

Planfeststellung

für den Knotenpunktumbau B 8 Am Spielberg von Bau-km 0+240 bis Bau-km 1+345

Regierungsbezirk : Düsseldorf

Stadt : kreisfreie Stadt Düsseldorf Gemarkung : Lohhausen, Kalkum

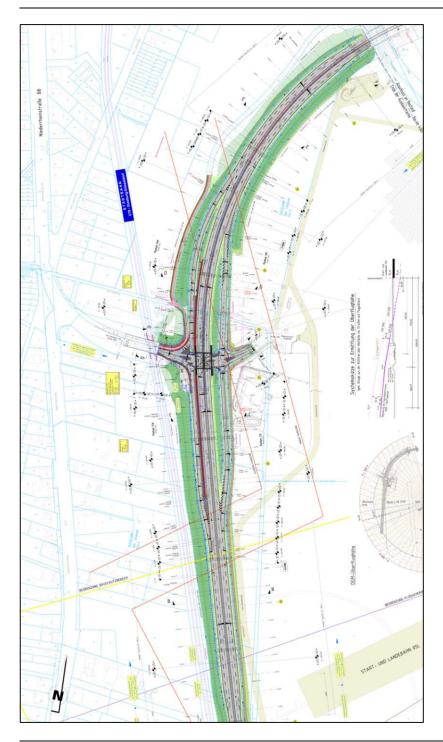
Verkehrsgutachten

Aufgestellt:

Mönchengladbach, den 18.04.2019 Der Leiter der Regionalniederlassung Niederrhein

> I. A. (Christoph Jansen)

in der Zeit vom										
bis	(einschließlich)									
in der Stadt/ Gemeinde:										
	Zeit und Ort der Auslegung des Planes sind rechtzeitig vor Beginn der Auslegung ortsüblich bekannt gemacht worden.									
Stadt/ Gemeinde										


(Unterschrift)

Satzungsgemäß ausgelegen

(Dienstsiegel)

Festgestellt gemäß Beschluss vom heutigen Tage

Verkehrsuntersuchung zum Umbau des Knotens B 8 "Am Spielberg"

Juni 2018

Verkehrsuntersuchung zum Umbau des Knotens B 8 "Am Spielberg"

Projekt: 318002 MG1

Auftraggeber: Landesbetrieb Straßenbau

Nordrhein-Westfalen

Regionalniederlassung Niederrhein

Breitenbachstraße 90 41065 Mönchengladbach

Auftragnehmer: SSP Consult

Beratende Ingenieure GmbH

Waltherstraße 49-51

51069 Köln

Telefon: 0221 / 968100-0 Telefax: 0221 / 968100-69 E-Mail: mail@k.ssp-consult.de

Ansprechpartner: Dipl.-Ing. F. Kossmann

Telefon: 0221 / 968100-14

E-Mail: kossmann@k.ssp-consult.de

INHALT	SEITE
1 Ausgangslage und Aufgabenstellung	1
2 Datenbasis	1
3 Verkehrssituation Analyse 2015/2017	2
4 Netzfälle	4
5 Prognose der Verkehrsentwicklung bis 2030	5
6 Bezugsfall (2030)	9
7 Planfall (2030)	10
8 Verkehrsdaten	11
9 Leistungsfähigkeitsnachweise	12
10 Zusammenfassung	13

Anhang 1: Abbildungen Erhebung

Anhang 2: Abbildungen Verkehrsbelastungen

Anhang 3: Verkehrswerte

Anhang 4: Leistungsfähigkeitsnachweise

- A4.1. Vorgehen Leistungsfähigkeitsnachweise
- A4.2. Zusammenfassung der Ergebnisse
- A4.3. Leistungsfähigkeitsnachweise für die Ein- und Ausfahrten
- A4.4. LSA-geregelte Teilknoten an den Rampenfußpunkten

BILDERVERZEICHNIS							
Bild 3.1:	Vergleich der Analyse DTVw 2018 (blau/grau entsprechend der						
	Straßenklasse) mit den auf 2018 hochgerechneten Ergebnissen der SVZ						
	2015 (lila), Schwerverkehr in SV/24h und Gesamtverkehr in Kfz/24h	3					
Bild 4.1:	Auszug aus dem Bedarfsplan für die Bundesfernstraßen (2015)	4					
Bild 5.1:	Differenzen zwischen den Bevölkerungsprognosen 2030 des BBR und de	es:					
	Landesbetriebs Information und Technik Nordrhein-Westfalen (in %)	6					
Bild 9.1:	Ausschnitt aus dem Vorentwurf (Stand 24.11.2016)	12					

TABELLEN	VERZEICHNIS	SEITE
Tabelle 6.1:	Querschnittsbelastungen im Bezugsfall 2030 im Vergleich zur Analyse	
	2018,	9
Tabelle 7.1:	Querschnittsbelastungen im Planfall 2030 im Vergleich zum Bezugsfall	
	2030,	10

1 Ausgangslage und Aufgabenstellung

Anlass und Ziel der Untersuchung

Derzeit plant die RNL Niederrhein des Landesbetriebes Straßen NRW in Düsseldorf-Lohhausen den Ausbau des Knotens B 8 "Am Spielberg". Ziel der nachfolgenden Verkehrsuntersuchung ist die Ermittlung und Beschreibung der bestehenden und künftigen Verkehrsbelastungen als Grundlage für weitergehende Untersuchungen (z.B. immissionstechnische Untersuchungen) sowie der Nachweis der Leistungsfähigkeit des umgebauten Knotens. Anhand der Ergebnisse sollen auch die Belastungsklassen nach RStO festgelegt werden.

2 Datenbasis

Verkehrsmodelle IGVP / BAB-Knoten in NRW

Grundlage für die Verkehrsuntersuchung zum Ausbau des Knotens B 8 "Am Spielberg" ist das Verkehrsmodell für die Knotenpunkte im BAB-Netz von Nordrhein-Westfalen, das auf dem Modell für die Integrierte Gesamtverkehrsplanung (IGVP) NRW basiert und aktuell die Analyse 2010 und die Prognose 2030 abbildet. Aus den Arbeiten zu weiterführenden Projekten liegt mittlerweile auch eine Matrix für 2015 vor.

Matrix und Verkehrssegmente

Das Verkehrsmodell basiert auf 24h-Matrizen, welche den DTVw (Werktage Montag – Samstag außerhalb der Urlaubszeit) darstellen. Es werden folgende Fahrzeug-Segmente unterschieden:

- Leichtverkehr LV (Pkw, Motorräder und Lieferwagen bis 3,5 t zGG) sowie
- Schwerverkehr SV (Lkw ab 3,5 t zGG, Lastzüge, Container und Busse)

Planungs- und Untersuchungsraum

Der Planungsraum der VU B 8 "Am Spielberg" beschränkt sich auf den unmittelbaren Einzugsbereich der Ausbaumaßnahme.

Der Untersuchungsraum umfasst darüber hinaus alle Bereiche, in denen weiträumige Wirkungen durch den Ausbau des Knotens B 8 "Am Spielberg" im betrachteten Bereich zu erwarten sind.

Die Modellrechnungen erfolgen im erweiterten Untersuchungsraum, der das gesamte Netz von NRW (in notwendigem Verfeinerungsgrad) sowie das daran anschließende bundesweite Netz (nur Bundesfernstraßen) umfasst.

Verkehrserhebungen

Für die Zwecke der vorliegenden Vorläuferuntersuchung wurden am Donnerstag, den 23.01.2018 alle Verkehrsströme am Knoten "Spielberg" über 24 Stunden erfasst.

Auf der Basis der flächendeckend verfügbaren Daten der SVZ 2015 wurden die Tageswerte der Erhebung auf das Jahresmittel (DTVw) 2018 umgerechnet. Dabei wurde für den Zeitraum 2015 – 2018 ein Zuwachs im Leichtverkehr von +3% und im Schwerverkehr von +5% angenommen.

Im *Anhang 1 "Abbildungen Erhebung"* sind die Ergebnisse der Erhebung (Morgen- und Abendspitze sowie Tageswerte) dargestellt.

3 Verkehrssituation Analyse 2015/2017

Netzmodell

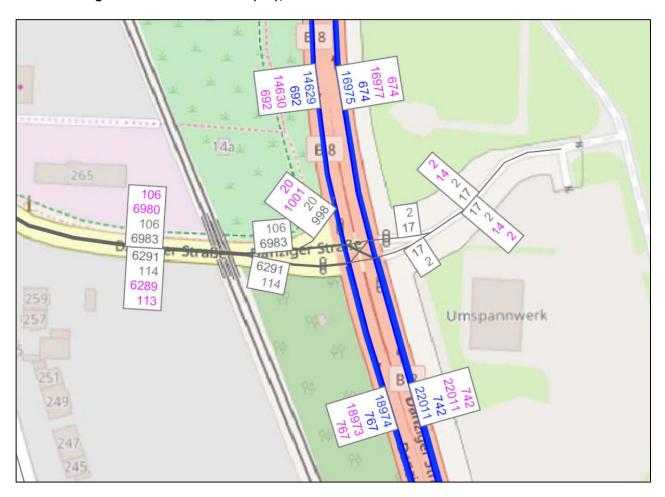
Als Netzmodell kommt das Verkehrsmodell NRW von SSP Consult zum Einsatz, das im Rahmen der vorliegenden Untersuchung in der Analyse projektspezifisch auf das Jahr 2018 fortgeschrieben wurde und auf Basis des aktuellen Bedarfsplans für die Bundesfernstraßen unter Einbeziehung des aktuellen Vordringlichen Bedarfs den Prognosehorizont 2030 abbildet.

Matrix

Die vorliegende Matrix für 2015 wurde – wie auch das Netzmodell - im Rahmen der vorliegenden Untersuchung auf 2018 fortgeschrieben und auf Basis der auf das Jahresmittel 2018 umgerechneten Zählwerte 2018 und der auf 2018 fortgeschriebenen Ergebnisse der SVZ 2015 kalibriert.

Bild 3.1 zeigt die gute Übereinstimmung der Umlegungsergebnisse mit den auf das Jahresmittel 2018 hochgerechneten Zählergebnissen 2018 sowohl beim Gesamtverkehr als auch beim Schwerverkehr. Die Abweichungen sind marginal.

