

Blitzschutz und elektromagnetische Verträglichkeit

Dokumentennr.: 0059-1120 V08

Klassifizierung: RESTRICTED

Typ: T09

Datum: 2022-11-22

T09 0059-1120 Ver 08 - Approved- Exported from DMS: 2022-12-12 by INVOL

Windenergieanlagentyp

Windenergieanlagentyp	Mk version
V105-3.45 MW	Mk 3
V112-3.45 MW	Mk 3
V117-3.45 MW	Mk 3
V117-4.2 MW	Mk 3
V126-3.45 MW	Mk 3
V126-4.0/4.2 MW	Mk 3E
V136-3.45 MW	Mk 3
V136-4.2 MW	Mk 3
V150-4.0 MW	Mk 3
V150-4.2 MW	Mk 3

Änderungsbeschreibung

Beschreibung der Änderungen

Abschnitt 3.4 Rotorblattschutz, Seite 8 aktualisiert.

Inhaltsverzeichnis

1	Abkürzungen und Fachbegriffe	4
2	Einleitung	4
3	Blitzschutz	4
3.1	Schutzklasse	5
3.2	Definition von Blitzschlagpunkten	5
3.3	Überblick über das Blitzschutzsystem	
3.4	Rotorblattschutz	8
3.5	Schutz des CoolerTop®	10
3.6	Hauptlagerschutz	11
3.7	Ableitung vom Maschinenhaus zum Turm	11
3.8	Turmkonstruktion	13
3.9	Das Ableitungssystem vom Turmfuß zum Erdungssystem	13
3.10	Schutz der Elektrik und der Steuerungssysteme	13
3.11	Erdungssysteme	14
3.11.1	Onshore-Windenergieanlage	14
3.11.2	Offshore-Windenergieanlage	15
3.12	Verifizierung	18
4	EMV	18
4.1	Rechtsvorschriften	
4.1.1	Grundlegende EMV-Anforderungen	20
4.2	Konformität der Windenergieanlagen	
4.3	Anerkannte Regeln der Technik	
4.4	Komponentenübergreifende Konformität	
	1	

1 Abkürzungen und Fachbegriffe

0017085376

Tabelle 1.1: Abkürzungen

Abkürzung	Erklärung	
EMV	Elektromagnetische Verträglichkeit	
IEC	International Electrotechnical Commission	
LCTU	Lightning Current Transfer Units (Blitzstromableiter)	
JISC	Japanese Industrial Standards Committee	
SPL	Surface Protection Layer (Oberflächenschutzschicht)	

Tabelle 1.2: Begriffserklärung

Begriff	Erklärung
Mittelwert	Der arithmetische Durchschnitt einer Reihe von Werten oder Mengen, der durch Division der Summe aller Werte durch die Anzahl der Werte errechnet wird.

2 Einleitung 0011420548

In diesem Dokument werden die Bauweise des Blitzschutzsystems sowie der Schutz vor unerwünschten elektromagnetischen Umwelteinwirkungen beschrieben.

EMV und Blitze fallen in dieselbe Kategorie unerwünschter elektromagnetischer Einwirkungen. Die zur Beurteilung der Konformität herangezogenen Normen unterscheiden sich jedoch deutlich. Aus diesem Grund wurde die Themen Blitzschutz und EMV in zwei eigenständige Hauptkapitel aufgeteilt.

3 Blitzschutz

Alle Vestas-Windenergieanlagen sind mit einem Blitzschutzsystem ausgestattet, um Schäden an mechanischen Komponenten, Elektrik und Steuerungen möglichst gering zu halten.

Das Vestas-Blitzschutzsystem umfasst äußere und innere Blitzschutzsysteme.

Das äußere Schutzsystem nimmt einen direkten Blitzschlag auf und leitet den Blitzstrom in das Erdungssystem unterhalb des Turms. Beispielsweise zählen die Stange an der Rückseite des Maschinenhauses und die Blitzrezeptoren der Blätter zu den äußeren Blitzschutzkomponenten.

Das innere Schutzsystem leitet den Blitzstrom sicher in das Erdungssystem. Außerdem beseitigt es die durch Blitzschlag verursachten magnetischen und elektrischen Induktionsfelder. Beispiele für innere Blitzschutzkomponenten sind EMV/Blitzschutzabdeckungen, abgeschirmte Kabel und Überspannungsschutzgeräte.

