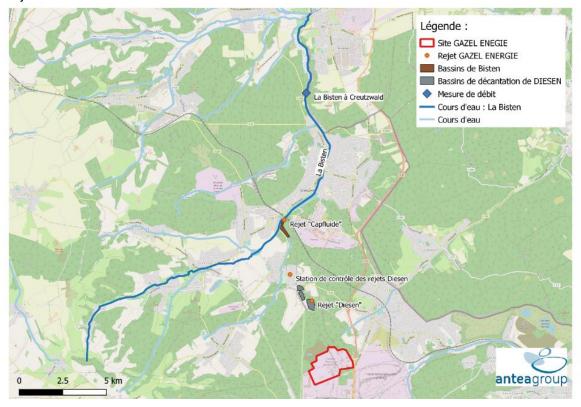


Figure 33 : Positionnement de la station de mesure de débit

La Bisten à Creutzwald Localisation par rapport au site Environ 10 km 55,8 km² 0,575 m³/s - 49 680 m³/jour 0,26 m³/s - 22 464 m³/jour 0.80 0.70 0.60 0.50 0.30 0.20 Jan. Fév. Mars. Avr. Mai. Juin. Jui. Aou. Sept. Oct. Nov. Déc. Débit moyen mensuel(m3/s)

Tableau 14 Synthèse des données La Bisten à Creutzwald (source des données : Banque Hydro)

5.2.2. Débit au droit des rejets

La formule de Mayer ci-dessous permet d'estimer les débits caractéristiques au droit des rejets GAZEL :

$$Q_{\text{T}} = Q_{\text{T BV Connu}} \ x \left(\frac{S_{\text{BV}}}{S_{\text{BV Connu}}} \right)^{\alpha} \ \text{avec}$$

Q_T: débit de fréquence T en m³/s du bassin versant à étudier ;

Q_{T BV Connu}: débit de fréquence T en m³/s du bassin versant connu ;

S_{BV} : surface en km² du bassin versant à étudier ;

S_{BV Connu} : surface en km² du bassin versant connu ;

lpha : Coefficient de Myer

Pour l'étiage, le coefficient de Myer est de l'ordre de 1.

Cette méthode de calcul a permis de déterminer le QMNA5 au droit des rejets du site :

Figure 34: Bassins versants de la Bisten et du Froschenpfuhl

Tableau 15 : Débits au droit des rejets

CALCUL DEBITS AMONT								
	QMNA₅ associé							
	en km²	(m³/jour)	en m3/s	en I/s	en m³/h			
BV Bisten station creutzwald	55,8	23 328	0,27	270	972			
BV Bisten amont rejets	26,2	10 953	0,13	127	456			
BV Froschenpfuhl amont rejet	18,6	7 793	0,09	90	325			

Ces débits tiennent compte des rejets de Gazel Energie.

5.3. Objectifs du bon état

5.3.1. Objectifs de qualité pour la Bisten

La Directive Cadre sur l'Eau (DCE) a introduit la notion de masse d'eau pour désigner une partie d'un cours d'eau, d'un canal, d'un aquifère, d'un plan d'eau ou d'une zone côtière homogènes. Les masses d'eau constituent le référentiel élémentaire de la DCE et servent d'unité d'évaluation de la qualité des eaux.

Les objectifs d'atteinte d'état des masses d'eau sont reportés dans les Schémas Directeurs d'Aménagement et de Gestion des Eaux (SDAGE). La mise en œuvre de la DCE sur le bassin Rhin-Meuse à conduit à deux SDAGE : un pour le district hydrographique Rhin et un pour le district hydrographique Meuse.

Le SDAGE en vigueur sur la zone d'étude est le SDAGE 2016-2021 district Rhin, Bassin de la Moselle, de la Sarre et du Rhin supérieur.

Les objectifs d'état fixés pour la Bisten dans le SDAGE sont précisés dans le Tableau 16.

Tableau 16 : Objectifs de qualité pour la Bisten

Code NAT	Masse	Obj	ectifs d'état rete	Fab á an a a	Motivation	
Code ME d'eau		Global	Global Ecologique Chimique		Echéance	du choix
FRCR458	Bisten	Bon état	Bon état	Bon état	2027	Faisabilité technique

5.3.2. Définition des objectifs de qualité par paramètre

Les paramètres étudiés dans le cadre de cette étude sont les polluants susceptibles d'être rejetés par la société GAZEL ENERGIE. Ainsi, la liste des polluants suivis dans le cadre de l'Arrêté préfectoral sera conservée.

L'état des cours d'eau est évalué selon deux types de critères :

- Etat écologique: fonctionnement des écosystèmes. Il est déterminé à l'aide d'éléments de qualité: biologiques (espèces végétales et animales), hydromorphologiques et physicochimiques, appréciés par des indicateurs (par exemple les indices invertébrés ou poissons en cours d'eau);
- **Etat chimique** : respect des normes de qualité environnementales NQE (valeurs-seuils) sur les substances chimiques dangereuses et/ou prioritaires.

Les paramètres et valeurs-seuils à prendre en compte sont ceux mentionnés dans l'Arrêté du 27 juillet 2018 modifiant l'arrêté du 25 janvier 2010 modifié relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R.212-10, R.212-11 et R.212-18 du code de l'environnement. L'arrêté défini les NQE à prendre en compte soit les NQE MA en moyenne annuelle soit les NQE CMA en concentrations maximales admissibles.

Les objectifs par paramètres retenus dans le cadre de notre étude sont synthétisés dans les tableaux en pages suivantes.

		Limites des classes d'état						
Paramètres par élément de qualité (unités)	Code	Très bon / Bon	Bon / Moyen	Moyen / Médiocre	Médiocre / Mauvais			
Bilan de l'oxygène 1								
Oxygène dissous (mg O ₂ /I)	1311	8	6	4	3			
Taux de saturation en O2 dissous (%)	1312	90	70	50	30			
DBO₅ (mg O₂/I)	1313	3	6	10	25			
Carbone organique dissous (mg C/I)	1841	5	7	10	15			
Température ²								
Eaux salmonicoles		20	21,5	25	28			
Eaux cyprinicoles	1301	24	25,5	27	28			
Nutriments								
PO4 ³⁻ (mg PO4 ³⁻ /I)	1433	0,1	0,5	1	2			
Phosphore total (mg P/I)	1350	0,05	0,2	0,5	1			
NH4+ (mg NH4+/I)	1335	0,1	0,5	2	5			
NO ₂ - (mg NO ₂ -/l)	1339	0,1	0,3	0,5	1			
NOa' (mg NOa'/I)	1340	10	50	*	*			
Acidification ¹								
pH minimum	4000	6,5	6	5,5	4,5			
pH maximum	1302	8,2	9	9,5	10			
Salinité								
Conductivité	1303	×	*	*	*			
Chlorures	1337	*	*	*	*			
Sulfates	1338	¥	×	*	*			
¹ Acidification: en d'autres termes, à titre d'exemple,	pour la classe bon état.	le pH min est compris	entre 6.0 et 6.5 : le p	H max entre 9.0 et	8.2.			

Figure 35 : Valeurs des limites des classes d'état pour les paramètres physico-chimiques généraux pour les cours d'eau (Arrêté du 27 juillet 2018)

Tableau 17 : Polluants spécifiques de l'état écologiques et les normes de qualité environnementales (Arrêté du 27 juillet 2018)

Composé chimique contrôlé dans les rejets de la centrale	NQE(M.A.) (μg/l)	Référentiel - Commentaire
Zinc	7,8	Arrêté du 27 Juillet 2018 NQE MA
Arsenic	0,83	Arrêté du 27 Juillet 2018 NQE MA
Cuivre	1	Arrêté du 27 Juillet 2018 NQE MA
Chrome	3,4	Arrêté du 27 Juillet 2018 NQE MA

Acidification: en d'autres termes, à titre d'exemple, pour la classe bon état, le pH min est compris entre 6,0 et 6,5; le pH max entre 9,0 et 8,2.
Pour l'élément de qualité température, un paramètre supplémentaire « intermédiaire » non référencé ici est également utilisé. Pour ce dernier, il est recommandé d'utiliser les limites de classe du paramètre « salmonicoles ».
*: les connaissances actuelles ne permettent pas de fixer des seuils fiables pour cette limite.

Tableau 18 : Polluants et normes de qualité environnementale correspondantes état chimique (Arrêté du 27 juillet 2018)

Composé chimique contrôlé dans les rejets de la centrale	NQE(M.A.) (μg/l)	Référentiel - Commentaire
Cadmium et ses composés (Cd)	0,25	Arrêté du 27 Juillet 2018 Eau dure (36,5 °F) de dureté classe 5
Etain et ses composés (Sn)	-/-	Pas De NQE - Pas de VGE définie : Aucune valeur de référence disponible Teneurs mesurées systématiquement inférieures au seuil de détection
Mercure et ses composés (Hg)	0,07	Arrêté du 27 Juillet 2018 NQE CMA
Nickel et ses composés (Ni)	4	Arrêté du 27 Juillet 2018 NQE MA
Plomb et ses composés (Pb)	1,2	Arrêté du 27 Juillet 2015

La DCO, les MES et le NTK ne sont pas retenus comme des critères d'évaluation de l'état de des masses d'eau. Le texte précédemment cité ne mentionne donc pas de valeurs de référence pour caractériser la classe d'état. Pour ces paramètres, l'annexe 1 du guide technique du 01/12/2015 relatif aux modalités de prise en compte des objectifs de la directive cadre sur l'eau (DCE) en police de l'eau IOTA/ICPE sera pris en compte (cf. Figure 36).

