Teepe Tongruben GmbH

Antrag auf Erweiterung einer Abgrabung Wasserrückhaltung

15-041

Volumenermittlung von Regenrückhalteräumen nach DWA-A 117

Bemessung über Näherungsverfahren ohne Berücksichtigung des A nat

1. Bemessungsgrundlagen

Einzugsgebiet	Fläche	Abflussbeiwert	undurchl. Fläche
	[ha]		[ha]
2 Kassetten ie 100m·150m	3.00	0.30	0.90

Ort: A _u Q _s q _s	Undurchlässige Fläche:SickerwassermengeSickerwasserspende		Ibbenbüren 0,90 1,54 1,71	
$\begin{array}{c} Q_{t24} \\ Q_{dr} \\ n \\ t_f \\ f_Z \end{array}$	 = Trockenwetterabfluss: = Drosselabfluss: = Überschreitungshäufigkeit (1/a): = maximale Fließzeit: = Zuschlagsfaktor abhängig vom Ri 	(Pumpenleistung)	0,00 10,00 0,5 15,00 1,20	l/s 1/a
	$f_Z = geringes Restrisiko$ $f_Z = mittleres Restrisiko$ $f_Z = hohes Restrisiko$	1,20 1,15 1,10		

2. Abschätzung der undurchlässigen Fläche A.,

3. Ermittlung der Drosselabflussspende q drau

$$q_{dr,r,u} = (Q_{dr} - Q_{dr,v} - Q_{t24}) / A_{u}$$
 = 11,11 $I/(s \cdot ha)$

3.1. Berechnung des Abminderungsfaktors f A

siehe Anhang 2 des DWA-A 117 0,975

Geltungsbereich: $0 \text{ min } \leq t_f \leq 30 \text{ min}$

 $2 l/(s \cdot ha) \le q_{dr,r,u} \le 40 l/(s \cdot ha)$ 0,1 1/a \le n \le 1,0 1/a

ansonsten: $f_A = 1.0$

4. Festlegung der zu betrachtenden Dauerstufen D

Bereich: 5 min < D < 720 min

15-041

Antrag auf Erweiterung einer Abgrabung

Wasserrückhaltung

5. Ermittlung des spez. Speichervolumens V S

siehe Gleichung 2, Seite 14 der ATV A 117

$$V_{S,u} = (r_{D,n} - q_{dr,r,u}) \cdot D \cdot f_Z \cdot f_A \cdot 0,06$$
 (m³/ha)

Dauerstufe	Niederschlags-	Regen-	Drosselab-	Differenz	spez. Speicher-
	höhe	spende	flussspende		volumen
D	h _{N,n=0,5/a}	r _{N,n=0,5/a}	q _{dr,r,u}	$r_N + q_s - q_{dr,r,u}$	V _s
(min)	(mm)	(l/s⋅ha)	(l/s⋅ha)	(l/s⋅ha)	(m³/ha)
5	7,0			224,00	
10	11,0	182,9	11,11	171,79	120,54
15	13,7	152,6	11,11	141,49	148,92
20	15,8	131,7	11,11	130,59	183,26
30	18,8	104,3	11,11	93,69	197,21
45	21,7	80,4	11,11	84,29	266,14
60	23,8	66,0	11,11	56,09	236,13
90	25,7	47,7	11,11	36,59	231,06
120	27,3	37,9	11,11	26,79	225,56
180	29,5	27,4	11,11	16,29	205,73
240	31,3	21,7	11,11	10,59	178,32
360	33,9	15,7	11,11	4,59	115,91
540	36,8	11,4	11,11	0,29	10,95
720	39,0	9,0	11,11	-2,11	-106,65
1.080	41,9	6,5	11,11	-4,61	-349,43
1.440	44,8	5,2	11,11	-5,01	-506,32
2.880	59,0	3,4	11,11	-7,71	-1.558,25
4.320	60,5	2,3	11,11	-8,81	-2.670,80

6. Bestimmung des erforderlichen Rückhaltevolumens V

$V_{S,max}$	= maximales spezifisches Speichervolumen	266,14 m ³ /ha
V erforderlich	$= V_{S,max} \cdot A_u$	239,53 m ³

Das Regenrückhaltebecken erfüllt auch die Funktion eines Absetzbeckens. Die Ermittlung der erforderlichen Fläche erfolgt nach Imhoff & Imhoff (1990). Die Oberfläche ergibt sich hiernach alis Quotient aus der zufließenden Wassermenge (m³/h) und der vorgegebenen Sinkgeschwindigkeit (m/h).

Der abgebaute Ton hat erfahrungsgemäß Korngrößen von im Wesentlichen zwischen 0,01 und 0,05 mm. Die Sinkgeschwindigkeit von Teilchen zwischen 0,05 und 0,01 mm beträgt nach Imhoff & Imhoff durchschnittlich etwa 0,3 m/h.

Q_{max}	= max. Zufluss ≙ Pumpenleistung	=	10,00	l/s
		=	36	m³/h
V_S	= Sinkgeschwindigkeit	=	0,3	m/h
A _e	_{rf} = erforderliche Oberfläche	=	120	m²
t _{erf}	= erforderlicher Beckeneinstau		2,00	m
t	= gewählter Beckeneinstau		2,00	m
V _{gewählt}		=	240,00	m³