Potenzialausgleich und Überspannungsschutz sind die wichtigsten Maßnahmen, um den Schutz der Elektronik in der Windenergieanlage sicherzustellen.

Blitzeinschläge gelten als höhere Gewalt. Das bedeutet, dass Vestas nicht für Schäden durch Blitzeinschläge aufkommt.

Vestas-Windenergieanlagen werden weltweit in Küstenbereichen und Berggegenden installiert, in denen die Blitzhäufigkeit groß ist. Um lokale Gefährdungsbeurteilungen zu vermeiden und die unterschiedlichen Blitzschutzanforderungen verschiedener Standorte besser verwalten zu können, hat Vestas ein Standard-Blitzschutzsystem entwickelt, das der höchsten in der Norm IEC 61400-24:2010 angegebenen Schutzklasse entspricht, wie in Tabelle Numerische Werte des Blitzstroms, Seite 5 angegeben.

Die Schutzklasse 1 entspricht der Norm IEC 61400-24:2010, d. h. Vestas-Windenergieanlagen sind für Blitzschläge mit hoher Energie ausgelegt.

Tabelle 3.1: Numerische Werte des Blitzstroms

Blitzparamete	er		Schutzklasse 1	Schutzklasse 1 Plus (betrifft nur V117)*
Scheitelwert des Blitzstroms	I _{max}	[kA]	200	200
Gesamtla- dung	Q _{total}	[C]	300	600
Spezifische Energie	W/R	[kJ/Ω]	10000	20000
Durchschnitt- liche Steilheit	di/dt _{30/90} %	[kA/µs]	200	200

* Windenergieanlagen des Typs V117 verfügen über ein erweitertes Blitzschutzsystem gemäß JIS C 1400-24:2014. Dieses erweiterte Blitzschutzsystem ermöglicht die Aufstellung der Windenergieanlage an Standorten, an denen Blitzschlag im Winter häufig vorkommt.

3.2 Definition von Blitzschlagpunkten

0011420545

Mit dem "Rollkugelverfahren" werden gemäß IEC 61400-24 Blitzschlagpunkte definiert. Studien haben gezeigt, dass die Blattspitzen und die Wetterstation (und, sofern vorhanden, die Gefahrenfeuer) am hinteren Ende des Maschinenhauses die Bereiche mit der höchsten Blitzschlaggefahr darstellen.

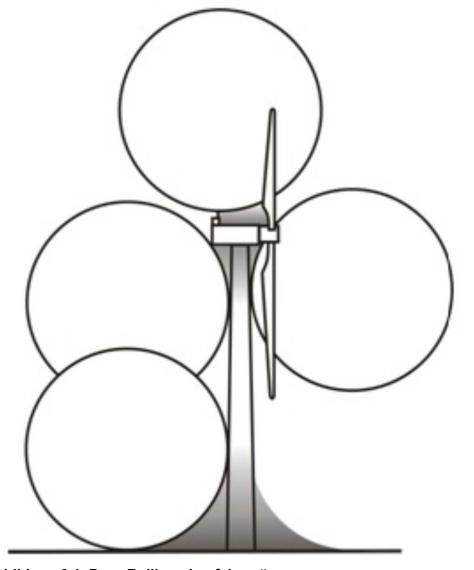


Abbildung 3.1: Das "Rollkugelverfahren"

3.3 Überblick über das Blitzschutzsystem

0011420544

Die Windenergieanlage ist darauf ausgelegt, direkte Blitzeinschläge auszuhalten.

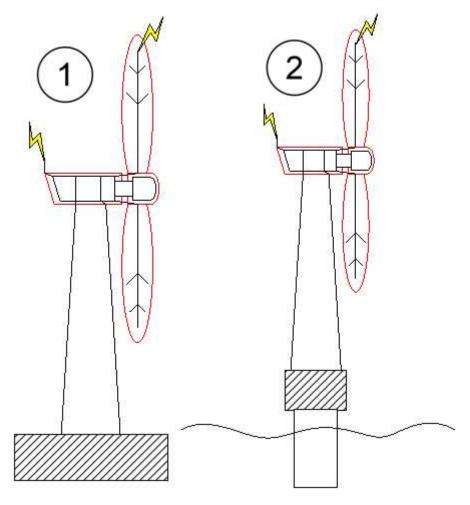


Abbildung 3.2: Blitzschlagpunkte und Blitzableitungssystem

1 Onshore-Windenergieanlage

2 Offshore-Windenergieanlage

Blitzschlagpunkte

Bereiche auf der Windenergieanlage, in denen mit Blitzschlägen zu rechnen ist.