Verkehr 2018


Bild 3.1

Die höchsten Belastungen im Nahbereich des Knotens "Am Spielfeld" gibt es auf der südlichen B 8 in Fahrrichtung Norden mit rund 22.000 Kfz/24h (davon rund 740 SV/24h). In der Gegenrichtung ist die Belastung mit knapp 19.000 Kfz/24h um mehr als 10% geringer.

Die beiden nördlichen Richtungsfahrbahnen der B 8 sind mit knapp 17.000 bzw. rund 14.600 Kfz/24h geringer belastet als die südlichen.

Auf der Danziger Straße westlich des Knotens fahren im werktags etwa 13.000 Kfz/24h, die östliche Zufahrt zum Umspannwerk ist derzeit noch ohne nennenswerte Bedeutung, soll aber künftig stärker für Flughafenbelange genutzt werden.

Bild 3.1: Vergleich der Analyse DTVw 2018 (blau/grau) mit den auf 2018 hochgerechneten Ergebnissen der SVZ 2015 (lila), Schwerverkehr in SV/24h und Gesamtverkehr in Kfz/24h

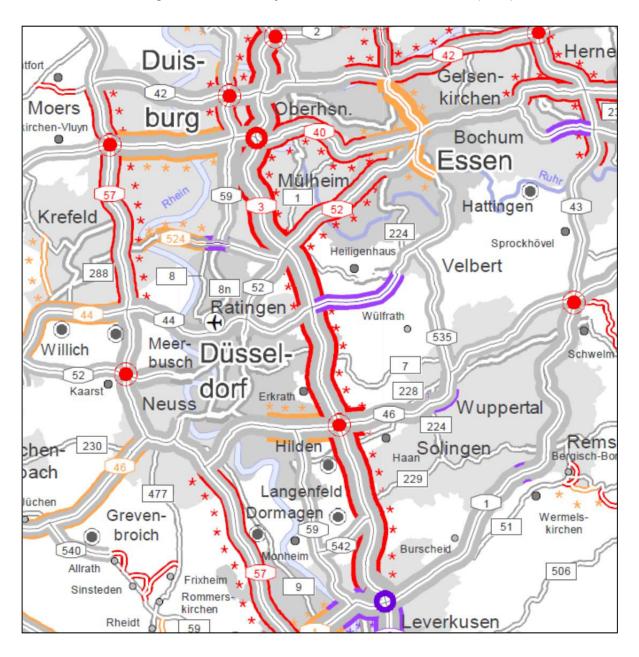
Verkehr 2018

Abbildung A2-1

Anhand der mittleren Verkehrsentwicklung 2015 - 2018 an ausgewählten vergleichbaren Dauerzählstellen wurden die Analysematrix und die Zählwerte der SVZ 2015 von 2015 auf 2017 fortgeschrieben (+3% für Leichtverkehr und +5% für Schwerverkehr).

Im *Anhang 2 "Abbildungen Verkehr"* sind die Verkehrsbelastungen für die Analyse 2018 ausgewiesen (DTVw in Kfz/24h und SV/24h).

Anmerkung: In den Abbildungen und Tabellen sind die Verkehrsbelastungen auf 100 Kfz/24h bzw. 10 SV/24h gerundet. Dadurch können sich geringe Unterschiede zu den ausgewiesenen Differenzen ergeben.


4 Netzfälle

Prognosefälle

Neben der Analyse 2018, die den Verkehr 2018 im Netz 2018 abbildet, werden 2 Prognosefälle mit dem Horizont 2030 betrachtet:

- Bezugsfall: Verkehr 2030 im Netz 2030 mit Berücksichtigung der indisponiblen, festdisponierten Vorhaben aus dem Bundesverkehrswegeplan 2015 (vor allem Ausbau der A 3 und A 57, siehe nachfolgendes Bild 4.1), ohne Ausbau des Knotens B 8 "Am Spielberg"
- Planfall: wie Bezugsfall, zusätzlich Ausbau des Knotens B 8 "Am Spielberg"

Bild 4.1: Auszug aus dem Bedarfsplan für die Bundesfernstraßen (2015)

5 Prognose der Verkehrsentwicklung bis 2030

Matrizen der Verkehrsbeziehungen 2030

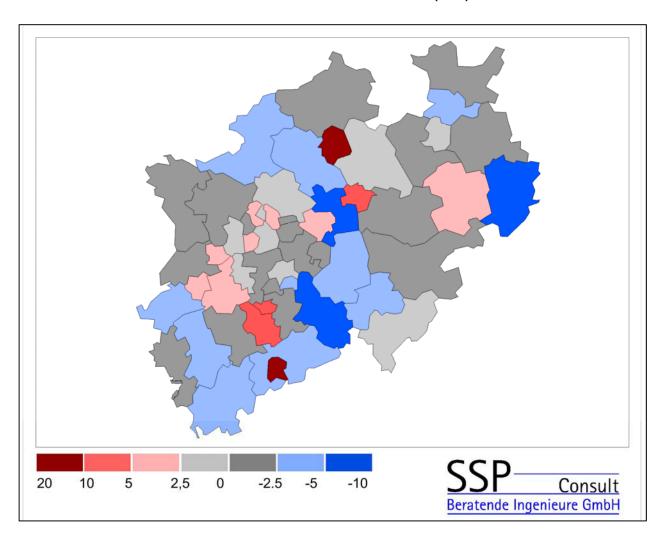
Als Grundlage der Prognose 2030 steht die "Verkehrsverflechtungsprognose (VVP) 2030"¹ der deutschlandweiten Verkehrsverflechtungen des BMVI zur Verfügung. Die VVP weist die Verflechtungsmatrizen für Personenwege auf Kreisebene für die Bezugshorizonte 2010 und 2030 aus. Für beide Horizonte werden Personenfahrten je Fahrtzweck und Modus angegeben. Die Verflechtungsmatrizen der beiden Horizonte unterscheiden die folgenden Fahrtzwecke:

- Beruf
- Ausbildung
- Einkauf
- Geschäftliche Erledigung
- Urlaub
- Privat

Eine Umrechnung der Personenfahrten auf Fahrzeuge für den Personenverkehr erfolgte über fahrtzweck-spezifische Besetzungsgrade. Die Besetzungsgrade sind einer Auswertung der Studie Mobilität in Deutschland 2008² entnommen und gelten für das gesamte Bundesgebiet.

Die Verflechtungsmatrizen der beiden Bezugshorizonte liegen als Jahresmatrizen vor und werden im Zuge der Bearbeitung auf Tagesmatrizen für den DTV herunter gebrochen. Aus den Bezugshorizonten wurden mittels der Tagesmatrizen des MIV Entwicklungsraten des PKW-Aufkommens auf Kreisebene für den Zeitraum Analysehorizont – Prognosehorizont abgeleitet.

Eine Überprüfung der hinterlegten Strukturdaten der VVP 2030 hat ergeben, dass die Annahmen zur Bevölkerungsentwicklung in der Verflechtungsprognose den Stand der INKAR-Prognose des BBSR haben. Die Bevölkerungsentwicklung der koordinierten Bevölkerungsvorausberechnung der Länder aus dem Jahr 2014 geht von abweichenden Annahmen für das Bezugsjahr 2030 aus. Die Annahmen bezüglich der Bevölkerungsentwicklung divergieren in den aufgelisteten Kreisen und kreisfreien Städten des Planungsraumes wie folgt (siehe **Bild 5.1**):


² INFAS, DLR und Bundesministerium für Verkehr, Bau und Stadtentwicklung, Mobilität in Deutschland 2008 Bonn und Berlin, 2010.

Seite 5

¹ ITP/BVU, Verkehrsverflechtungsprognose 2030, München / Freiburg, 2014. Bezugsquelle: BMVI

Bild 5.1: Differenzen zwischen den Bevölkerungsprognosen 2030 des BBR und des Landesbetriebs Information und Technik Nordrhein-Westfalen (in %)

Für die Detailprognose NRW wurde die regionalisierte Bevölkerungsprognose des Landesbetriebs Information und Technik Nordrhein-Westfalen mit dem Stand April 2015 für die Prognose des Verkehrsmodells verwendet. Hierbei wurden nur die Einwohner, die potentiell am motorisierten Verkehr teilnehmen, betrachtet. Da die Altersgruppen in den Statistiken des BBR in Gruppen von 20 Jahren eingeteilt sind, konnten für diesen Vergleich nur die Einwohner mit einem Alter zwischen 20 und 80 Jahren betrachtet werden. Für die 53 Landkreise und kreisfreien Städte in NRW sind die Differenzen in der folgenden **Tabelle 5.1** aufgelistet.

Tabelle 5.1: Differenzen zwischen den Bevölkerungsprognosen 2030 (Einwohner zwischen 20 und 80 Jahren) des BBR und des Landesbetriebs Information und Technik Nordrhein-Westfalen