PARAMETRES	LIMITES SUPERIEURE ET INFERIEURE DU BON ETAT					
BILAN DE L'OXYGENE						
DCO (mg/I O ₂)]20 – 30]					
NKJ (mg/l N)]1 – 2]					
PARTICULES	PARTICULES EN SUSPENSION					
MES (mg/l)]25 – 50]					
Turbidité (NTU)]15 – 35]					

Figure 36: Valeurs guides du bon état - paramètres DCO, MES, NTK - Guide technique 01/12/15

A noter que concernant le paramètre azote global (NGL), les objectifs de qualité sont déterminés en faisant la somme des paramètres NTK, NO3 et NO2, en veillant au préalable à convertir les concentrations en mg N/l.

Pour les chlorures, l'étain, les sulfates, hydrocarbures et manganèse, ce texte réglementaire ne permet pas de fixer de seuils fiables avec les connaissances actuelles. **A titre indicatif**, des textes ont été pris comme référence :

Tableau 19 : Valeurs guides pour les paramètres Chlorures, Sulfates, hydrocarbures et manganèse

Paramètres	Unité	Valeurs retenues	Textes de référence		
Chlorures	mg/l	200	Limites de qualité des eaux brutes pour la production d'eau destinée à la consommation humaine (Arrêté du 11/01/2007)		
		30	Valeur guide environnementale – eaux douces de surface		
Sulfates	m = /1	250	Limites de qualité des eaux brutes pour la production d'eau destinée à la consommation humaine (Arrêté du 11/01/2007)		
Sunates	mg/l	56¹	Valeur guide environnementale – eaux douces de surface Classes de dureté : 1 et 2		
Etain	μg/l	1,5	Valeur de protection des organismes pélagiques d'eau douce		
Hydrocarbures (C total)	mg/l	1000	Limites de qualité des eaux brutes pour la production d'eau destinée à la consommation humaine (Arrêté du 11/01/2007)		
Manganèse et ses composés	mg/l	500	Limites de qualité des eaux brutes pour la production d'eau destinée à la consommation humaine (Arrêté du 11/01/2007)		

¹ 56 mg/l pour la classe de dureté 2. Aucune VGE n'est définie pour une eau de dureté classe 5 (classe de la zone d'étude).

Pour les chlorures et les sulfates, deux textes ont été retenus et seront pris comme objectif :

- Arrêté du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine mentionnées aux articles R. 1321-2, R. 1321-3, R. 1321-7 et R. 1321-38 du code de la santé publique
- VGE définies pour les eaux douces de surface. Ces valeurs sont faibles et le milieu naturel contient déjà des teneurs en chlorures et sulfates supérieures (3 à 5 fois en fonction du milieu naturel situé à proximité du site). Pour information, les teneurs des eaux issues de la bulle salée (eaux d'exhaure du BRGM) sont en moyenne de 260 mg/L pour les Cl⁻ et 200 mg/L pour le SO₄²⁻.

5.4. Suivi de la qualité de la Bisten

Une station de surveillance de la qualité de la Bisten est positionnée en aval du site : La station de Creutzwald (code station n° 02103850), localisée à 10 km en aval du site.

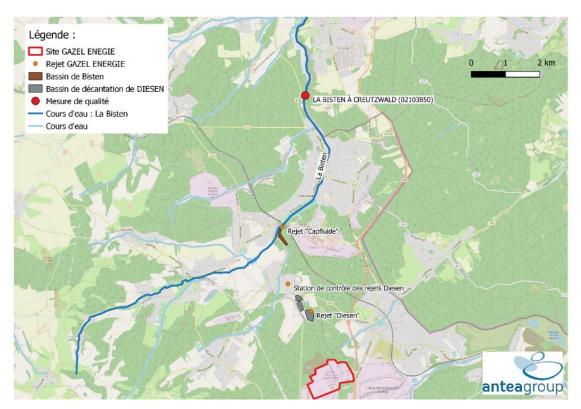


Figure 37 : Positionnement de la station de mesure qualité

Les paragraphes suivants s'attacheront à détailler les données de qualité des eaux de la Bisten issues de la surveillance réalisée sur cette station.

5.4.1. Etat écologique

L'état écologique de la masse d'eau sur la base de l'état des lieux Agence de l'Eau 2016-2018 est mauvais. La fiche Agence de l'Eau est disponible en annexe n°2.

Etat biologique

La caractérisation de l'état biologique d'un cours d'eau fait appel aux indices suivants :

- IBGN (Indice Biologique Global Normalisé) ou Indice MCGE (Macro-Invertébrés Grands Cours d'Eau). Celui-ci permet d'avoir des informations sur la qualité des habitats aquatiques et du peuplement des macro invertébrés par analyse de sa composition;
- IBD (Indice Biologique Diatomées). Les diatomées sont des algues unicellulaires sensibles aux polluants par les matières organiques et surtout par les variations physico-chimiques de l'eau ;
- IBMR (Indice Biologique Macrophytique en Rivière). Cet indice a pour but d'évaluer le statut trophique des cours d'eau en lien avec leur teneur en ammonium et orthophosphates, ainsi que les pollutions organiques majeures ;
- IPR (Indice Poisson Rivières). Il évalue l'écart entre la population piscicole (cortège d'espèce et classes de taille) présente lors de l'échantillonnage par pêche électrique et la population de référence.

Lors de l'état des lieux 2016-2018, l'état biologique de la masse d'eau est médiocre avec un IBGN médiocre, un IBD moyen et un IBMR mauvais.

Paramètres généraux

Le dernier état des lieux de 2016-2018 disponible sur le site de l'Agence de l'Eau Rhin Meuse met en évidence un état physico-chimique général médiocre.

Le tableau page suivante rassemble les données mensuelles de suivi sur la Bisten à Ceutzwald en 2018 (dernière année de mesures disponibles sur le site de l'Agence de l'Eau). Certains paramètres n'ont pas été suivis en 2018. Les valeurs de l'état des lieux 2016-2018 réalisé par l'Agence de l'Eau sont également présentées dans le tableau.

Tableau 20 : Données de suivi de la Bisten à Creutzwald

	Seuil Bon état	mai-18	juin-18	juil-18	juil-18	août-18	sept-18	oct-18	nov-18	déc-18	2016-2018 ¹
Oxygène dissous mgO ₂ /I	8 - 6	6,1	5,3	4,3	4,1	6,6	7,7	8,1	9	10,6	4,3
DBO5 mgO ₂ /l	3 - 6	5,3	2,8	4,1	3	3,4	6	2,4	1,4	2	5
Carbone Organique mg/l	5 -7	5,1	4,7	4,3	5,5	4	4,4	3,7	3,8	3,2	5,2
Température de l'Eau °C	24	17,1	19,6	18,1	19,7	17,5	15,7	12,3	8,1	6	19,5
Orthophosphates mgPO ₄ ^{3-/} I	0,1-0,5			Doi	nnées non disp	onibles pour la	période souha	itée			1,5
Phosphore total mgP/I	0,05-0,2	0,21	0,38	0,31	1,3	0,36	0,39	0,44	0,15	0,21	0,62
Ammonium mg NH ₄ +/I	0,5		Données non disponibles pour la période souhaitée							1,1	
Nitrites mg NO ₂ -/I	0,3		Données non disponibles pour la période souhaitée							0,33	
Nitrates mg NO ₃ -/I	50			Doi	nnées non disp	onibles pour la	période souha	itée			14
pH(min)	6	7,5	7,4	7,2	7,2	7	7,7	7,3	7,4	7,4	7,15
pH (max)	9	7,5	7,4	7,2	7,2	7	7,7	7,3	7,4	7,4	7,6
Paramètre globaux											
Zinc mg/l	7,8	26,5			44,6	15,9					22
Arsenic mg/l	0,83	3,94			2,63	2,6					3,4
Cuivre mg/l	1	1,7			0,77	2,42					0,99
Chrome mg/I	3,4	0,31			<0,05	0,32					<0,5
Polluants spécifiques			•				'				

¹ Les données présentées ici sont des percentile 90 des valeurs mesurées sur les 2 années hor<u>mis pour l'oxygène dissous ou il s'agit du percentile 10.</u>