Maschinenhaus

Die Konstruktionsteile des Maschinenhauses sind so ausgelegt, dass sie Blitzströme sicher zum Turm ableiten. Die Komponenten im Maschinenhaus sind so ausgelegt, dass sie hohen magnetischen und elektrischen Feldern bei Blitzschlägen standhalten.

Turm

Der Turm bildet den primären Weg für die Ableitung des Blitzstroms nach unten in das Erdungssystem.

Rotorblätter

Die Rotorblätter sind die empfindlichsten Komponenten, die Blitzschlägen ausgesetzt sind. Die Rotorblätter sind standardmäßig so ausgelegt, dass sie diesen extremen Blitzschlagbedingungen standhalten.

Blitzschutz und elektromagnetische Verträglichkeit Dokumentennr.: 0059-1120 V08 · Klassifizierung: RESTRICTED · Typ: T09

Blitzstromableiter (LCTU)

Das Blitzstromableiter (LCTU)-System schützt Blattlager, Hauptlager und Azimutlager vor hohen Blitzspannungen. Aufgabe des Blitzstromableitersystems ist es, die Blitzspannung sicher von den Blättern zum Maschinenhaus, vom Maschinenhaus zum Turm und dann in das Erdungssystem zu leiten.

Erdungssystem

Aufgabe des Erdungssystems ist die sichere Entladung des Blitzstroms in den umgebenden Boden.

Blitzableitungssystem


Der schwarze Teil der Windenergieanlage ist das Blitzableitungssystem. Die Rotorblätter der Windenergieanlage werden häufig von Blitzen getroffen. Wenn ein Blitz in ein Rotorblatt einschlägt, wird der Strom über den Blattableiter und über die Blitzstromableiter der Rotorblätter/ des Maschinenhauses zu den Strukturteilen des Maschinenhauses geleitet. Von dort aus wird die elektrische Energie des Blitzes weiter zum Blitzstromableiter des Maschinenhauses/Turms geführt, wobei eine Ableitung am Turm herab erfolgt. Abschließend wird der Blitzstrom über das Erdungssystem entladen.

3.4 Rotorblattschutz

0011420543

Blätter V105, V112 und V117

Das Blitzschutzsystem des Blatts verfügt über vier Hauptelemente: Spitzenschutz-Rezeptoren, Blitzrezeptoren, Ableitungssystem und Blitzableiterband.

Abbildung 3.3: V105, V112 und V117 mit Blattband

Die Spitzenschutz-Rezeptoren verfügen über eine massive Metallspitze, die Blitzeinschläge anzieht und die Spannung dann an das Ableitungssystem abgibt. Die Seitenrezeptoren sind paarweise angeordnet: mit jeweils einer wind- und einer saugseitigen Oberfläche.

Der Ableiter ist ein gemäß IEC 61400-24 ausgelegtes Kabel. Das Kabel läuft durch den Hinterkanten-Hohlraum des Holms von den Spitzenschutz-Rezeptoren bis zum Blitzableiterband. Die Spitzenschutz-Rezeptoren sind mit geringem elektrischem Widerstand mit dem Ableitungssystem verbunden.

Das Blitzableiterband ist die Schnittstelle zum Blitzstromableiter. Für weitere Informationen zum Blitzstromableiter siehe Abschnitt 3.6 *Hauptlagerschutz*, Seite 11.

Bei den als *Shortcuts* bezeichneten Schutzkomponenten handelt es sich um eine Gruppe metallischer Strukturen. Die Schutzkomponenten verhindern Lichtbögen zwischen den Druck- und Saugseiten von Holm und Ableitungssystem.

Blätter V126 und V136

Das Blitzschutzsystem wurde auf der Grundlage des Blatteinteilungsprinzips ausgelegt. Hierbei wird an verschiedenen Stellen des Blattradius das Gefahrenniveau definiert und auf dieser Grundlage der erforderliche Schutzgrad festgelegt.

Das Blitzschutzsystem des Blatts verfügt über vier Hauptelemente: Spitzenschutz-Rezeptoren, Oberflächenschutz, Ableitungssystem und Blitzableiterband.