Westfalen	-		-	
Bezeichnung	Prognose 2030 Statistik NRW*	Prognose 2030 BBR**	Differenz NRW – BBR [EW]	Differenz NRW –BBR [%]
Düsseldorf, krfr. Stadt	474.925	463.700	11.225	+2,4%
Duisburg, krfr. Stadt	336.794	333.800	2.994	+0,9%
Essen, krfr. Stadt	409.521	401.400	8.121	+2,0%
Krefeld, krfr. Stadt	170.312	164.300	6.012	+3,7%
Mönchengladbach, krfr. Stadt	187.169	178.500	8.669	+4,9%
Mülheim an der Ruhr, krfr. Stadt	118.818	115.600	3.218	+2,8%
Oberhausen, krfr. Stadt	149.711	150.200	-489	-0,3%
Remscheid, krfr. Stadt	68.362	70.900	-2.538	-3,6%
Solingen, krfr. Stadt	109.891	111.000	-1.109	-1,0%
Wuppertal, krfr. Stadt	240.735	237.700	3.035	+1,3%
Kleve, Kreis	233.665	236.500	-2.835	-1,2%
Mettmann, Kreis	343.645	345.500	-1.855	-0,5%
Rhein-Kreis Neuss	329.248	320.600	8.648	+2,7%
Viersen, Kreis	213.453	219.000	-5.547	-2,5%
Wesel, Kreis	328.649	334.100	-5.451	-1,6%
Städteregion Aachen	427.145	431.400	-4.255	-1,0%
Bonn, krfr. Stadt	270.699	235.300	35.399	+15,0%
Köln, krfr. Stadt	848.056	781.400	66.656	+8,5%
Leverkusen, krfr. Stadt	121.058	115.000	6.058	+5,3%
Düren, Kreis	192.693	201.500	-8.807	-4,4%
Rhein-Erft-Kreis	357.348	358.000	-652	-0,2%
Euskirchen, Kreis	137.827	144.600	-6.773	-4,7%
Heinsberg, Kreis	187.509	196.300	-8.791	-4,5%
Oberbergischer Kreis	184.899	198.200	-13.301	-6,7%
Rheinisch-Bergischer Kreis	197.702	198.100	-398	-0,2%
Rhein-Sieg-Kreis	449.461	470.200	-20.739	-4,4%
Bottrop, krfr. Stadt	81.659	78.800	2.859	+3,6%
Gelsenkirchen, krfr. Stadt	177.304	169.200	8.104	+4,8%
Münster, krfr. Stadt	249.866	211.200	38.666	+18,3%
Borken, Kreis	270.108	279.800	-9.692	-3,5%
Coesfeld, Kreis	159.800	165.100	-5.300	-3,2%
Recklinghausen, Kreis	429.622	426.100	3.522	+0,8%
Steinfurt, Kreis	322.470	324.100	-1.630	-0,5%
Warendorf, Kreis	199.417	198.200	1.217	+0,6%
Bielefeld, krfr. Stadt	236.182	232.400	3.782	+1,6%
Gütersloh, Kreis	263.061	264.000	-939	-0,4%
Herford, Kreis	166.877	172.600	-5.723	-3,3%
Höxter, Kreis	92.489	98.400	-5.911	-6,0%
Lippe, Kreis	231.187	234.700	-3.513	-1,5%
Minden-Lübbecke, Kreis	210.521	215.200	-4.679	-2,2%
Paderborn, Kreis	230.506	220.700	9.806	+4,4%
Bochum, krfr. Stadt	263.785	266.200	-2.415	-0,9%
Dortmund, krfr. Stadt	426.607	411.800	14.807	+3,6%
Hagen, krfr. Stadt	119.597	119.700	-103	-0,1%
Hamm, krfr. Stadt	135.019	124.900	10.119	+8,1%
Herne, krfr. Stadt	112.409	112.700	-291	-0,3%
Ennepe-Ruhr-Kreis	221.711	225.100	-3.389	-1,5%
Hochsauerlandkreis	174.644	178.300	-3.656	-2,1%
Märkischer Kreis	275.067	284.800	-9.733	-3,4%
Olpe, Kreis	94.791	98.300	-3.509	-3,6%
Siegen-Wittgenstein, Kreis	192.844	192.700	144	+0,1%
Soest, Kreis	214.137	216.500	-2.363	-1,1%
Unna, Kreis	282.467	298.600	-16.133	-5,4%
* (C)anyright 2015 Landachatriah Inform	otion und Toobnik		Dundagamt für Dadan ur	

^{* (}C)opyright 2015 Landesbetrieb Information und Technik Nordrhein-Westfalen (IT.NRW) Stand: 20.04.2015 / 15:53:01

^{**} Bundesamt für Boden und Raumordnung, Bonn, Bad Godesberg. Stand: August 2013

Auf der Grundlage der genutzten Bevölkerungsprognose wurde die Aufkommensentwicklung für die Pkw am Werktag anhand der Verflechtungsprognose neu abgeschätzt. Aus diesem Verfahren liegen kreisbezogene Entwicklungsfaktoren für das Verkehrsmodell im Nachfragesegment Pkw vor. Mittels eines zweiseitig gekoppelten Hochrechnungsverfahrens wurde die Verkehrsstrommatrix der Analyse auf das Prognosejahr 2030 fortgeschrieben.

Die Verkehrsverflechtungen des **Güterverkehrs** im Nahverkehr wurden mittels des Werkzeuges TCI-GV erstellt. Dieses verwendet als Inputdaten die VVP 2030 sowie regionale Strukturdaten. Die Verkehrsverflechtungen im Fernverkehr wurden aus der VVP 2030 durch Umrechnung der jährlichen Güterströme in tägliche Lkw-Fahrten direkt abgeleitet.

Verkehrsentwicklung

Im erweiterten Untersuchungsraum (Nordrhein-Westfalen) ergeben sich für den Leichtverkehr eine Abnahme des Fahrtenaufkommens von 2015 bis 2030 um rund -4,3% und für den Schwerverkehr eine Zunahme von etwa +3,4%. Für die Entwicklung der Fahrleistungen (Kfz-km/Tag) sind deutliche Zuwächse zu erwarten. Die Fahrleistungszunahme liegt im Gesamtverkehr bei rund +20%, im Schwerverkehr sind es rund +26%. Ursache für die unterschiedliche Entwicklung von Verkehrsaufkommen und Fahrleistungen ist die Zunahme der mittleren Reiseweite, vor allem im Schwerverkehr.

6 Bezugsfall (2030)

Netzmodell und Matrix

Dem Bezugsfall liegt das Netz 2018 zuzüglich aller festdisponierten Vorhaben des BVWP 2015, den Vorhaben des vordringlichen Bedarfs (VB) des geltenden Bedarfsplans für die Bundesfernstraßen und den indisponiblen Vorhaben sowie den Vorhaben der Stufe 1 des geltenden Landesstraßenbedarfsplans NRW zu Grunde. Nicht enthalten ist der Ausbau des Knotens B 8 "Am Spielberg". Im Vergleich zur Analyse unterscheidet sich das Netz des Bezugsfalls vor allem durch den Ausbau der A 3 im Osten und den der A 57 ist Westen. Beide genannten Autobahnen verlaufen wie die B 8 in Nord-Süd-Richtung. Östlich des auszubauenden Knotens "Am Spielberg" wird nach Auskunft des Flughafens Düsseldorf davon ausgegangen, dass hier künftig rund 500 Fahrzeuge pro Tag zusätzlich am Knoten abgewickelt werden müssen.

Abbildung A2-2

Die Belastungen im Bezugsfall 2030 (ohne Ausbau) sind am Knoten "Am Spielberg" in fast allen Fahrbeziehungen höher als in der Analyse 2018. Dies liegt zum einen an der zunehmenden Bedeutung der B 8 als leistungsfähige Nord-Süd-Achse, zum anderen aber auch am zusätzlichen Aufkommen der Flughafenzufahrt. Im Schwerverkehr mit i. d. R. längeren Fahrtweiten kommt der Ausbau der parallel verlaufenden BAB-Achsen A 57 und A 3 durch geringere SV-Belastungen zum Ausdruck.

Die allgemein leicht rückläufige Verkehrsentwicklung wird auf der westlichen Danziger Straße deutlich, deren Querschnitts-Belastungen von 13.300 Kfz/24h auf 13.000 Kfz/24h geringfügig zurückgehen.

Die nachfolgende Tabelle 6.1 zeigt die Querschnittsbelastungen im Bezugsfall 2030 im Vergleich zur Analyse 2018

Tabelle 6.1: Querschnittsbelastungen im Bezugsfall 2030 im Vergleich zur Analyse 2018, DTVw in Kfz/24h und SV/24h

Straßen-Querschnitt	Bezugsf	all 2030	Analys	e 2018	Differenz Bezug - Analyse			
Straiseri-Querscriffitt	Kfz/24h	SV/24h	Kfz/24h	SV/24h	Kfz/24h	SV/24h		
B 8 Nord	37.000	1.200	31.600	1.360	+5.400	-160		
B 8 Süd	45.100	1.390	41.000	1.510	+4.100	-120		
Danziger Str. West	13.000	210	13.300	220	-300	-10		
Zufahrt Ost	600	100	< 50	< 10	+600	+100		

Planfall (2030)

Netzmodell und Matrix Im Planfall ist zusätzlich zu den Maßnahmen des Bezugsfalls der teilplanfreie Ausbau des Knotens B 8 "Am Spielberg" berücksichtigt. Die zweibahnige B 8 wird planfrei über den Knoten "Am Spielberg" hinweggeführt, der Anschluss an das nachgeordnete Netz erfolgt über parallele Rampen (siehe auch Deckblatt). Die Matrix der Verkehrsbeziehungen 2030 entspricht der des Bezugsfalls.

Abbildungen A2-3 und A2-3a

Der Ausbau des Knotens B 8 "Am Spielberg" und der dadurch gewonnene Zeit- und Qualitätsvorteil für Fahrten im Zuge der B 8 führen zu einer Erhöhung der Belastung auf der B 8 im Vergleich zum Bezugsfall um +2.900 Kfz/24h. Diese +2.900 Kfz/24h werden hauptsächlich kleinräumig von parallel verlaufenden Straßen auf die B 8 verlagert. Weiträumige Wirkungen (z. B. im Hinblick auf die A 57 im Westen und die A 3 im Osten) gibt es nicht.

Die nachfolgende Tabelle 7.1 zeigt die Querschnittsbelastungen im Planfall 2030 im Vergleich zum Bezugsfall 2030.