•	75 5 1
Limites de l'état écologique de l'arrêté du 27/07/2018	NQE arrêté du 27/07/2018 relatif aux méthodes
Etat très bon	et critères d'évaluation de l'état écologique, de
Etat bon	l'état chimique [] des eaux de surface
Etat moyen	Inférieur à la NQE
Etat médiocre	Supérieur à la NQE
Etat mauvais	

	Seuil Bon état	mai-18	juin-18	juil-18	juil-18	août-18	sept-18	oct-18	nov-18	déc-18	2016-2018 ¹
Matières en suspension mg/l	50	20	24	21	17	15	15	12	7	7,3	
DCO mgO₂/I	20-30	25	28	67	24	21	29	15	6	6	
Azote Kjeldahl mgN/l	1-2	2,6	1,3	1,6	1,5	0,6	1,3	1,2	0,8	0,8	
Azote gobal mgN/l	13,4	3,8	2,6	3,6	3,1	2,4	2,7	4,4	2,8	3	

Sulfates mg/l	250/53
Chlorures mg/l	200/30

Données non disponibles pour la période souhaitée Données non disponibles pour la période souhaitée

335	
237	

Limites du bon état d'un cours d'eau de l'Annexe 13 du Guide technique relatif à l'évaluation de l'état des eaux de surface continentales de mars 2016		paraison à titre indicatif arrêté du 11 janvier 2007 relatif aux limites t références de qualité des eaux brutes et des eaux destinées à la consommation humaine et VGE
Etat très bon		Inférieur à la limite de qualité
Etat bon		Supérieur à la limite de qualité
Etat moyen à mauvais		

Ces tableaux mettent en évidence que le bon état n'est pas atteint pour les paramètres :

- Taux d'oxygène (état moyen) ;
- Orthophosphates (état médiocre);
- Phosphore total (état médiocre);
- Ammonium (état moyen);
- Nitrites (état moyen);
- Arsenic (état moyen);
- Zinc (état moyen).

5.4.2. Etat chimique

L'état chimique de la masse d'eau sur la base de l'état des lieux Agence de l'Eau 2016-2018 est mauvais. La fiche Agence de l'Eau est disponible en annexe n°03.

Pour les polluants étudiés dans le cadre de notre étude :

- Les taux de Nickel mesurés sont <u>supérieurs</u> à la Norme de qualité environnementale (MA);
- Les taux de Plomb mesurés sont inférieurs à la Norme de qualité environnementale (MA);
- Les taux de Mercure mesurés sont supérieurs à la Norme de qualité environnementale (CMA);
- Les taux de Cadmium mesurés sont inférieurs à la Norme de qualité environnementale (MA).

6. Campagne de mesures

Une campagne de mesures, menée par Antea Group a eu lieu les 25, 26 et 27 mai 2020.

6.1. Points de mesures

6.1.1. Rejets Gazel Energie

Tableau 21 : Points de mesures site Gazel Energie

N°	Point de mesure	Localisation	Prélèvement	Débit	Commentaire
1	Purges adoucisseur 5ETD après neutralisation Groupe 6	Local 5 ETD	Ponctuel / Manuel	50 m³/régénération	Prélèvement à effectuer lors d'une régénération
2	Purges TAR Groupes 7 et 8	ODEX (Bac d'expédition Capfluides)	Préleveur autonome IRH Préleveur existant Gazel (à mettre en fonctionnement)	Temps de fonctionnement des pompes	Récupération du temps de fonctionnement des pompes de relevage du bassin ODEX (salle de contrôle)
3	Purges adoucisseur Groupes 7 et 8	Local des adoucisseurs	Préleveur autonome	Temps de fonctionnement des pompes	Envoyé vers les TAR 7 et 8 Récupération des débits des pompes de transfert
4	Rejet Capfluides	Bassin de Bisten	Préleveur GAZEL	Mesure de débit Gazel	Utilisation du matériel existant

Lors de la campagne de mesure, le rejet Diesen ne s'écoulait pas.

Figure 38 : Photographies des points de mesures Gazel Energie

6.1.2. Milieu naturel

Tableau 22 : Points de mesures sur les milieux naturels

N°	Point de mesure	Localisation	Prélèvement	Débit	Commentaire
5	Amont Rejet Capfluides	Sortie du Bassin de Bisten	Préleveur autonome	Jaugeage du cours d'eau	Mesure directement à la sortie des bassins Bisten
6	Aval Rejet Capfluides	Avant le lac de Creutzwald	Préleveur autonome	Jaugeage du cours d'eau	Mesure dans le cours d'eau pour impact direct de Capfluides
7	Bisten à Creutzwald	Point de contrôle RNB	Préleveur autonome	Jaugeage du cours d'eau	Mesure dans le cours d'eau au niveau du point de suivi RNB
8	Froschenpfühl	Amon des bassins de la Bisten	Ponctuel	Non mesurable	Le cours d'eau se transforme en zone marécageuse avant d'arriver sur les bassins



Figure 39 : Photographies des points de mesures sur les milieux naturels

Les coordonnées des points de mesure réalisés dans les cours d'eau sont les suivantes :

Tableau 23 : Coordonnées des points de mesures sur les milieux naturels

N°	Point de mesure	Coordonnées Lambert II étendu			
5	Amont Rejet Capfluid	X = 916 663 m Y = 2 474 758 m			
6	Aval Rejet Capfluid	X = 916 693 m Y = 2 474 782 m			
7	Bisten à Creutzwald	X = 917 120 m Y = 2 478 580 m			
8	Froschenpfühl	X = 916 875 m Y = 2 474 074 m			

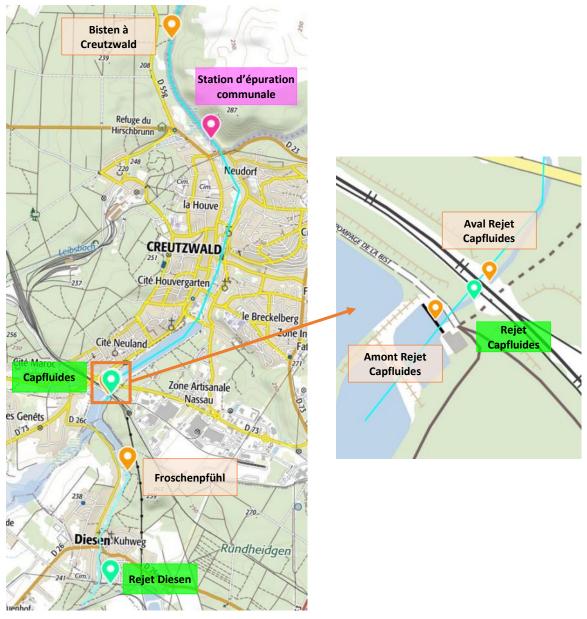


Figure 40 : Localisation des points de mesure

6.1.3. Synoptique des points de mesures

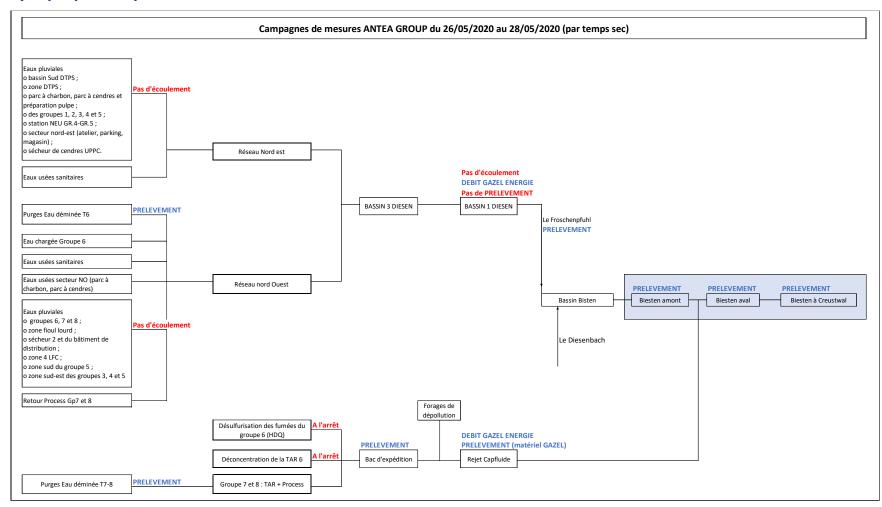


Figure 41 : Synoptique des points de mesures campagnes de mesures Antea Group 2020

6.2. Pluviométrie lors des mesures

La campagne de mesures menée par Antea Group a eu lieu les 25, 26 et 27 mai 2020. La pluviométrie journalière du mois de mai 2020 pour les stations positionnées à Rémering-lès-Puttelange (situé à 20 km du site) et à Metz (situé à 50 km du site) sont présentées ci-dessous :

Figure 42 : Localisation des points de suivi pluviométriques (Site internet : météo ciel)

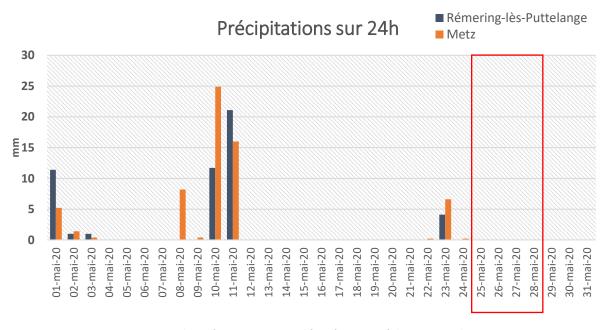


Figure 43 : Suivi des précipitations journalières à proximité du site mois de mai 2020

Ces histogrammes mettent en évidence de faibles cumuls de précipitations lors des mesures et durant le mois de mai. Ainsi, les rejets Gazel Energie n'ont pas été composés d'eaux pluviales.