Abbildung 3.4: V126 und V136 mit Blattband

Die Spitzenschutz-Rezeptoren verfügen über eine massive Metallspitze und mehrere Blitzrezeptoren. Die Blitzrezeptorengruppe besteht aus vier Reihen von Rezeptoren entlang der Vorder- und Hinterkanten der druck- und saugseitigen Schalen. Die massive Metallspitze und die Blitzrezeptoren ziehen Blitze bevorzugt an, sodass die Glasfaserschalen oder der Hauptteil des Rotorblatts seltener von Blitzen getroffen werden. Die massive Metallspitze und die Rezeptoren sind mit einem isolierten Mittelspannungskabel verbunden.

Ein Teil der druck- und saugseitigen Schalen zwischen Blitzrezeptorengruppe und Blattwurzel ist mit einer Streckmetallfolie bedeckt. Ebenso wie die massive Metallspitze und die Blitzrezeptorengruppe bietet die Streckmetallfolie einen bevorzugten Blitzschlagpunkt und schützt so den unbedeckten Teil des Blatts vor direkten Blitzschlägen. Die Streckmetallfolie ist mit der Blitzrezeptorengruppe und dem Ableitungssystem verbunden.

Das Ableitungssystem enthält ein isoliertes Mittelspannungskabel, das durch den Hinterkanten-Hohlraum des Blatts verläuft. Das Mittelspannungskabel wird gemäß IEC 61400-24 ausgewählt.

Das Ableitungssystem endet am Rotorblattband an der Blattwurzel. Das Blattband dient als Schnittstelle zum Blitzstromableiter. Für weitere Informationen zum Blitzstromableiter siehe Abschnitt 3.6 *Hauptlagerschutz*, Seite 11.

Die V126-, V136- und V150-Blätter verfügt über ein Blitzschutzsystem (Version 3) und ein ausgedehntes SPL-Netz. Hierzu gehören:

- eine leitende Karbon-Zwischenschicht
- leitende Bänder zum Anschluss der SPL an das Karbon.

V150-Blatt

Das V150-Rotorblatt ist mehr oder weniger identisch mit den V136- und den V126-Rotorblättern.

Beim V150-Rotorblatt reicht die Streckmetallfolie fast über die gesamte Länge bis zur Blattwurzel und deckt so den Großteil der Rotorblattoberfläche ab. In der Blattwurzel geht die Streckmetallfolie in ein internes Ableitungskabel über, aktiviert den Blitzsensor und stellt die Verbindung zum Blattband her. Das Blattband dient als Schnittstelle zum Blitzstromableiter. Für weitere Informationen zum Blitzstromableiter siehe Abschnitt 3.6 Hauptlagerschutz, Seite 11.

Die V126-, V136- und V150-Blätter verfügt über ein Blitzschutzsystem (Version 3) und ein ausgedehntes SPL-Netz. Hierzu gehören:

- eine leitende Karbon-Zwischenschicht
- leitende Bänder zum Anschluss der SPL an das Karbon.

3.5 Schutz des CoolerTop®

0011420542

Die Geräte auf dem Kühlsystem werden durch Blitzableiterstangen und Rezeptorringe geschützt. Alle Metallteile sind über einen Potenzialausgleich mit der internen Stahlkonstruktion des Maschinenhauses verbunden, wie in Abbildung Ultraschall-Anemometer und Gefahrenfeuer am CoolerTop® an der Rückseite des Maschinenhausdaches, Seite 10 beschrieben.

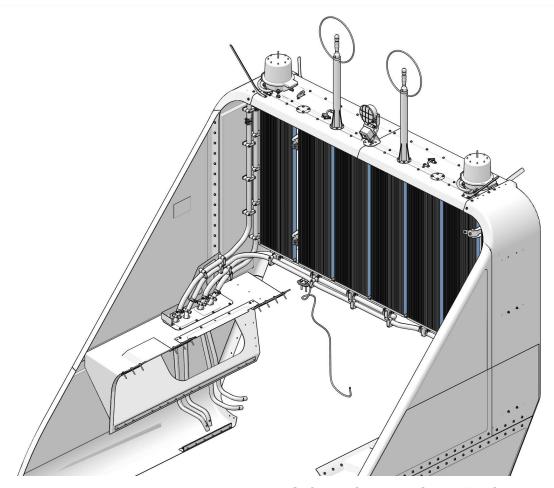


Abbildung 3.5: Ultraschall-Anemometer und Gefahrenfeuer am CoolerTop® an der Rückseite des Maschinenhausdaches

3.6 Hauptlagerschutz

0011420541

Um den Blitzstrom von den einzelnen Rotorblättern zur Maschinenhausstruktur zu leiten, ohne dass dabei Strom durch die Rotorblattnabe und die Hauptlager fließt, ist ein drehbarer Blitzstromableiter zwischen den Rotorblättern und dem Maschinenhaus vorgesehen.