Tabelle 7.1: Querschnittsbelastungen im Planfall 2030 im Vergleich zum Bezugsfall 2030, DTVw in Kfz/24h und SV/24h

Straßen-Querschnitt	Planfa	II 2030	Bezugsf	all 2030	Differenz Planfall - Bezug				
Straiseri-Querscriffitt	Kfz/24h	SV/24h	Kfz/24h	SV/24h	Kfz/24h	SV/24h			
B 8 Nord	39.900	1.220	37.000	1.200	+2.900	+20			
B 8 Süd	48.000	1.400	45.100	1.390	+2.900	+10			
Danziger Str. West	13.100	200	13.000	210	+100	-10			
Zufahrt Ost	600	100	600	100	0	0			

8 Verkehrsdaten

Verkehrswerte

Im *Anhang 3 "Tabellen Verkehrsdaten"* sind die Verkehrsdaten für alle drei betrachteten Netzfälle Analyse (2018), Bezugsfall (2030) sowie den Planfall (2030) als Grundlage für weitergehende Untersuchungen dargestellt. Die DTVw-Werte (Kfz und SV) sind unmittelbar den Umlegungsrechnungen entnommen, die Ableitung der übrigen Daten erfolgte über Analogiebetrachtungen zu den Ergebnissen der bundesweiten Straßenverkehrszählung SVZ 2015 (vor allem über die SVZ-Zählstelle 4706 2215 unmittelbar südlich des Knotens "Am Spielberg") und vergleichbarer Dauerzählstellen. Folgende Umrechenfaktoren wurden abgeleitet und für die Ermittlung der Verkehrsdaten genutzt:

DTVw/DTV Kfz	1,138
DTVw/DTV SV	1,280
DTVw5/DTV Kfz	1,206
DTVw5/DTV SV	1,357
MSV/DTV	0,116
bSV/SVA	0,854
Mt/DTV	0,058
Mn/DTV	0,010
pt/SVA	0,967
pn/SVA	1,247

9 Leistungsfähigkeitsnachweise

Leistungsfähigkeitsnachweise

Durch den teilplanfreien Ausbau des Knotens "Am Spielberg" steigt die Leistungsfähigkeit in diesem Bereich deutlich. Die heute LSAgeregelte Kreuzung ist derzeit am Rande ihrer Leistungsfähigkeit, nicht nur in Spitzenstunden gibt es Stauerscheinungen und vor allem in Fahrtrichtung Süden (unmittelbar nach einer langen Linkskurve der B 8) wegen schlechter Sichtbedingungen eine nur eingeschränkte Verkehrssicherheit. Durch die Herausnahme des durchgehenden Nord-Süd-Stroms aus dem Knotenpunkt "Am Spielberg" sinkt die Zahl der Konfliktströme, für die verbleibenden Fahrbeziehungen bleibt mehr Zeit zum Einfahren und Räumen des Knotens.

Im *Anhang 4* sind sowohl die Leistungsfähigkeitsnachweise für die Ein- und Ausfahrten der planfreien B 8 als auch für die beiden LSAgesteuerten Teilknoten TK 1 (West) und TK 2 (Ost) dargestellt. Das nachfolgende Bild 9.1 zeigt einen Ausschnitt aus dem Vorentwurf für den unmittelbaren Kreuzungsbereich, der der Leistungsfähigkeitsbetrachtung zu Grunde liegt.

Sowohl die Ein-/Ausfahrten als auch die beiden LSA-geregelten Teilknoten können leistungsfähig betrieben werden, die Qualitätsstufe des Verkehrsablaufs ist für alle Fahrbeziehungen mindestens QSV = C. Es gibt genügend Reserven

AUSSCHIIII aus Gelli Voi elii voi elii

Bild 9.1: Ausschnitt aus dem Vorentwurf (Stand 24.11.2016)

10 Zusammenfassung

Untersuchungsgegenstand

Die vorliegende Fortschreibung der Verkehrsuntersuchung betrachtet die verkehrlichen Wirkungen eines Ausbaus des Knotens "Am Spielberg". Derzeit gibt es hier eine LSA-geregelte Kreuzung. Künftig wird die B 8 planfrei den Knoten überfahren, die nachgeordneten Strecken werden über Parallelrampen an die B 8 angeschlossen. Die Fußpunkte der Rampen werden LSA-gesteuert.

Verkehrliche Wirkungen

Grundlage der Fortschreibung der Verkehrsuntersuchung sind die Ergebnisse der SVZ 2015 sowie eine Verkehrserhebung vom 23.01.2018 mit einer Erhebung aller Knotenströme am Knoten "Am Spielberg" über 24 Stunden.

Durch die im Bezugsfall zusätzlich berücksichtigten Neu- und Ausbauvorhaben im Bundesfernstraßennetz kommt es im Zusammenhang mit der künftig zu erwartenden Verkehrsentwicklung zu einer Veränderung der Verkehrsbelastungen im Planungsraum. Die Bedeutung der B 8 nimmt weiter zu, die Querschnittsbelastungen steigen nördlich des Knotens um rund +5.400 Kfz/24h und südlich um rund +4.100 Kfz/24h. Eine Ursache ist auch der zusätzliche Verkehr vom Flughafengelände, der künftig aus östlicher Richtung (derzeitige Betriebszufahrt zum Umspannwerk) in den Knoten eingespeist wird (rund 500 Kfz/24h).

Der Ausbau des Knotens B 8 "Am Spielberg" führt im Planfall zu einer weiteren Erhöhung der Verkehrsbelastung um rund +2.900 Kfz/24h, die hauptsächlich aus kleinräumigen Verlagerungen resultieren.

Nach dem Ausbau kann der Knoten leistungsfähig betrieben werden. Die Qualitätsstufe an den Ein- und Ausfahrten und an den beiden LSA-geregelten Teilknoten mindestens QSV = C. Es gibt genügend Leistungsreserven.

FAZIT

Durch den teilplanfreien Ausbau des Knotens B 8 "Am Spielberg" kann die dortige Verkehrssituation deutlich verbessert werden. Durch die Herausnahme des durchgehenden Nord-Süd-Verkehrs aus dem Knoten werden genügend Leistungsreserven für den Betrieb des Knotens geschaffen.

Anhang 1: Abbildungen "Erhebung"

Abbildung Inhalt

Abbildung 1-1: Knotenströme 23.01.2018 am Knoten "Am Spielberg", Morgenspitze in Kfz/h und SV/h

Abbildung 1-2: Knotenströme 23.01.2018 am Knoten "Am Spielberg", Abendspitze in Kfz/h und SV/h

Abbildung 1-3: Knotenströme 23.01.2018 am Knoten "Am Spielberg", Tageswerte in Kfz/24h und SV/24h

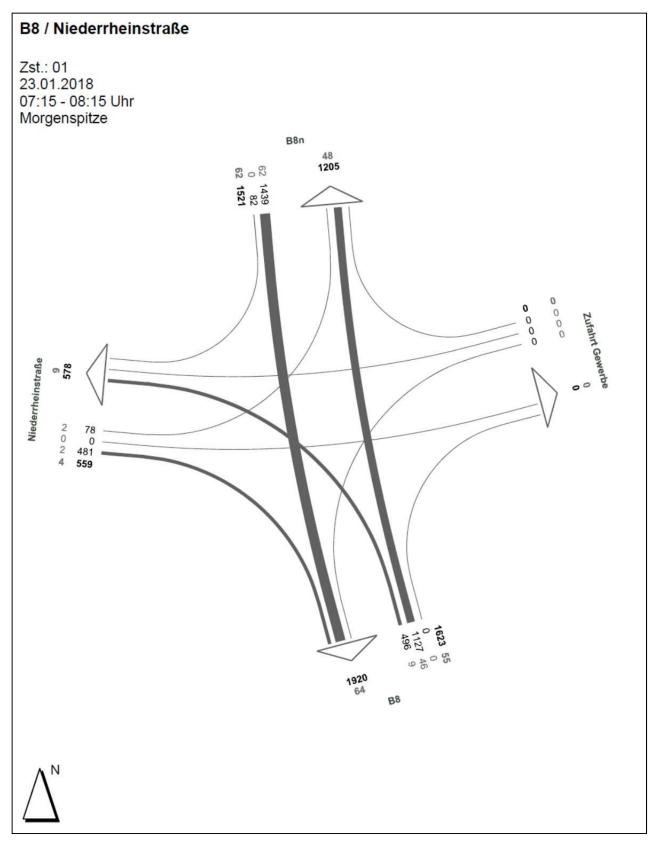


Abbildung 1-1: Knotenströme 23.01.2018 am Knoten "Am Spielberg", Morgenspitze in Kfz/h und SV/h

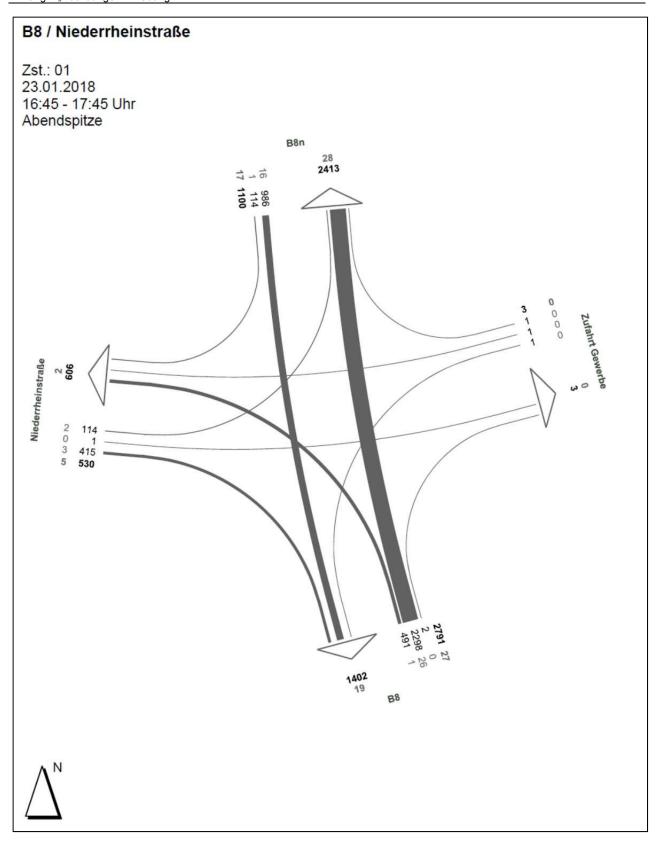


Abbildung 1-2: Knotenströme 23.01.2018 am Knoten "Am Spielberg", Abendspitze in Kfz/h und SV/h

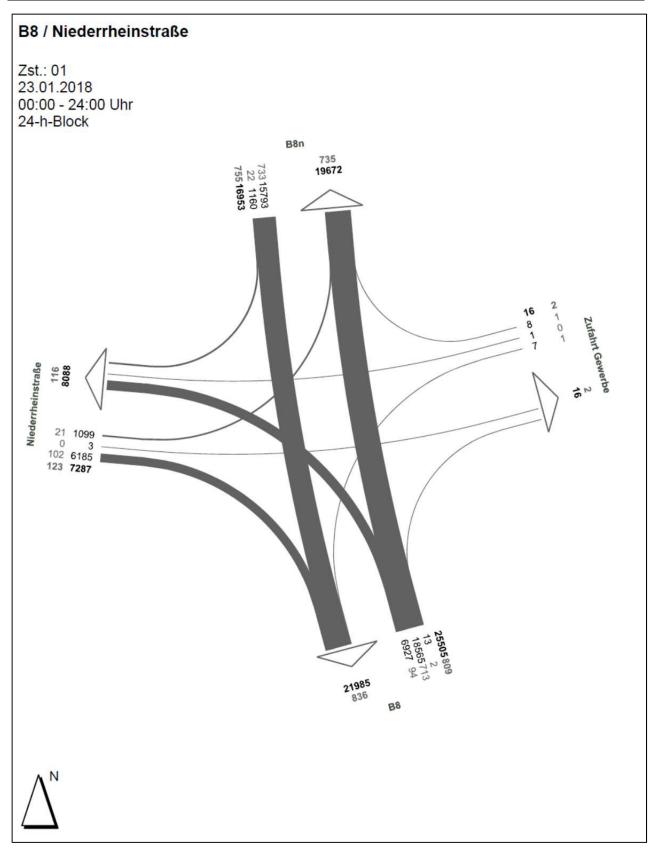


Abbildung 1-3: Knotenströme 23.01.2018 am Knoten "Am Spielberg", Tageswert in Kfz/24h und SV/24h