Les prélèvements réalisés sont donc représentatifs des rejets du process de Gazel Energie, notamment pour les Tranches 7 et 8.

6.3. Fonctionnement du process lors des mesures

Durant les mesures, seules les tranches 7 et 8 ont fonctionné comme le montre le Tableau 24 :

25/05/2020 0,00 h 19,5 h 0,90 h 26/05/2020 0,00 h 1,13 h 19,62 h 27/05/2020 0,00 h 20,02 h 19,73 h 28/05/2020 0,00 h 24,0 h 24,00 h 29/05/2020 0,00 h 17,93 h 18,32 h 82,58 h 82,57 h

Tableau 24: Temps de marche des groupes (h)

Lors de la campagne de mesure, les 2 tranches 7 et 8 ont fonctionné le même temps alors que la tranche 6 est restée à l'arrêt.

L'arrêt de la tranche 6 est également visible au niveau des rejets Diesen : les débits sont principalement liés à la pluviométrie comme le montre le graphe suivant :

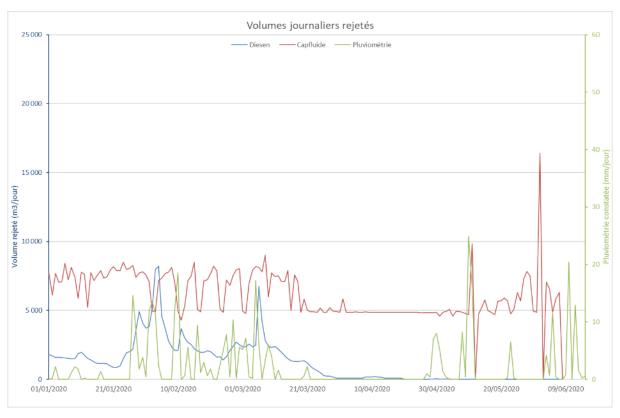


Figure 44 : Volumes journaliers rejetés durant la campagne de mesures

La longue période sèche constatée à partir de mi-mars a entrainé un arrêt de l'écoulement des bassins de Diesen, mettant même à sec le bras de cours d'eau allant du rejet Diesen au Froschenpfühl.

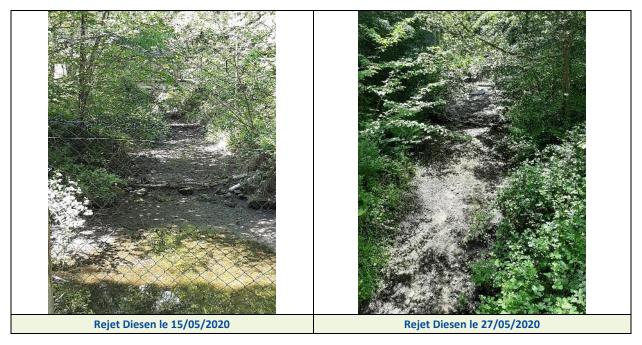


Figure 45 : Photographies témoignant d'une longue période sèche

6.4. Résultats milieu naturel

Les résultats obtenus sur les cours d'eau lors de la campagne de mesure sont les suivants :

6.4.1. Jour 1

Tableau 25 : Concentrations mesurées le 27/05/2020 – Cours d'eau

Paramètres	Unités	FROSCHENPFUHL	BISTEN AMONT	BISTEN AVAL	BISTEN CREU	Valeurs seuil bon état ou NQE
Volume	m3/jour	Non mesurable	3 024	12 168	20 952	
Paramètres globaux de	e l'état éc	ologique				
рН	Unités pH	8,3	8,1	6,6	8	6 à 9
Demande Biochimique en Oxygène (DBO5)	mg O2/l	2,1	3,6	1,8	4,9	6
Ammonium	mg NH4/I	2,8	0,7	0,31	0,74	0,5
Nitrates	mg NO3/I	<0,5	0,7	11	7,2	<i>50</i>
Nitrites	mg NO2/I	0,03	0,13	0,11	0,21	0,3
Phosphore total	mg P/l	0,69	0,85	0,59	0,44	0,2
Paramètres spécifique	s de l'éta	t écologique				
Arsenic (As)	μg/l	7,6	2,62	2,55	3,35	0,83
Zinc (Zn)	μg/l	343	14,7	113	73,1	7,8
Chrome (Cr)	μg/l	7,18	0,83	0,78	1,7	3,4
Cuivre (Cu)	μg/l	5,41	1,54	3,37	4,48	1
Paramètres de l'état ch	nimique					
Cadmium (Cd)	μg/l	0,13	0,32	2,21	0,9	0,25

Paramètres	Unités	FROSCHENPFUHL	BISTEN AMONT	BISTEN AVAL	BISTEN CREU	Valeurs seuil bon état ou NQE
Mercure (Hg)	μg/l	<0,01	0,05	0,19	<0,01	0,07
Nickel (Ni)	μg/l	9	4,3	15,9	8,3	4
Plomb (Pb)	μg/l	3,8	0,6	0,5	2,6	1,2

Paramètres non retenus pour l'évaluation de la qualité des cours d'eau										
Chlorures (Cl)	mg/l	73	32	180	140	200				
Chlorures (Cl)	mg/l	73	32	180	140	VGE 30				
Sulfates	mg SO4/I	83	34	170	230	250				
Fluorures	mg/l	0,32	0,17	0,14	0,14					
Sulfite	mg/l	<0,1	<0,10	<0,1	<0,1					
Sulfures	mg S/I	<0,10	<0,10	<0,10	<0,10					
AOX	μg/l	34	55	80	80					
Chrome hexavalent	μg/l	<10,0	<10,0	<10,0	<10,0					
Etain (Sn)	μg/l	<0,2	<0,2	<0,2	<0,2					
Matières en suspension (MES)	mg/l	9	4	<2	22	50				
ST-DCO	mg O2/I	14	30	16	18	30				
Azote Kjeldahl (NTK)	mg N/l	2,6	1,7	1,1	1,4	2				
Indice hydrocarbure volatil (C5-C11)	μg/l	<25	<25	<25	<25					
Indice Hydrocarbures (C10-C40)	mg/l	<0,1	<0,1	<0,1	<0,1	1				

1	Limites de l'état écologique de l'arrêté du 27/07/2018 relatif aux méthodes et critères Etat très bon		nites du bon état d'un cours d'eau e l'Annexe 13 du Guide technique elatif à l'évaluation de l'état des	QE arrêté du 27/07/2018 relatif aux méthodes et critères évaluation de l'état écologique,	Comparaison à titre indicatif arrêté du 1 janvier 2007 relatif aux limites et références de qualité des eaux brutes et de	
	Etat bon Etat moyen			de l'état chimique [] des eaux de surface		x destinées à la consommation humaine
	Etat médiocre		Etat bon	Supérieur à la NQE		Supérieur à la limite de qualité
	Etat mauvais		Etat moyen à mauvais			

6.4.2. Jour 2

Tableau 26 : Concentrations mesurées le 28/05/2020 – Cours d'eau											
Paramètres	Unités	Unités BISTEN AMONT		BISTEN CREU	Valeurs seuil bon état ou NQE						
Paramètres globaux de l'état écologique											
Volume	(m3/j)	2 280	12 648	20 880							
рН	Unités ph	8,4	7,9	8	6 à 9						
Demande Biochimique en Oxygène (DBO5)	mg O2/l	3,3	1,8	3,6	6						
Ammonium	mg NH4/	0,62	0,33	0,62	0,5						
Nitrates	mg NO3/	0,6	19	6,9	<i>50</i>						
Nitrites	mg NO2/	0,14	0,09	0,22	0,3						
Phosphore total	mg P/I	0,61	0,44	0,37	0,2						
Paramètres spécifiques de l	'état écolo	gique									
Arsenic (As)	μg/l	2,59	3,28	3,35	0,83						
Zinc (Zn)	μg/l	13,3	204	60,8	7,8						
Chrome (Cr)	μg/l	0,31	0,48	0,71	3,4						
Cuivre (Cu)	μg/l	< 0,15	1,71	2,03	1						
Paramètres de l'état chimiq	ıe										
Cadmium (Cd)	μg/l	0,05	2,2	0,65	0,25						
Mercure (Hg)	μg/l	0,03	0,2	<0.01	0,07						
Nickel (Ni)	μg/l	3,9	20,5	7,4	4						
Plomb (Pb)	μg/l	0,4	0,6	2,2	1,2						
Paramètres non retenus po	ır l'évalua	tion de la qualité	des cours d'e	au							
Chlorures	mg Cl/l	32	220	140	200						