Die Ableitungssysteme der einzelnen Rotorblätter werden vom Nabengehäuse getrennt gehalten und sind über den Blitzstromableiter mit der Maschinenhausstruktur verbunden.

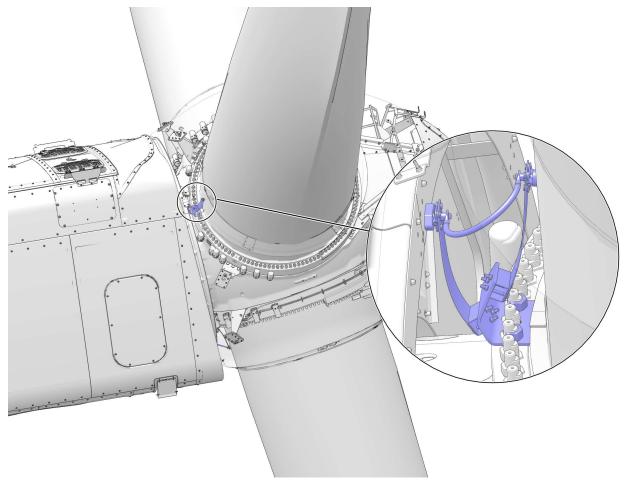


Abbildung 3.6: Blitzstromableiter zwischen den Rotorblättern und der Maschinenhausstruktur

Die Fähigkeit des Blitzstromableiters, Blitzspannung abzuleiten, wurde in Funktionsprüfungen bestätigt.

3.7 Ableitung vom Maschinenhaus zum Turm

0011374961

Es gibt strukturelle Verbindungen vom Maschinenhaus zum oberen Azimutflansch. Um eine Stromführung durch die Azimutgetriebe und -lager zu vermeiden, sind Blitzstromübertragungskontakte aus Messing im Azimutlager installiert.

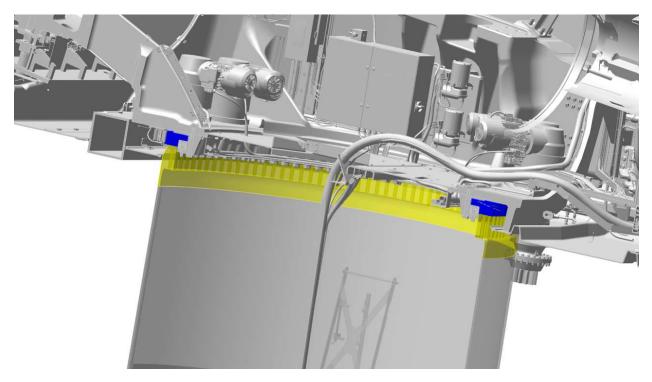
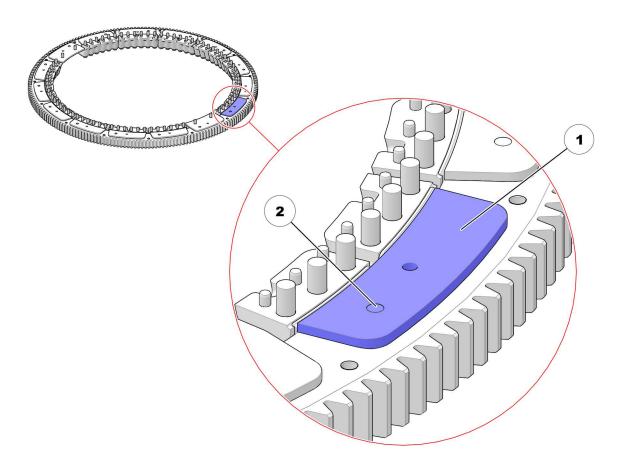



Abbildung 3.7: Azimutlagerschutz

1 Gleitplatte

2 Bronzeelement

Abbildung 3.8: Diese Abbildung zeigt ein Bronzeelement in einer Nylon-Gleitplatte, die das Maschinenhaus elektrisch mit dem Turm verbindet.