Anhang 2: Abbildungen "Verkehr"

Abbildung Inhalt

- Abbildung 2-1: Analysefall, DTVw 2018 im Netz 2018 in SV/24h und Kfz/24h
- Abbildung 2-2: Bezugsfall ohne Ausbau Knoten "Am Spielberg", DTVw 2030 in SV/24h und Kfz/24h
- Abbildung 2-3: Planfall 1 mit Ausbau Knoten "Am Spielberg", DTVw 2030 in SV/24h und Kfz/24h
- Abbildung 2-4: Planfall 1: Knotenströme am Knoten "Am Spielberg", DTVw 2030 in SV/24h und Kfz/24h

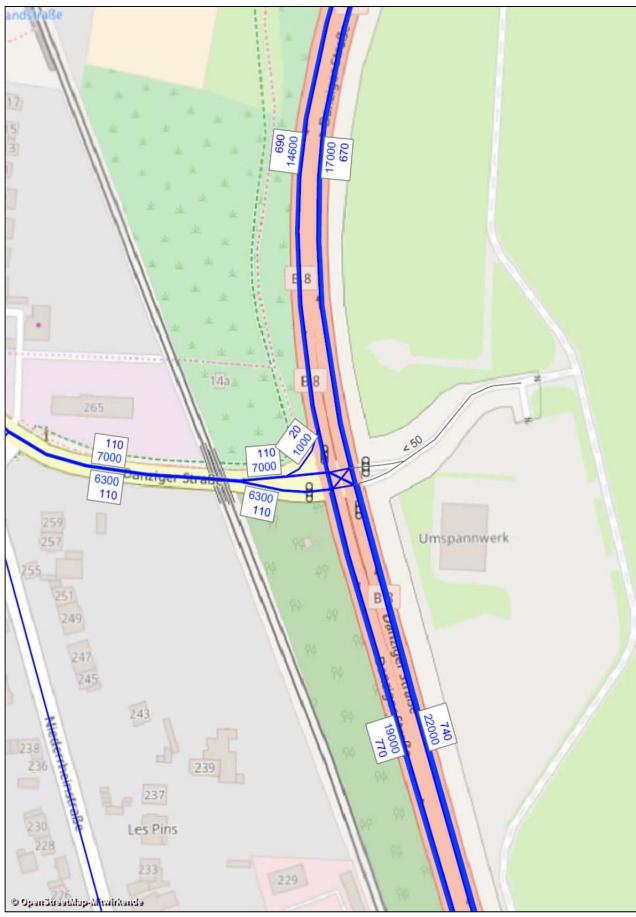


Abbildung 2-1: Analysefall, DTVw 2018 im Netz 2018 in SV/24h und Kfz/24h

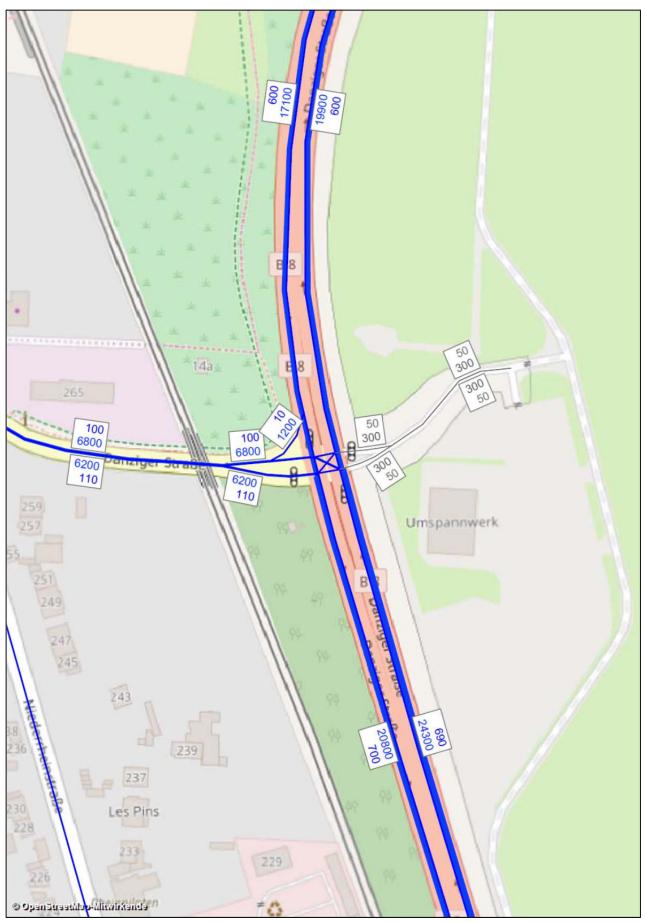


Abbildung 2-2: Bezugsfall ohne Knoten-Ausbau, DTVw 2030 im Netz 2030 in SV/24h und Kfz/24h

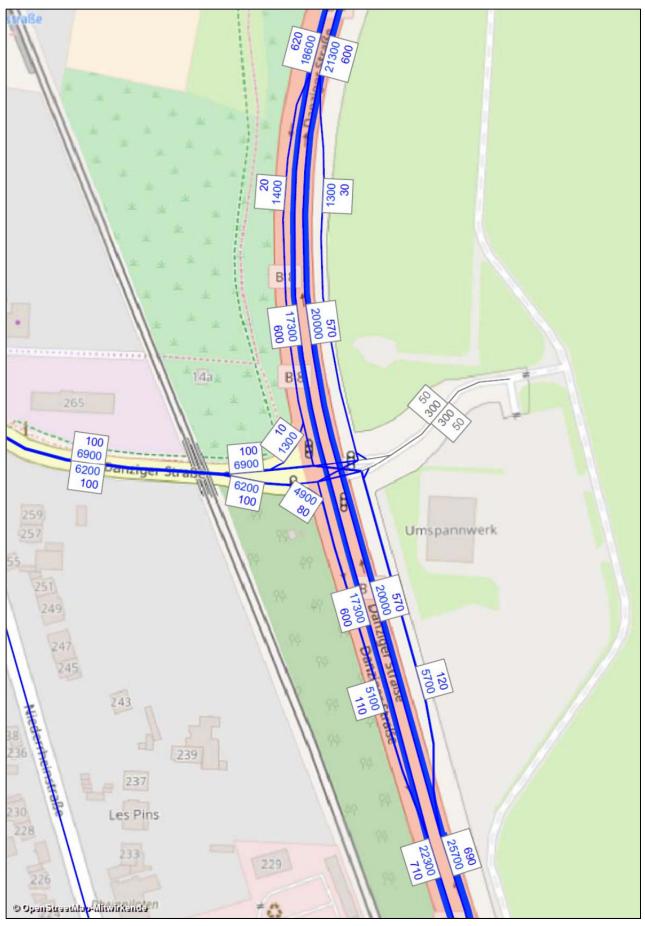


Abbildung 2-3: Planfall 1 mit Knoten-Ausbau, DTVw 2030 in SV/24h und Kfz/24h

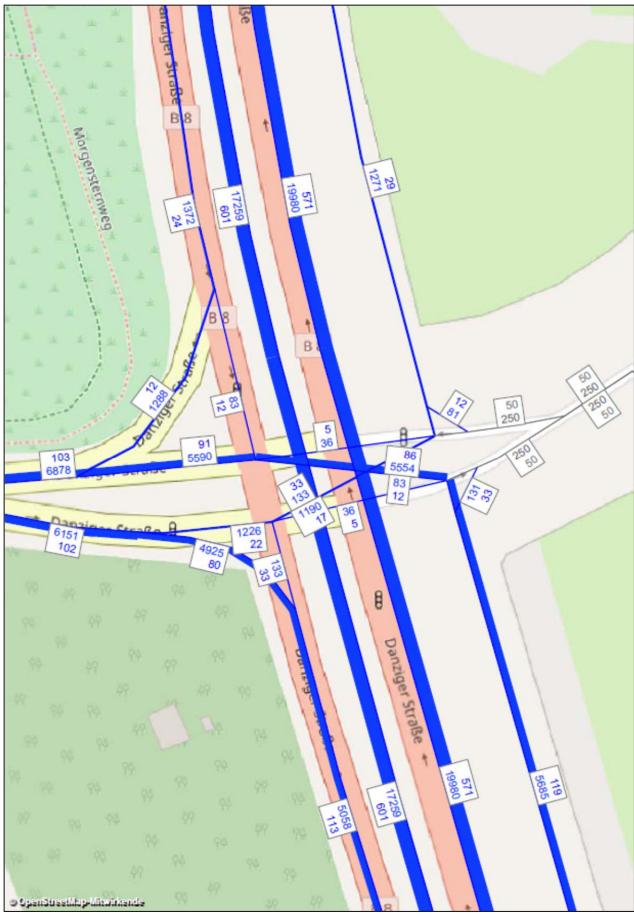


Abbildung 2-4: Planfall 1: Knotenströme (ungerundet), DTVw 2030 in SV/24h und Kfz/24h

Anhang 3: Tabellen "Verkehrsdaten"