Paramètres non retenus pour l'évaluation de la qualité des cours d'eau									
Chlorures	mg Cl/l	32		220		140	200		
Chlorures	mg CI/I	32		220		140	VGE 30		
Sulfates	mg SO4/I	33		260		230	250		
Fluorures	mg/l	0,16		0,17		0,14			
Sulfite	mg/l	<0.10		<0.10		<0.10			
Sulfures	mg S/I	<0.10		<0.10		<0.10			
AOX	μg/l	34		120		28			
Chrome hexavalent	μg/l	<10.0		<10.0		<10.0			
Etain (Sn)	μg/l	0,3		<0.2		0,6			
Matières en suspension (MES)	mg/l	3		2		16	<i>50</i>		
ST-DCO	mg O2/l	33		5		27	30		
Azote Kjeldahl (NTK)	mg N/l	1,9		1		1,6	2		
Indice hydrocarbure volatil (C5-C11)	μg/l	<25		<25		<25			
Indice Hydrocarbures (C10-C40)	mg/l	<0.1		<0.1		<0.1	1		
Limites de l'état écologique de l'arrêté du 27/07/2018 relatif aux méthodes et critères Etat très bon Etat bon	de l'Annexe 13 du (relatif à l'évaluati eaux de surface co	es du bon état d'un cours d'eau Annexe 13 du Guide technique tif à l'évaluation de l'état des x de surface continentales de mars 2016		eté du 27/07/2018 relatif méthodes et critères tion de l'état écologique, chimique [] des eaux de surface	réfé	janvier 2007 re rences de qualité	indicatif arrêté du 11 latif aux limites et des eaux brutes et des onsommation humaine		
Etat moyen	Etat très bon		Inférie	ur à la NQE		Inférieur à la lin	nite de qualité		
Etat médiocre	Etat bon		Supéri	eur à la NQE		Supérieur à la li	mite de qualité		
Etat mauvais	Etat moyen à ma	auvais							

6.4.3. Commentaires

Au niveau des paramètres globaux de l'état écologique, il ressort que le Froschenpfühl présente une qualité Médiocre à cause de déclassements sur les paramètres Ammonium et Phosphore. La Bisten, quant à elle, a une qualité qui s'améliore suite au rejet Capfluides, notamment sur les paramètres DBO₅, Ammonium et Phosphore mais reste en qualité Médiocre.

Au niveau de la station de Creutzwald, la qualité de la Bisten s'améliore sur le paramètre Phosphore, ce qui la fait passer en état Moyen (donnée cohérente avec le suivi de l'Agence de l'Eau cf. § 5.4 Suivi de la qualité de la Bisten).

Les cours d'eau présentent tous des concentrations en métaux lourds supérieures aux normes de qualité environnementales, sauf pour le Chrome dans la Bisten et le Plomb au niveau de Capfluides. La traversée de l'agglomération de Creutzwald fait augmenter la teneur en Plomb dans le cours d'eau.

L'ensemble des concentrations mesurées en chlorures est supérieur à la VGE même en amont des rejets Gazel dans le Froschenpfühl (73 mg/l).

Au niveau du rejet de Capfluides, il est mis en évidence une augmentation de concentration sur les paramètres suivants :

- AOX
- Cadmium
- Cuivre
- Mercure

- Nickel
- Zinc
- Nitrates

Cependant, il est observé une diminution de la concentration, et donc une amélioration de la qualité du milieu, sur les éléments suivants :

- DBO₅
- MES
- DCO

- Ammonium
- NTK
- Phosphore total

Lors de notre campagne de mesure, il a été mis en évidence que la Bisten à Creutzwald a présenté un aspect trouble et chargé en MES comme le montre les photos suivantes :

Figure 46: Etat de la Bisten à la station HYDRO de Creutzwald

Une investigation a été réalisé et il n'a pas été observé ce phénomène en amont de la station communale.



Figure 47 : Etat de la Bisten en amont de la station communale

La dégradation de la qualité de l'eau à la station HYDRO de Creutzwald ne peut donc pas être impactée à Gazel Energie. La localisation des photos est la suivante :

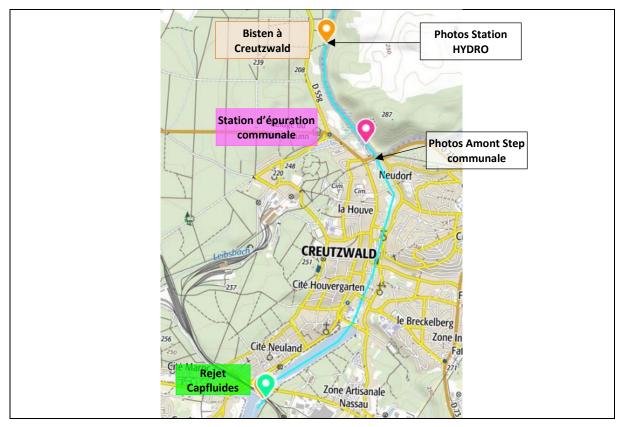


Figure 48: Localisation des points de mesure

Lors de nos investigations terrain, il n'a pas pu être identifié clairement la source de la dégradation de l'aspect visuel de la Bisten au niveau de la station de mesure HYDRO.

6.5. Résultats Rejets Gazel Energie

Les analyses effectuées sur les effluents de Gazel Energie sont les suivantes :

6.5.1. Jour 1

Tableau 27 : Concentrations mesurées le 27/05/2020 – Effluents Gazel

Paramètres	Unités	Régénération Eau Déminéralisée Groupes 7 et 8	Régénération Eau Déminéralisée Groupe 6	ODEX	CAP FLUIDE
Volume	m3/jour	69,5	50,0	2 483	5 797
Chlorures (CI)	mg/l	400	5 400	380	280
Fluorures	mg/l	0,13	0,56	0,32	<0,5
рН	Unités pH	7,7	7	8,3	7,3
Sulfates	mg SO4/I	300	260	640	280
Sulfite	mg/l	<0,1	<0,1	<0,1	<0,1
Sulfures	mg S/I	<0,10	<0,10	<0,10	<0,10
AOX	μg/l	110	140	220	92
Arsenic (As)	μg/l	1,16	4,53	7,39	2,56
Cadmium (Cd)	μg/l	0,63	4,7	3,23	3,28
Chrome (Cr)	μg/l	1,04	9,39	1,1	0,8
Chrome hexavalent	μg/l	<10,0	<10,0	<10,0	<10,0
Cuivre (Cu)	μg/l	1,75	1,71	8,86	2,52
Etain (Sn)	μg/l	<0,2	<0,2	<0,2	2,4
Mercure (Hg)	μg/l	0,02	3,79	0,03	0,51
Nickel (Ni)	μg/l	10,6	55,6	58,1	25
Plomb (Pb)	μg/l	0,2	0,6	0,4	0,7
Zinc (Zn)	μg/l	221	525	633	191
Demande Biochimique en Oxygène (DBO5)	mg O2/I	1,1	1	2,1	1,2
Matières en suspension (MES)	mg/l	<2	31	3	<2
ST-DCO	mg O2/I	<5	25	<5	<5
Ammonium	mg NH4/I	0,34	0,19	0,41	<0,05
Azote Kjeldahl (NTK)	mg N/l	<0,5	<0,5	0,8	0,5
Nitrates	mg NO3/I	43	300	69	<25
Nitrites	mg NO2/I	0,01	<0,04	0,08	<0,05
Phosphore total	mg P/I	0,08	0,62	1,09	0,39
Indice hydrocarbure volatil (C5-C11)	μg/l	<25	<25	<25	<25
Indice Hydrocarbures (C10- C40)	mg/l	<0,1	<0,1	<0,1	<0,1