Es gibt zwei Arten von Türmen:

- Stahlrohrturm
- Hybridturm (Oberteil aus Stahl und Betonsockel)

Der Turm fungiert als Ableitungssystem mit sehr großem Querschnitt, wodurch der Spannungsabfall im Turm gering ist.

3.9 Das Ableitungssystem vom Turmfuß zum Erdungssystem

0011420559

Im Turmsockel sind alle Erdungskabel und Erdungsverbindungen mit der Haupterdungsschiene verbunden.

Abbildung 3.9: Verbindung zwischen dem Turm und der Haupterdungsschiene

3.10 Schutz der Elektrik und der Steuerungssysteme

0011374958

Der Mittelspannungstransformator muss unbedingt gegen Blitzschlag geschützt werden. Vestas gewährleistet dies durch den Einbau von Mittelspannungsableitern an den Mittelspannungsanschlüssen und am Überspannungsschutz auf der Niederspannungsseite.

3.11 Erdungssysteme

3.11.1 Onshore-Windenergieanlage

0011420558

Es gibt 2 Arten von Erdungssystemen: Erstens das Erdungssystem von Vestas und zweitens das bei der Hybridturmlösung eingesetzte extern bereitgestellte Erdungssystem.

Das Hybridturm-Erdungssystem ist eine Kombination aus dem Erdungssystem von Vestas und dem Erdungssystem des Lieferanten. Ein Hybridturm besteht aus einem Oberteil aus Stahl und einem Betonsockel. Für die Erdungssysteme von Hybridtürmen ist der Lieferant zuständig (nicht Vestas). Die erforderlichen Zertifikate für den Hybridturm und die zugehörigen Erdungssysteme werden vom Lieferanten erworben.

Die nachfolgende Beschreibung gilt sowohl für das Erdungssystem von Vestas als auch für das Hybridturm-Erdungssystem:

Das Erdungssystem ist als Sicherheitserdung und Funktionserdung in einer "Typ-B-Anordnung" konzipiert.

Aus Sicht einer einzelnen Windenergieanlage besteht das Erdungssystem prinzipiell aus drei einzelnen Erdungssystemen. Die erste Einheit ist die Fundamenterdung. Die zweite und die dritte Einheit sind die Erdverbindungskabel zwischen den einzelnen Windenergieanlagen und der horizontalen Erdungselektrode.

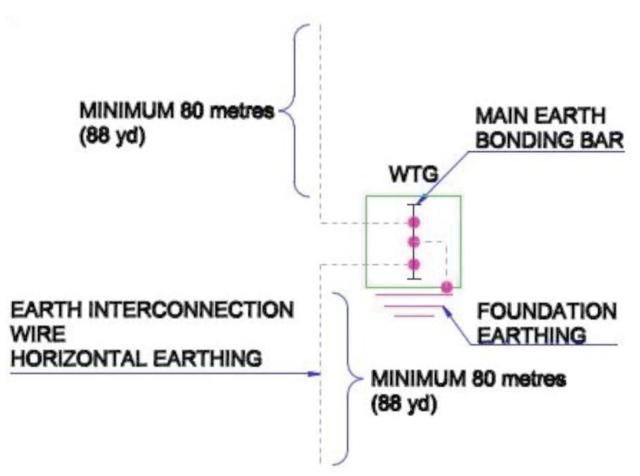


Abbildung 3.10: Prinzipdarstellung des Vestas-Erdungssystems

Im Erdungssystem sind die Windenergieanlagen in einem Windpark oder einem Netz von Windenergieanlagen zusätzlich mit einem Erdverbindungskabel zu einem gemeinsamen Erdungssystem verbunden.

Das Erdungssystem ist das Erdungssystem für das Mittelspannungssystem, das Niederspannungssystem und das Blitzschutzsystem für jede Windenergieanlage. Es ist darüber hinaus das Erdungssystem für die Mittelspannungsverteilung innerhalb des Windparks.

Bezüglich des Blitzschutzes der Windenergieanlage fordert Vestas für dieses System keinen bestimmten, in Ohm gemessenen Widerstand zur Bezugserde. Die Erdung der Blitzschutzsysteme basiert auf dem Aufbau und der Konstruktion des Vestas-Erdungssystems und entspricht den IEC-Normen.