Tabelle 3-1 Verkehrsdaten Analyse 2018

Straße	FR	DTVw Kfz	DTVw SV	SVwA	DTV Kfz	DTV SV	SVA	DTVw5 Kfz	DTVw5 SV	SVw5A	MSV	b _{SV}	M _T	M_N	p _T	p _N
		Kfz/24h	SV/24h	%	Kfz/24h	SV/24h	%	Kfz/24h	SV/24h	%	Kfz/h	%	Kfz/h	Kfz/h	%	%
B 8 Nord	Nord	17.000	670	3,9	14.900	520	3,5	18.000	710	3,9	1.728	3,0	864	149	3,4	4,4
B 8 Nord	Süd	14.600	690	4,7	12.800	540	4,2	15.400	730	4,7	1.485	3,6	742	128	4,1	5,3
B 8 Süd	Nord	22.000	740	3,4	19.300	580	3,0	23.300	790	3,4	2.239	2,6	1.119	193	2,9	3,7
B 8 Süd	Süd	19.000	770	4,1	16.700	600	3,6	20.100	810	4,0	1.937	3,1	969	167	3,5	4,5
Danziger Str. West	West	7.000	110	1,6	6.200	90	1,5	7.500	120	1,6	719	1,2	360	62	1,4	1,8
Danziger Str. West	Ost	6.300	110	1,7	5.500	90	1,6	6.600	120	1,8	638	1,4	319	55	1,6	2,0

Tabelle 3-2 Verkehrsdaten Bezugsfall 2030

		DTVw	DTVw		DTV	DTV		DTVw5								
Straße	FR	Kfz	SV	SVwA	Kfz	SV	SVA	Kfz	SV	SVw5A	MSV	b_{SV}	M_T	M_N	p_{T}	p_N
		Kfz/24h	SV/24h	%	Kfz/24h	SV/24h	%	Kfz/24h	SV/24h	%	Kfz/h	%	Kfz/h	Kfz/h	%	%
B 8 Nord	Nord	19.900	600	3,0	17.500	470	2,7	21.100	640	3,0	2.030	2,3	1.015	175	2,6	3,3
B 8 Nord	Süd	17.100	600	3,5	15.000	470	3,1	18.100	640	3,5	1.740	2,7	870	150	3,0	3,9
B 8 Süd	Nord	24.300	690	2,8	21.400	540	2,5	25.800	730	2,8	2.482	2,2	1.241	214	2,4	3,1
B 8 Süd	Süd	20.800	700	3,4	18.300	550	3,0	22.100	750	3,4	2.123	2,6	1.061	183	2,9	3,7
Danziger Str. West	West	6.800	100	1,5	6.000	80	1,3	7.200	110	1,5	696	1,1	348	60	1,3	1,7
Danziger Str. West	Ost	6.200	100	1,6	5.400	80	1,5	6.500	110	1,7	626	1,3	313	54	1,4	1,8
Zufahrt Ost	West	300	50	16,7	300	40	13,3	400	50	12,5	35	11,4	17	3	12,9	16,6
Zufahrt Ost	Ost	300	50	16,7	300	40	13,3	400	50	12,5	35	11,4	17	3	12,9	16,6

Tabelle 3-3 Verkehrsdaten Planfall 2030

Straße	FR	DTVw Kfz	DTVw SV	SVwA	DTV Kfz	DTV SV	SVA	Kfz	SV	SVw5A		b _{SV}	M _T	M _N	p _T	p _N
		Kfz/24h	SV/24h	%	Kfz/24h	SV/24h	%	Kfz/24h	SV/24h	%	Kfz/h	%	Kfz/h	Kfz/h	%	%
B 8 Nord		21.300	600	2,8	18.700	470	2,5	22.600	640	2,8	2.169	2,1	1.085	187	2,4	3,1
B 8 Nord HFB	Nord	20.000	570	2,9	17.600	450	2,6	21.300	610	2,9	2.042	2,2	1.021	176	2,5	3,2
B 8 Nord Rampe		1.300	30	2,3	1.100	20	1,8	1.300	30	2,3	128	1,6	64	11	1,8	2,3
B 8 Nord		18.600	620	3,3	16.400	490	3,0	19.800	670	3,4	1.902	2,6	951	164	2,9	3,7
B 8 Nord HFB	Süd	17.300	600	3,5	15.200	470	3,1	18.400	640	3,5	1.763	2,6	882	152	3,0	3,9
B 8 Nord Rampe		1.400	20	1,4	1.200	20	1,7	1.400	30	2,1	139	1,4	70	12	1,6	2,1
B 8 Süd		25.700	690	2,7	22.600	540	2,4	27.300	730	2,7	2.622	2,0	1.311	226	2,3	3,0
B 8 Süd HFB	Nord	20.000	570	2,9	17.600	450	2,6	21.300	610	2,9	2.042	2,2	1.021	176	2,5	3,2
B 8 Süd Rampe		5.700	120	2,1	5.000	90	1,8	6.000	120	2,0	580	1,5	290	50	1,7	2,2
B 8 Süd		22.300	710	3,2	19.700	560	2,8	23.800	760	3,2	2.285	2,4	1.143	197	2,7	3,5
B 8 Süd HFB	Süd	17.300	600	3,5	15.200	470	3,1	18.400	640	3,5	1.763	2,6	882	152	3,0	3,9
B 8 Süd Rampe		5.100	110	2,2	4.500	90	2,0	5.400	120	2,2	522	1,7	261	45	1,9	2,5
Danziger Str. West	West	6.900	100	1,4	6.100	80	1,3	7.400	110	1,5	708	1,1	354	61	1,3	1,6
Danziger Str. West	Ost	6.200	100	1,6	5.400	80	1,5	6.500	110	1,7	626	1,3	313	54	1,4	1,8
Zufahrt Ost	West	300	50	16,7	300	40	13,3	400	50	12,5	35	11,4	17	3	12,9	16,6
Zufahrt Ost	Ost	300	50	16,7	300	40	13,3	400	50	12,5	35	11,4	17	3	12,9	16,6

Anhang 4: Leistungsfähigkeitsnachweise

A4.1. Vorgehen Leistungsfähigkeitsnachweise

Die Leistungsfähigkeitsabschätzung wird nach dem Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS³) geführt. Die Qualitätsstufen des Verkehrsablaufs (QSV oder LOS) sind in ein 6-stufiges System ähnlich dem Schulnotensystem gegliedert (Stufen A = sehr guter Verkehrsablauf bis F = ungenügender Verkehrsablauf, siehe nachfolgende Tabelle). In der Hauptverkehrszeit wird die Qualitätsstufe D als ausreichend leistungsfähig angesehen.

Grenzwerte für die Qualitätsstufen des Verkehrsablaufs (QSV) nach HBS 2015

QSV	Ein- und Ausfahrten planfreier Strecken	LSA-geregelte Knoten					
	Auslastungsgrad x	mittlere Wartezeit [s]					
Α	≤ 0,30	≤ 20					
В	≤ 0,55	≤ 35					
С	≤ 0,75	≤ 50					
D	≤ 0,90 ⁴	≤ 70					
E	≤ 1,00	>70					
F	>1,00	Die QSV F ist erreicht, wenn die nachgefragte Verkehrsstärke q über der Kapazität C liegt (q>C)					

Auf der Basis der in Kapitel 8 dargestellten Umrechenfaktoren ergeben sich die in den nachfolgenden Bildern A4-1 und A4-2 dargestellten Bemessungsverkehrsstärken qB in Kfz/h und SV/h.

Es sind sowohl die Ein- und Ausfahrten der B 8 als auch die beiden LSA-geregelten Teilknoten an den Rampenfußpunkten auf ihre Leistungsfähigkeit hin zu überprüfen.

A4.2. Zusammenfassung der Ergebnisse

E1: Einfahrer in die B 8 FR Nord: QSV = C E2: Einfahrer in die B 8 FR Süd: QSV = C A1: Ausfahrer von der B 8 aus FR Nord: QSV = B A2: Ausfahrer von der B 8 aus FR Süd: QSV = C

Teilknoten TK1 (West) QSV = C Teilknoten TK2 (Ost) QSV = C

Die Verkehrsanlage ist leistungsfähig. Es gibt genügend Leistungsreserven.

⁴ 0,92 für Einfahrten des Typs E1 und E2 mit Zuflussregelung

Seite 4-0

³ FGSV Forschungsgesellschaft für Straßen- und Verkehrswesen: Handbuch für die Bemessung von Straßenverkehrsanlagen HBS", Köln, Ausgabe 2015.

Bild A4-1: Bemessungsverkehrsstärken im Bereich des ausgebauten Knotens "Am Spielberg" (Übersicht Ein- und Ausfahrten), q_B in Kfz/h (blau) und in SV/h (braun)

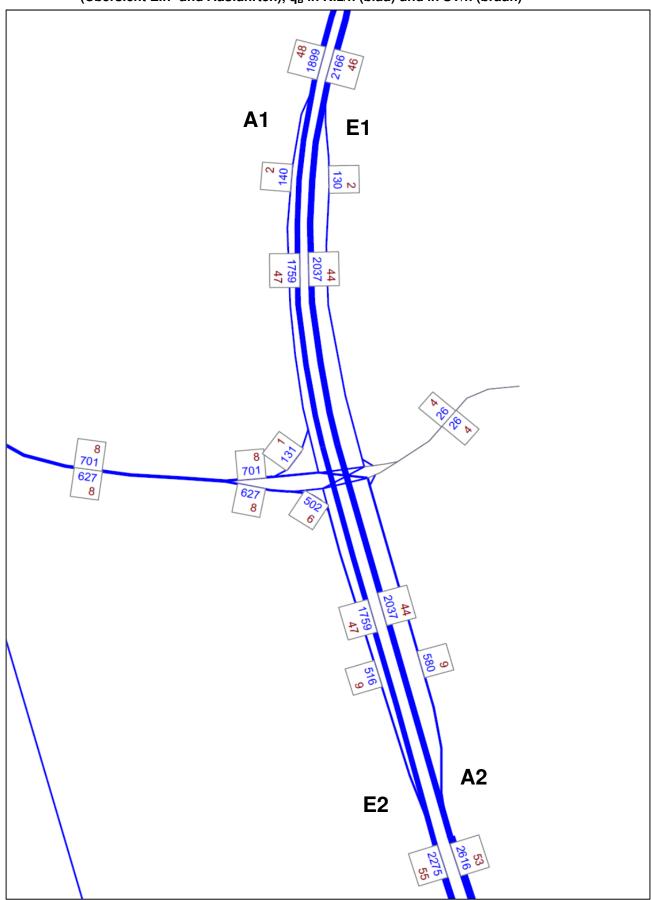
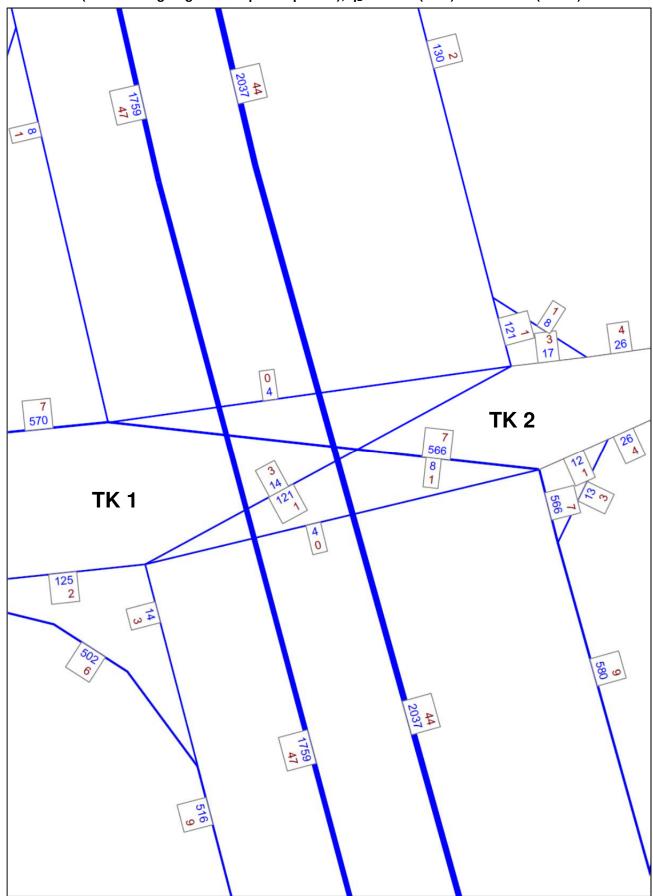