6.5.2. **Jour 2**

Tableau 28 : Concentrations mesurées le 28/05/2020 - Effluents Gazel

Paramètres	Unités	Régénération Eau Déminéralisée Groupes 7 et 8	ODEX	CAP FLUIDE
Volume	m3/jour	80,2	3 758	7 569
Chlorures (CI)	mg/l	380	390	300
Fluorures	mg/l	0,13	0,36	0,16
рН	Unités pH	7,8	8,4	7,7
Sulfates	mg SO4/I	300	680	360
Sulfite	mg/l	<0.1	<0.1	<0.1
Sulfures	mg S/I	<0.10	<0.10	<0.10
AOX	μg/l	57	400	130
Arsenic (As)	μg/l	1,37	8,24	3,86
Cadmium (Cd)	μg/l	0,42	3,27	3,15
Chrome (Cr)	μg/l	0,96	0,92	1,02
Chrome hexavalent	μg/l	<10.0	<10.0	<10.0
Cuivre (Cu)	μg/l	<0.15	6,6	1,87
Etain (Sn)	μg/l	<0.2	0,6	<0.2
Mercure (Hg)	μg/l	0,02	0,03	0,43
Nickel (Ni)	μg/l	10,5	51,5	29,2
Plomb (Pb)	μg/l	0,1	0,6	0,4
Zinc (Zn)	μg/l	198	768	304
DBO5	mg O2/I	0,9	1,8	1,2
Matières en suspension (MES)	mg/l	<2	3	4
ST-DCO	mg O2/I	<5	<5	10
Ammonium	mg NH4/l	0,41	0,23	0,08
Azote Kjeldahl (NTK)	mg N/l	0,5	1	<0.5
Nitrates	mg NO3/l	44	71	28
Nitrites	mg NO2/l	0,01	0,04	0,03
Phosphore total	mg P/I	0,05	0,71	0,36
Indice hydrocarbure volatil (C5-C11)	μg/l	<25	<25	<25
Indice Hydrocarbures (C10-C40)	mg/l	<0.1	<0.1	<0.1

6.5.3. Commentaires

D'après les mesures effectuées sur les effluents de Gazel Energie, il ressort que :

- Les effluents de régénération des résines d'eau déminéralisée du Groupe 6 sont très chargés en Chlorures et Nitrates. Cela est dû au mode de régénération utilisée (Acide Chlorhydrique HCl et Soude NaOH);
- La concentration en Nitrates mesurée dans le rejet des eaux déminéralisées du Groupe 6 ne vient pas des produits utilisés (absence de Nitrates) mais doit provenir d'une présence de Nitrates dans les eaux d'alimentation (forages F239 et F240) qui sont captés par les résines et relarguées lors des régénérations;

- Les adoucisseurs des Groupes 7 et 8 sont quant à eux régénérés à l'aide de sel (Chlorure de Sodium NaCl), ce qui impacte moins les teneurs en Chlorures émises lors des régénérations;
- Le rejet ODEX est le plus concentré en métaux et en Phosphore (apporté par l'utilisation du produit NALCO 3DT118);
- Le rejet Capfluides est moins concentré que le rejet ODEX de par la présence des eaux issus des forages du BRGM, entrainant ainsi une dilution des rejets industriels.

Les données disponibles sur les eaux de forage du BRGM sont les suivantes :

Tableau 29 : Caractéristiques des eaux de forage du BRGM (données 2019)

	Volume mensuel (m3)	Chlorures (mg/l)	Sulfates (mg/I)	MES (mg/l)	DCO (mg/l O2)
P1	35 659	302	190	<2	4
P2	27 593	221	213	2	3
Р3	34 618	286	198	<2	<5
P4 bis	32 301	224	190	10	<5

6.6. Charges constatées

6.6.1. Milieu naturel

Les charges constatées lors de la campagne de mesure sur les cours d'eau sont les suivantes :

Tableau 30 : Charges calculées le 27/05/2020 – Cours d'eau

Paramètres	Unités	BISTEN AMONT	BISTEN AVAL	BISTEN CREU
Volume	m3/jour	3 024	12 168	20 952
Chlorures (Cl)	kg/jour	97	2 190	2 933
Fluorures	kg/jour	0,5	1,7	2,9
Sulfates	kg/jour	103	2 069	4 819
Sulfite	kg/jour	< 0,3	< 1,2	< 2,1
Sulfures	kg/jour	< 0,3	< 1,2	< 2,1
AOX	g/jour	166	973	1 676
Arsenic (As)	g/jour	7,9	31,0	70,2
Cadmium (Cd)	g/jour	1,0	26,9	18,9
Chrome (Cr)	g/jour	2,5	9,5	35,6
Chrome hexavalent	g/jour	< 30,2	< 121,7	< 209,5
Cuivre (Cu)	g/jour	4,7	41,0	93,9
Etain (Sn)	g/jour	< 0,6	< 2,4	< 4,2
Mercure (Hg)	g/jour	0,2	2,3	< 0,21
Nickel (Ni)	g/jour	13,0	193,5	173,9
Plomb (Pb)	g/jour	1,8	6,1	54,5
Zinc (Zn)	g/jour	44,5	1375,0	1 532
DBO5	kg/jour	10,9	21,9	102,7
Matières en suspension (MES)	kg/jour	12,1	< 24,3	460,9
ST-DCO	kg/jour	90,7	194,7	377,1
Ammonium	kg/jour	2,1	3,8	15,5
Azote Kjeldahl (NTK)	kg/jour	5,1	13,4	29,3
Nitrates	kg/jour	2,1	134	151
Nitrites	kg/jour	0,4	1,3	4,4
Phosphore total	kg/jour	2,6	7,2	9,2
Indice hydrocarbure volatil	g/jour	< 75,6	< 304,2	< 524
Indice Hydrocarbures (C10-C40)	kg/jour	< 0,3	< 1,2	< 2,1

Tableau 31 : Charges calculées le 28/05/2020 – Cours d'eau

Paramètres	Unités	BISTEN AMONT	BISTEN AVAL	BISTEN CREU
Volume	m3/jour	2 280	12 648	20 880
Chlorures (CI)	kg/jour	30	1 466	2 271
Fluorures	kg/jour	0,01	1,4	1,21
Sulfates	kg/jour	24,06	2555,4	2725
Sulfite	kg/jour	< 0,01	< 0,38	< 0,76
Sulfures	kg/jour	< 0,01	< 0,38	< 0,76
AOX	g/jour	4,5714	1503,2	984,022
Arsenic (As)	g/jour	0,11	31,0	29,2
Cadmium (Cd)	g/jour	0,03	12,3	23,8
Chrome (Cr)	g/jour	0,08	3,5	7,7
Chrome hexavalent	g/jour	< 0,80	< 37,58	75,7
Cuivre (Cu)	g/jour	< 0,01	24,8	14,2
Etain (Sn)	g/jour	< 0,02	2,3	< 1,5
Mercure (Hg)	g/jour	0,002	0,1	3,3
Nickel (Ni)	g/jour	0,84	193,5	221,0
Plomb (Pb)	g/jour	0,01	2,3	3,0
Zinc (Zn)	g/jour	15,88	2886	2301,1
DBO5	kg/jour	0,07	6,8	9,1
Matières en suspension (MES)	kg/jour	< 0,16	11,3	30,3
ST-DCO	kg/jour	< 0,4	< 18,8	75,7
Ammonium	kg/jour	0,03	0,9	0,6
Azote Kjeldahl (NTK)	kg/jour	0,04	3,8	< 3,8
Nitrates	kg/jour	3,53	266,8	212
Nitrites	kg/jour	0,001	0,2	0,23
Phosphore total	kg/jour	0,004	2,7	2,72
Indice hydrocarbure volatil (C5-C11)	g/jour	< 2	< 94	< 189
Indice Hydrocarbures (C10-C40)	kg/jour	< 0,01	< 0,38	< 0,76

6.6.2. Rejets Gazel

Les charges calculées sur les données de la campagne de mesure sont les suivantes :

Tableau 32 : Charges calculées le 27/05/2020 – Effluents Gazel

Paramètres	Unités	Régénération Eau Déminéralisée Groupes 7 et 8	Régénération Eau Déminéralisée Groupe 6	ODEX	CAP FLUIDE
Volume	m3/jour	69,5	50,0	2 483	5 797
Chlorures (CI)	kg/jour	27,8	270	943	1 623
Fluorures	kg/jour	0,01	0,03	0,8	< 2,9
Sulfates	kg/jour	21	13	1 589	1 623
Sulfite	kg/jour	< 0,01	< 0,01	< 0,2	< 0,6
Sulfures	kg/jour	< 0,01	< 0,01	< 0,2	< 0,6
AOX	g/jour	7,6	7,0	546,2	533,3
Arsenic (As)	g/jour	0,1	0,2	18,3	14,8
Cadmium (Cd)	g/jour	0,0	0,2	8,0	19,0
Chrome (Cr)	g/jour	0,1	0,5	2,7	4,6
Chrome hexavalent	g/jour	< 0,7	< 0,5	< 24,8	< 58,0
Cuivre (Cu)	g/jour	0,1	0,1	22,0	14,6
Etain (Sn)	g/jour	< 0,01	< 0,01	< 0,5	13,9
Mercure (Hg)	g/jour	0,001	0,2	0,1	3,0
Nickel (Ni)	g/jour	0,7	2,8	144,2	144,9
Plomb (Pb)	g/jour	0,01	0,03	1,0	4,1
Zinc (Zn)	g/jour	15,4	26,3	1571,5	1107,2
Demande Biochimique en Oxygène (DBO5)	kg/jour	0,1	0,1	5,2	7,0
Matières en suspension (MES)	kg/jour	< 0,1	1,6	7,4	< 11,6
ST-DCO	kg/jour	< 0,3	< 1,3	12,4	< 29,0
Ammonium	kg/jour	0,02	0,01	1,0	< 0,3
Azote Kjeldahl (NTK)	kg/jour	< 0,03	< 0,03	2,0	2,9
Nitrates	kg/jour	3,0	15,0	171,3	< 144,9
Nitrites	kg/jour	0,001	< 0,002	0,2	< 0,3
Phosphore total	kg/jour	0,01	0,03	2,7	2,3
Indice hydrocarbure volatil (C5-C11)	g/jour	< 1,7	< 1,3	< 62,1	< 144,9
Indice Hydrocarbures (C10-C40)	kg/jour	< 0,01	< 0,01	< 0,2	< 0,6