Ein Teil des Erdungssystems ist die Hauptpotenzialausgleichsschiene, die am Kabeleintritt aller

Ein Teil des Erdungssystems ist die Hauptpotenzialausgleichsschiene, die am Kabeleintritt aller Zuleitungen zur Windenergieanlage montiert ist. Alle Erdungselektroden sind mit dieser Hauptpotenzialausgleichsschiene verbunden. Zusätzlich sind Potenzialausgleichsverbindungen an allen Zu- oder Ableitungen der Windenergieanlage installiert.

Die Anforderungen der Spezifikation und der Arbeitsanweisung für das Vestas-Erdungssystem entsprechen den Mindestanforderungen von Vestas und der IEC. Lokale und nationale sowie projektspezifische Anforderungen können gegebenenfalls zusätzliche Maßnahmen erforderlich machen.

Weitere Informationen zum Vestas-Erdungssystem siehe 0000-3388 "Vestas-Erdungssystem".

Weitere Informationen zum Erdungssystem für den Hybridturm siehe Lieferantendokumentation.

3.11.2 Offshore-Windenergieanlage

0011420557

Das Vestas-Erdungssystem ist als "Typ-B-Anordnung" basierend auf Fundamenterdung (Monopile) konzipiert. Der Monopile fungiert als zusätzliche vertikale Erdungselektrode, damit das Erdungssystem die im Vergleich zum Blitzschutzsystem erforderliche Größe und Länge aufweist. Im Vestas-Erdungssystem sind die Windenergieanlagen in einem Windpark oder einem Netz von Windenergieanlagen zusätzlich mit einem Verbindungskabel zu einem gemeinsamen Erdungssystem verbunden.

Ein Teil des Vestas-Erdungssystems ist die Hauptpotenzialausgleichsschiene, die am Kabeleintritt aller Seekabel zum Turm der Windenergieanlage montiert ist. Die Erdungselektrode selbst ist mit der Hauptpotenzialausgleichsschiene verbunden. Potenzialausgleichsverbindungen an allen Zu- oder Ableitungen der Windenergieanlage am Kabeleintritt sind mit der Hauptpotenzialausgleichsschiene verbunden. Die Hauptpotenzialausgleichsschiene wird direkt an die Fundamentsektion des Turms geschweißt/geschraubt. Sie ist somit direkt mit dem Turm und allen anderen metallischen Teilen der Windenergieanlage verbunden.

Blitzschutz und elektromagnetische Verträglichkeit Dokumentennr.: 0059-1120 V08 · Klassifizierung: RESTRICTED · Typ: T09

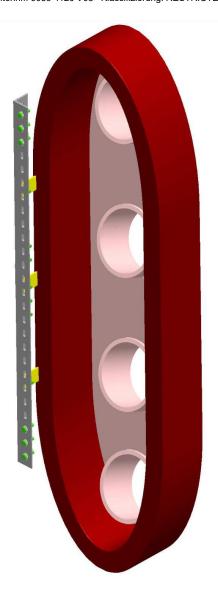


Abbildung 3.11: Mögliche Einbaulage der Hauptpotenzialausgleichsschiene

Lichtwellenleiter mit Metallkabelschirmen oder anderen metallischen Komponenten müssen ebenfalls direkt mit der Hauptpotenzialausgleichsschiene am Eintrittspunkt verbunden werden.

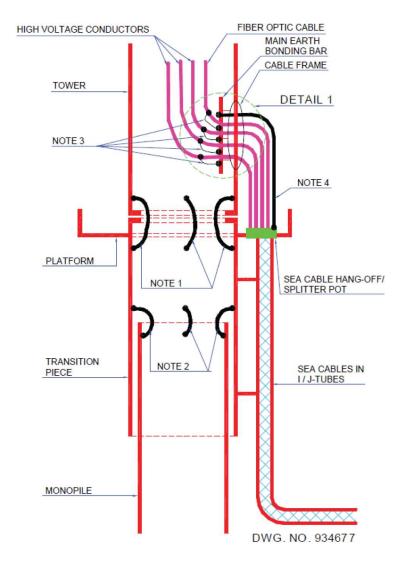
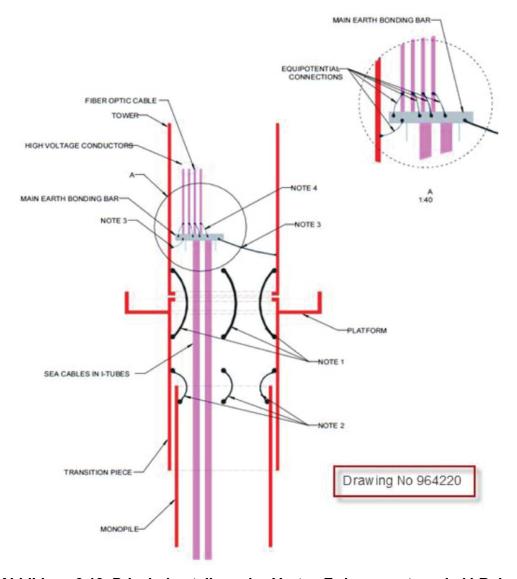