Bild A4-2: Bemessungsverkehrsstärken im Bereich des ausgebauten Knotens "Am Spielberg", (Detail LSA-geregelte Rampenfußpunkte), q_B in Kfz/h (blau) und in SV/h (braun)

A4.3. Leistungsfähigkeitsnachweise für die Ein- und Ausfahrten

E1: Einfahrer in die B 8 FR Nord

	Formblatt: Verkehrsqualität an einer Einfahrt													
Bezei	chnung des Knotenpunktes:	E1: Ei	nfahrer in di	e B 8 FR Nord										
1	Einfahrttyp													
2	angestrebte Qualitätsstufe	[D											
	Hauptfahrbahnen bzw. Verte	eilerfah	rbahnen an	der Einfahrt										
				Oberhalb (O)	Unterhalb (U)									
3	Bemessungsverkehrsstärke	$q_{\scriptscriptstyle B}$	[Kfz/h]	2037	2166									
4	bemessungsrelevanter SV-Anteil	b_{sv}	[%]	2,2	2,1									
5	Längsneigung	Si	[%]	2,0	2,0									
6	maßgebende Verkehrsstärke	q_{PE}	[Pkw-E/h]	2081	2212									
7	Fahrstreifenanzahl der Haupt-/Verteilerfahrbahn	n	[-]	2	2									
8	Funktion und Lage			iBR	iBR									
9	Geschwindigkeitsbeschränkung		[km/h]	-	-									
10	Kapazität	С	[Kfz/h]	3897	3897									
11	Auslastungsgrad	х	[-]	0,52	0,56									
12	erreichbare Qualitätsstufe	QSV _i		В	С									
	Ra	mpen												
				Einfahrt (E)										
13	Bemessungsverkehrsstärke	q_{B}	[Kfz/h]	130										
14	bemessungsrelevanter SV-Anteil	b _{sv}	[%]	1,5										
15	Längsneigung (aus Höhenplan)	S _i	[%]	2,0										
16	maßgebende Verkehrsstärke	q _{PE}	[Pkw-E/h]	132										
17	Kapazität	C_PE	[Pkw-E/h]	-										
18	Auslastungsgrad	х	[-]	-										
19	erreichbare Qualitätsstufe	QSV _i		-										
	Einfädelu	ıngsbei	reich											
Einfädelung														
20	erreichbare Qualitätsstufe (Zeile 1,6 und 16)	QSV _i		В										
	Gesamtbew	ertung	Einfahrt											
21	schlechteste erreichbare Qualitätsstufe des Teilknotenpunkts (Zeile 12, 19 und 20)	QSV _j		(C									

Fazit: Die Einfahrt in die B 8 in Fahrtrichtung Nord ist leistungsfähig (QSV = C). Es gibt genügend Reserven.

E2: Einfahrer in die B 8 FR Süd

Formblatt: Verkehrsqualität an einer Einfahrt													
Bezei	chnung des Knotenpunktes:	E2: Ei	nfahrer in di	ie B 8 FR Süd									
1	Einfahrttyp												
2	angestrebte Qualitätsstufe	D											
	Hauptfahrbahnen bzw. Verte	eilerfah	rbahnen an	der Einfahrt									
				Oberhalb (O)	Unterhalb (U)								
3	Bemessungsverkehrsstärke	1759	2275										
4	bemessungsrelevanter SV-Anteil	b _{sv}	[%]	2,7	2,4								
5	Längsneigung	S _i	[%]	2,0	2,0								
6	maßgebende Verkehrsstärke	q _{PE}	[Pkw-E/h]	1806	2330								
7	Fahrstreifenanzahl der Haupt-/Verteilerfahrbahn	n	[-]	2	2								
8	Funktion und Lage			iBR	iBR								
9	Geschwindigkeitsbeschränkung		[km/h]	1	-								
10	Kapazität	С	[Kfz/h]	3897	3898								
11	Auslastungsgrad	х	[-]	0,45	0,58								
12	erreichbare Qualitätsstufe	QSV _i		В	С								
	Ra	mpen											
				Einfahrt (E)									
13	Bemessungsverkehrsstärke	$q_{\scriptscriptstyle B}$	[Kfz/h]	516									
14	bemessungsrelevanter SV-Anteil	b _{sv}	[%]	1,7									
15	Längsneigung (aus Höhenplan)	Si	[%]	2,0									
16	maßgebende Verkehrsstärke	q_{PE}	[Pkw-E/h]	525									
17	Kapazität	C_PE	[Pkw-E/h]	-									
18	Auslastungsgrad	х	[-]	1									
19	erreichbare Qualitätsstufe	-											
	Einfädelu	ıngsbei	eich										
Einfädelung													
20	erreichbare Qualitätsstufe (Zeile 1,6 und 16)	QSV _i		С									
	Gesamtbew	ertung	Einfahrt										
21	schlechteste erreichbare Qualitätsstufe des Teilknotenpunkts (Zeile 12, 19 und 20)	QSV _j			С								

Fazit: Die Einfahrt in die B 8 in Fahrtrichtung Süd ist leistungsfähig (QSV = C). Es gibt genügend Reserven.

A1: Ausfahrer von der B 8 aus FR Nord

	Formblatt: Verkehrsq	ualität	an einer A	usfahrt								
Bezei	chnung des Knotenpunktes:	A1: A	usfahrer vor	n der B 8 aus FR I	Nord							
1	Ausfahrttyp											
2	angestrebte Qualitätsstufe	[)									
	Hauptfahrbahnen bzw. Verte	ilerfah	rbahnen an	der Ausfahrt								
				Oberhalb (O)	Unterhalb (U)							
3	Bemessungsverkehrsstärke	q_{B}	[Kfz/h]	1899	1759							
4	bemessungsrelevanter SV-Anteil	b _{sv}	[%]	2,5	2,7							
5	Längsneigung	Si	[%]	2,0	2,0							
6	maßgebende Verkehrsstärke	q _{PE}	[Pkw-E/h]	1947	1806							
7	Fahrstreifenanzahl der Haupt-/Verteilerfahrbahn	n	[-]	3	2							
8	Funktion und Lage			iBR	iBR							
9	Geschwindigkeitsbeschränkung		[km/h]	-	-							
10	Kapazität	С	[Kfz/h]	3897	3897							
11	Auslastungsgrad	х	[-]	0,49	0,45							
12	erreichbare Qualitätsstufe	QSV _i		В	В							
	Rai	mpen										
					Ausfahrt (A)							
13	Bemessungsverkehrsstärke	$q_{\scriptscriptstyle B}$	[Kfz/h]		140							
14	bemessungsrelevanter SV-Anteil	b _{sv}	[%]		1,4							
15	Längsneigung (aus Höhenplan)	Si	[%]		2,0							
16	maßgebende Verkehrsstärke	q_{PE}	[Pkw-E/h]		142							
17	Kapazität	C_PE	[Pkw-E/h]		-							
18	Auslastungsgrad	х	[-]		-							
19	erreichbare Qualitätsstufe		-									
	Ausfädel	ungsbe	reich									
Ausfädelung												
20	erreichbare Qualitätsstufe (Zeile 1,6 und 16)	QSV _i			В							
	Gesamtbewe	ertung /	Ausfahrt									
21	schlechteste erreichbare Qualitätsstufe des Teilknotenpunkts (Zeile 12, 19 und 20)	QSV _j		1	В							

Fazit: Die Ausfahrt von der B 8 aus Fahrtrichtung Nord ist leistungsfähig (QSV = B). Es gibt große Reserven.