Tableau 33 : Charges calculées le 28/05/2020 - Effluents Gazel

	_			
Paramètres	Unités	Régénération Eau Déminéralisée Groupes 7 et8	ODEX	CAP FLUIDE
Volume	m3/jour	80,2	3 758	7 569
Chlorures (Cl)	kg/jour	30	1 466	2 271
Fluorures	kg/jour	0,01	1,4	1,21
Sulfates	kg/jour	24,06	2555,4	2725
Sulfite	kg/jour	< 0,01	< 0,38	< 0,76
Sulfures	kg/jour	< 0,01	< 0,38	< 0,76
AOX	g/jour	4,5714	1503,2	984,022
Arsenic (As)	g/jour	0,11	31,0	29,2
Cadmium (Cd)	g/jour	0,03	12,3	23,8
Chrome (Cr)	g/jour	0,08	3,5	7,7
Chrome hexavalent	g/jour	< 0,80	< 37,58	75,7
Cuivre (Cu)	g/jour	< 0,01	24,8	14,2
Etain (Sn)	g/jour	< 0,02	2,3	< 1,5
Mercure (Hg)	g/jour	0,002	0,1	3,3
Nickel (Ni)	g/jour	0,84	193,5	221,0
Plomb (Pb)	g/jour	0,01	2,3	3,0
Zinc (Zn)	g/jour	15,88	2886	2301,1
Demande Biochimique en Oxygène (DBO5)	kg/jour	0,07	6,8	9,1
Matières en suspension (MES)	kg/jour	< 0,16	11,3	30,3
ST-DCO	kg/jour	< 0,4	< 18,8	75,7
Ammonium	kg/jour	0,03	0,9	0,6
Azote Kjeldahl (NTK)	kg/jour	0,04	3,8	< 3,8
Nitrates	kg/jour	3,53	266,8	212
Nitrites	kg/jour	0,001	0,2	0,23
Phosphore total	kg/jour	0,004	2,7	2,72
Indice hydrocarbure volatil (C5-C11)	g/jour	< 2	< 94	< 189
Indice Hydrocarbures (C10-C40)	kg/jour	< 0,01	< 0,38	< 0,76

6.7. Comparaison des charges en fonction des fonctionnements des tranches

Lors de notre campagne de mesure en mai 2020, seules les tranches 7 et 8 étaient en fonctionnement. Afin de déterminer les incidences de toutes les tranches, nous avons comparé ces valeurs à celles obtenues lors du bilan SRR (Suivi Régulier des Rejets – rapport LORP170473-17-184Z-RO du 27/07/2017) mené en 2017 par IRH ayant eu lieu lors du fonctionnement des tranches 6, 7, 8. Les flux mesurés sont présentés sur les synoptiques suivants.

A partir de ces données, la répartition des flux rejetée à la Bisten a pu être réalisée pour le rejet Capfluides. Cela n'a pas été le cas pour le rejet Diesen à cause de l'inertie due aux bassins (6SEO, bassin 3, ...).