A2: Ausfahrer von der B 8 aus FR Süd

	Formblatt: Verkehrsqu	ualität	an einer A	usfahrt								
Bezei	chnung des Knotenpunktes:	A2: A	usfahrer vor	n der B 8 aus FR	Süd							
1	Ausfahrttyp											
2	angestrebte Qualitätsstufe	I)									
	Hauptfahrbahnen bzw. Verte	rbahnen an (der Ausfahrt									
				Oberhalb (O)	Unterhalb (U)							
3	Bemessungsverkehrsstärke	[Kfz/h]	2616	2037								
4	bemessungsrelevanter SV-Anteil	b _{SV}	[%]	2,0	2,2							
5	Längsneigung	Si	[%]	2,0	2,0							
6	maßgebende Verkehrsstärke	q _{PE}	[Pkw-E/h]	2669	2081							
7	Fahrstreifenanzahl der Haupt-/Verteilerfahrbahn	n	[-]	3	2							
8	Funktion und Lage			iBR	iBR							
9	Geschwindigkeitsbeschränkung		[km/h]	-	-							
10	Kapazität	С	[Kfz/h]	3898	3897							
11	Auslastungsgrad	х	[-]	0,67	0,52							
12	erreichbare Qualitätsstufe	QSV _i		С	В							
	Rai	mpen										
					Ausfahrt (A)							
13	Bemessungsverkehrsstärke	$q_{\scriptscriptstyle B}$	[Kfz/h]		580							
14	bemessungsrelevanter SV-Anteil	b _{sv}	[%]		1,6							
15	Längsneigung (aus Höhenplan)	S _i	[%]		2,0							
16	maßgebende Verkehrsstärke	q _{PE}	[Pkw-E/h]		589							
17	Kapazität	C_PE	[Pkw-E/h]		-							
18	Auslastungsgrad	х	[-]		-							
19	erreichbare Qualitätsstufe			-								
	Ausfädel	ungsbe	reich									
Ausfädelung												
20	erreichbare Qualitätsstufe (Zeile 1,6 und 16)	QSV _i			С							
	Gesamtbewe	ertung /	Ausfahrt									
21	schlechteste erreichbare Qualitätsstufe des Teilknotenpunkts (Zeile 12, 19 und 20)	QSV _j			С							

Fazit: Die Ausfahrt von der B 8 aus Fahrtrichtung Süd ist leistungsfähig (QSV = C). Es gibt genügend Reserven.

A4.4. LSA-geregelte Teilknoten an den Rampenfußpunkten

Teilknoten TK1 (West)

						K	(notenp	unkt mi	t Lichts	ignala	nlage					
									ngsdat							
	Projekt:	MG1_V	/U_B8n_	Lohhau	ısen											
	Stadt:															
K	inotenpunkt:	TK1														
Z	eitabschnitt:															
	Bearbeiter:															
	T _Z =	1,100	[-]		T =	1,0	[h]									
lfd.	Bez.	q_{LV}	q _{Lkw+Bus}	q_{LkwK}	q_{SV}	q_{Kfz}	SV	q_{Kfz}	b	R	S	t _B	q_{S}	$t_{F,min}$	t _{F,const}	Bemerkungen
Nr.	202.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[%]	[Kfz/h]	[m]	[m]	[%]	[s]	[Kfz/h]	[s]	[s]	Bomorkungon
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}
	Phase 1															
1	1 Zuf/Br	11			3	14	,	14	3,50		2,0					
2	2 Zuf/Br	4			0	4	0,0	4	3,50		2,0					
3	6 B8 Nord	130			1	131	0,8	131	3,50		2,0					
4															\Box	
5																
6															\vdash	
7																
_					_				ase 2							
-	9 D-Str.	496			6	502	1,2	502	3,50		2,0				\vdash	
9	2 Zuf/Br	570			7	577	0,0	577	3,50		2,0				\vdash	
10															\vdash	
11																
12																
13																
14								P	ase 3							
15	7+8 D-Str	123			2	125	1,6	125	3,50		2,0					
16	4 B8 Nord	123			1	125	,	125	3,50		2,0					
17	4 Bo Nord	- 1			-	0	12,3	0	3,30		2,0					
18																
19																
19																

							Kn	otennun	kt mit Lic	htsignala	nlage						
						Bewe						gverkehr					
	Projekt:	MG1_VL	J_B8n_Lo	hhausen								3					
	Stadt:																
k	(notenpunkt:	TK1															
Z	eitabschnitt:																
	Bearbeiter:																
	t _U =	60	[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	X	fA	N _{GE}	N _{MS}	S	N _{MS,S}	f _{SV}	Ls	t _w	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1	1 Zuf/Br	14		11	11	335	0,042	0,200	0,024	0,212	90	0,862	1,193	6	19,6	Α	
2	2 Zuf/Br	4	2000	11	11	400	0,010	0,200	0,006	0,059	90	0,402	1,000	2	19,3	Α	
3	6 B8 Nord	131	1986	11	11	397	0,330	0,200	0,283	2,153		4,224	1,007	26	23,1	В	
4																	
5																	
6																	
7									Diversi								
_	9 D-Str.	502	1979	20	20	693	0,725	0.050	Phase 1,880		90	13.439	1,011	82	26,8	_	
9	2 Zuf/Br	577	1979	20	20	692	0,725	0,350	4,361	9,167 13,185	90	18,308	1,011	111	40.6	B C	
10	2 Zul/bl	5//	1970	20	20	092	0,033	0,350	4,301	13,100	90	10,300	1,011	111	40,6		
11																	
12																	
13																	
14																	
									Phase	3							
15	7+8 D-Str	125	1972	11	11	394	0,317	0,200	0,267	2,046	90	4,064	1,014	25	22,9	В	
16	4 B8 Nord	8	1798	11	11	360	0,022	0,200	0,013	0,120	90	0,608	1,113	4	19,4	Α	
17																	
18																	
19																	

Fazit: Der westliche Teilknoten TK1 ist LSA-geregelt leistungsfähig (QSV = C) Es gibt genügend Reserven.

Teilknoten TK2 (Ost)

Ausgangsdaten Projekt: MG1_VU_B8n_Lohhausen Stadt: Knotenpunkt: TK2 Zeitabschnitt: Bearbeiter: Tz = 18 [s] fin = 1,100 [-] T = 1,0 [h]					nlage	ignalaı	t Lichts	Knotenpunkt m														
Stadt Knotenpunkt TK2 Tz = 18 S S S S S S S S S																						
Knotenpunkt TK2 Zeitabschnitt Bearbeiter Tz =																						
Tell and the properties Tell and the pro																						
Bearbeiter: Tz = 18 [s] fin = 1,100 [-] T = 1,0 [h]										inotenpunkt:	K											
Tz =												eitabschnitt:	Z									
Ifd. Bez.											Bearbeiter:											
Rez					[h]	1,0	T =		$T_Z = $													
	t _{F,const} Bemerkungen	t _{F,min} t _{F,const}	q_s	t _B	s	R	b	q_{Kfz}	SV	q _{Kfz}	q_{SV}	q_{LkwK}	q _{Lkw+Bus}	q_{LV}	Po7	Ifal						
1			[Kfz/h]	[s]	[%]	[m]	[m]	[Kfz/h]	[%]	[Kfz/h]	[Kfz/h]				Dez.							
1 1u2 Zuf 14 3 17 17,6 17 3,50 2,0 2,0 3 12 B8 Sued 10 3 13 23,1 13 3,50 2,0 3 12 B8 Sued 10 3 13 23,1 13 3,50 2,0 3 12 B8 Sued 10 3 13 23,1 13 3,50 2,0 3 12 B8 Sued 10 3 13 23,1 13 3,50 2,0 3 12 B8 Sued 10 10 10 10 10 10 10 10 10 10 10 10 11 11			{13}	{12}	{11}	{10}	{9}	{8}	{7}						{1}	INI.						
2 3 Zuf 7 1 8 12,5 8 3,50 2,0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4																						
3 12 B8 Sued 10 3 13 23,1 13 3,50 2,0 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7								17		17			1									
4										_												
S S S S S S S S S S					2,0		3,50	13	23,1	13	3			10	12 B8 Sued	3						
6																_						
7 Phase 2 8 10 88 Sued 559 7 566 1,2 566 3,50 2,0 9 10 11 11 12 10,8 121 3,50 2,0 Phase 3 15 7 D-Str/Br 120 1 121 0,8 121 3,50 2,0																						
Phase 2 8 10 B8 Sued 559		-														_						
8 10 B8 Sued 559 7 566 1,2 566 3,50 2,0 9 10 11 12 12 13 14 15 7 D-Str/Br 120 1 1 121 0,8 121 3,50 2,0 1																7						
9 10 10 11 12 1 12 1 12 1 12 1 13 1 14 1 15 1 7 D-Str/Br 1 20 1 1 121 0,8 121 3,50 2,0 2,0									4.0	500	_			550	10.000	_						
10		-			2,0		3,50	566	1,2	566	/			559	10 B8 Sued	_						
11																						
12																						
13																						
14 Phase 3 15 7 D-Str/Br 120 1 121 0,8 121 3,50 2,0																						
Phase 3 15 7 D-Str/Br 120 1 121 0,8 121 3,50 2,0																						
15 7 D-Str/Br 120 1 121 0,8 121 3,50 2,0							ase 3	Pł								H-1-						
16 8 D-Str/Br 11 1 12 8,3 12 3,50 2,0					2.0				0.8	121	1			120	7 D-Str/Br	15						
1					2.0						1											
17							-	7.	-,-													
18																						
19																19						

							И		-4 14 1 1	h. 4 - 1 1 -							
						Rowo			kt mit Lic rsqualitä			nvorkohr					
	Projekt:	MG1 VL	J B8n Lo	hhausen		Dewe	rtung de	Verken	roquanta	t iiii Kiaii	iaiii Zeu	gverkern					
	Stadt:	o1_vc		illiaasell			$\overline{}$										
K	notenpunkt:	TK2					-										
	eitabschnitt:						-										
	Bearbeiter:																
	t _U =	60	[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	1100			-	-										0011	Demarkungen
Nr.	Dez.	q _{Kfz}	qs	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	f _{SV}	Ls	t _W	QSV	Bemerkungen
141.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase								
1	1u2 Zuf	17	1726	11	11	345	0,049	0,200	0,029	0,258	90	0,974	1,159	7	19,7	Α	
	3 Zuf	8		11	11	360	0,022	0,200	0,013	0,120	90	0,608	1,113	4	19,4	Α	
3	12 B8 Sued	13	1656	11	11	331	0,039	0,200	0,023	0,197	90	0,824	1,208	6	19,6	Α	
4																	
5																	
6																	1
7																	
	20 20								Phase								
8	10 B8 Sued	566	1978	20	20	692	0,818	0,350	3,765	12,355	90	17,314	1,011	105	37,3	С	
9																	
10	e 20																
11	2																
12																	
13												1					
14																	
									Phase								
15	7 D-Str/Br	121	1985	11	11	397	0,305	0,200	0,251	1,969	90	3,949	1,007	24	22,7	В	
	8 D-Str./Br	12	1860	11	11	372	0,032	0,200	0,018	0,179	90	0,777	1,075	5	19,5	Α	
17																	
18																	
19																	

Fazit: Der östliche Teilknoten TK2 ist LSA-geregelt leistungsfähig (QSV = C). Es gibt genügend Reserven.