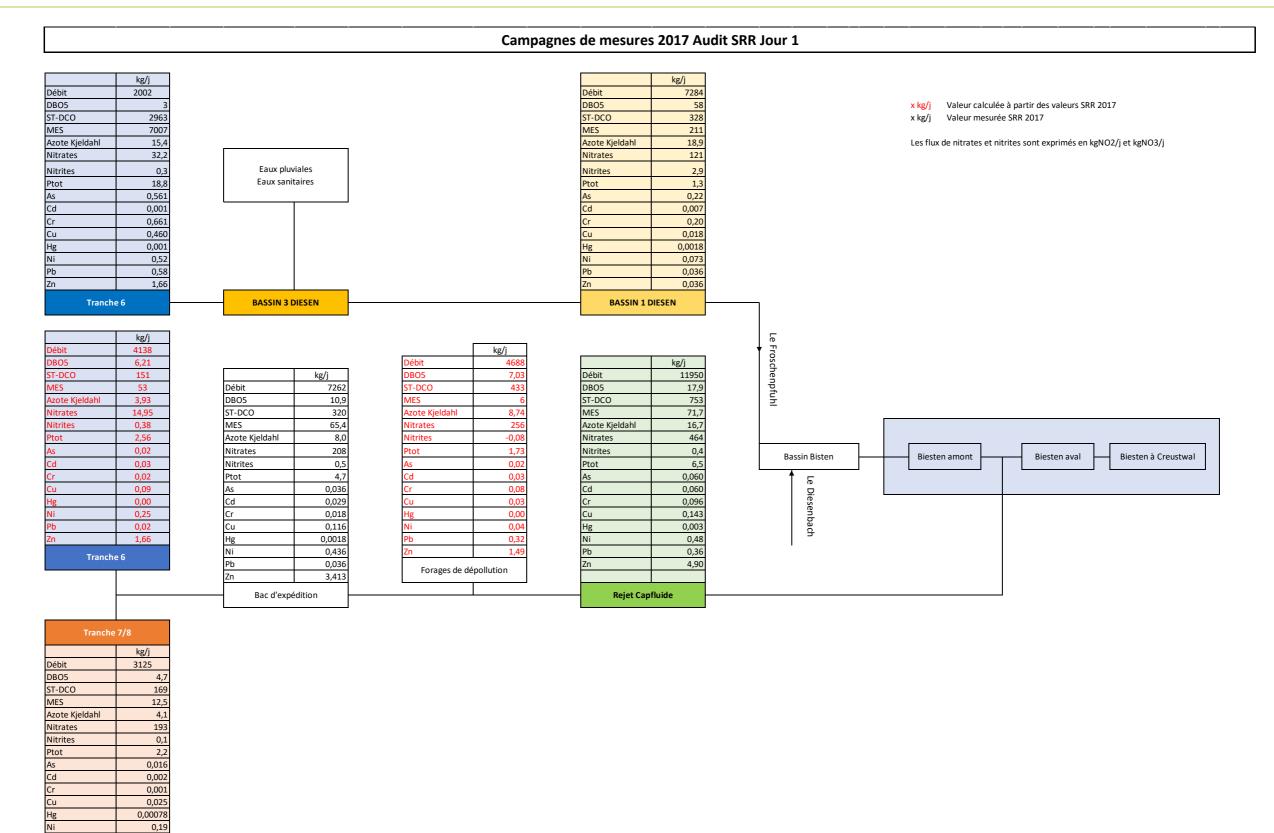


Figure 49 : Synoptiques des charges rejetées durant l'audit SRR 2017

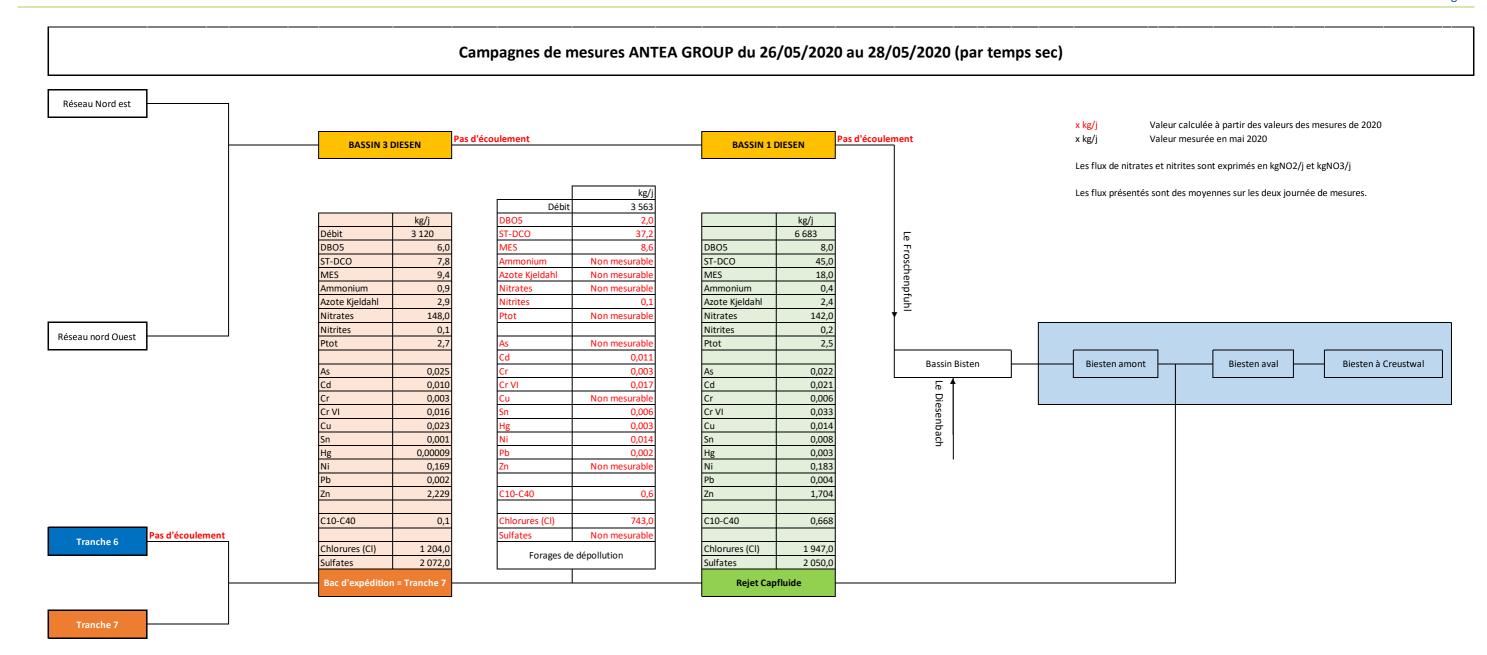


Figure 50 : Synoptiques des charges rejetées durant les mesures Antea Group 2020

DBO5 ST-DCO

Nitrates Nitrites

Azote Kjeldahl

MES

Ptot

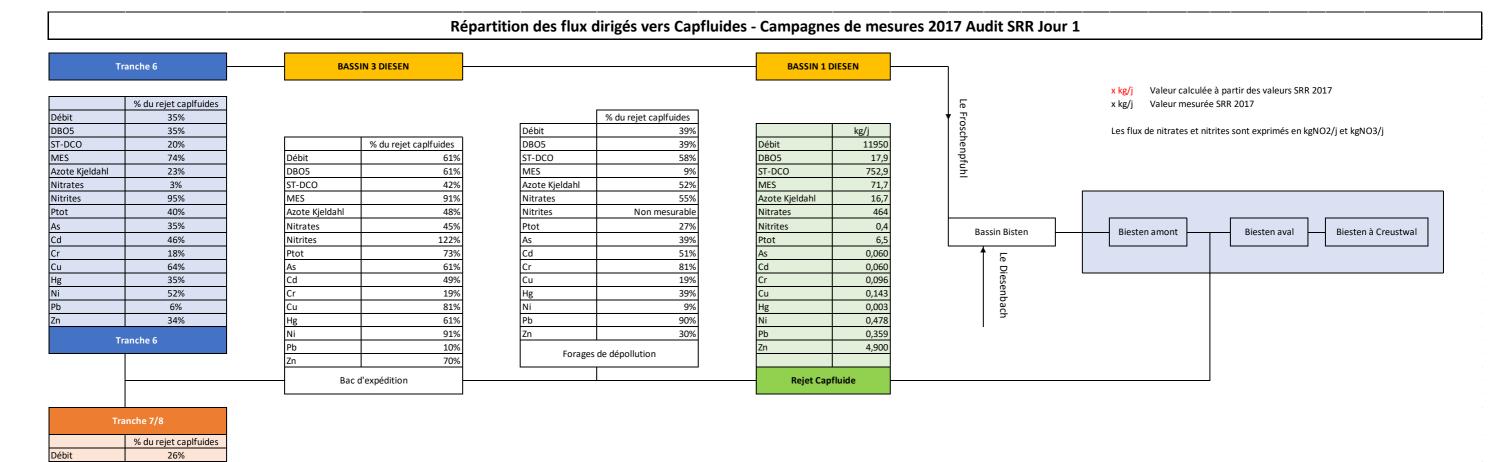


Figure 51: Répartition des flux dirigés vers Capfluides (SRR 2017)

26% 22%

17%

24% 42%

26% 33%

26% 3% 1% 17% 26% 39% 36%

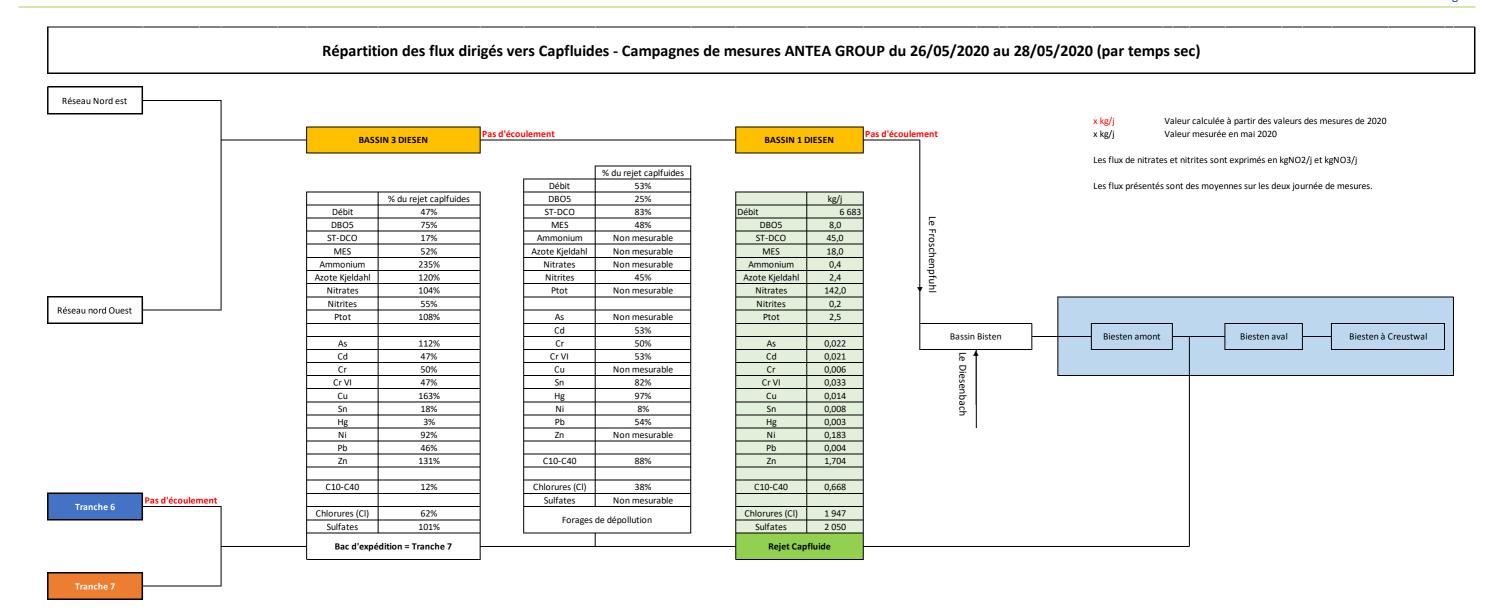


Figure 52: Répartition des flux dirigés vers Capfluides (Mesures Antea Group 2020)

Ces différences de fonctionnement impactent les rejets du site.

- Diesen :
 - Les 2 mesures de 2017 et 2020 ont été réalisées par temps sec ;
 - o En 2020, le débit était nul;
 - o En 2017, le débit atteignait environ 7000 m³/j.

Capfluides :

- Des débits ont été mesurés lors des 2 campagnes ;
- En 2020, le rejet était composé des eaux des tranches 7, 8 et des eaux de forages de dépollution BRGM;
- En 2017, le rejet comprenait les eaux de la tranche 6 en plus de ceux mentionnés cidessus

Il apparait que les forages de dépollution représentent au rejet Capfluides :

- Ces constats sont émis sur la base des mesures IRH (SRR de 2017) et d'Antea Group (mai 2020) aux points de mesures Capfluides et Odex. Aucune mesure spécifique n'a eu lieu sur les forages de dépollution;
- Environ 50% du débit et des flux en MES, en cadmium, en chrome, en plomb et en Nitrites ;
- Près de 40% du flux en Chlorure ;
- Plus de 80% des flux de DCO, de mercure, d'étain.

Tranche 6 Forage de dépollution 2017 26% 47% 35% 0% 39% 53% 26% 75% 35% 0% 39% 25% 22% 30% 20% 0% 58% 70% 0% 17% 45% 74% 9% 55% 0% 24% 23% 86% 14% 52% 42% 123% 3% 0% 55% -23% 0% 26% 66% 95% -22% 34% 33% 108% 40% 0% 27% -8% 26% 112% 35% 0% 39% -12% 3% 47% 46% 0% 51% 53% 1% 50% 18% 0% 50% 81% 47% 0% 53% 0% 17% 163% 64% -63% 19% 18% 0% 82% 26% 3% 35% 0% 39% 97% 92% 52% 0% 9% 8% 39% 6% 0% 46% 90% 54% 36% 131% 34% 0% 30% -31% 12% 0% 88% / / /

/

0%

0%

/

Tableau 34 : Composition du rejet Capfluides

/

62%

101%

38%

-1%