Abbildung 3.12: Prinzipdarstellung des Vestas-Erdungssystems bei J-Rohr-Aufstellung

Abbildung 3.13: Prinzipdarstellung des Vestas-Erdungssystems bei I-Rohr-Aufstellung

Generell sind alle metallischen Teile in und in unmittelbarer Reichweite der Windenergieanlage miteinander und mit dem Erdungssystem verbunden. All dies hat zur Folge, dass alle Teile sowie das umgebende Erdreich und Wasser beim Auftreten von Strömen im Erdungssystem auf dasselbe Potenzial gehoben werden. Wenn alle metallischen Teile sowie das umgebende Erdreich und Wasser auf das gleiche Potenzial gehoben werden, kann keine Berührungsspannung oder Schrittspannung entstehen.

Weitere Informationen zum Vestas-Erdungssystem siehe 0000-3388 "Vestas-Erdungssystem".

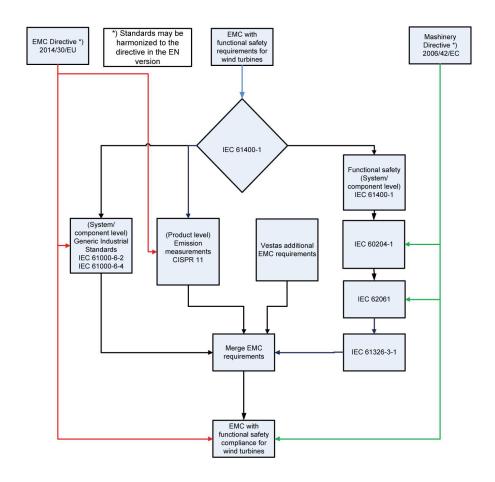
3.12 Verifizierung

0011420556

Die Überprüfung des Blitzschutzsystems erfolgt gemäß IEC 61400-24:2010 und für Windenergieanlagen des Typs V117 gemäß den erhöhten Werten in JISC 1400-24:2014.

4 EMV 0011420555

Vestas-Windenergieanlagen müssen die EMV-Richtlinie 2014/30/EU sowie alle EMV-bezogenen Aspekte der Maschinenrichtlinie 2006/42/EG zur funktionalen Sicherheit erfüllen.


Motivation für die EMV-Richtlinie ist die Gewährleistung der elektromagnetischen Verträglichkeit zwischen elektrischen Geräten. Eine detaillierte Beschreibung ist im Abschnitt "Grundlegende EMV-Anforderungen" zu finden.

Vestas konzentriert sich auf drei Bereiche, um die Anforderungen der europäischen EMV-Richtlinie zu erfüllen:

- Konformität der Windenergieanlagen
- Anerkannte Regeln der Technik
- Komponentenübergreifende Konformität

4.1 Rechtsvorschriften

0011420554

Abbildung 4.1: Rechtsvorschriften

Vestas entwickelt und produziert unter Einhaltung der EMV-Anforderungen gemäß den in der EMV-Richtlinie und in der Maschinenrichtlinie festgelegten Anforderungen des Europäischen Rates im Hinblick auf die funktionale Sicherheit.

RICHTLINIE 2014/30/EU des Europäischen Parlaments und des Rates vom 26. Februar 2014

zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit (Neufassung)

und

Seite 20 von 21

Blitzschutz und elektromagnetische Verträglichkeit Dokumentennr.: 0059-1120 V08 · Klassifizierung: RESTRICTED · Typ: T09

RICHTLINIE 2006/42/EG des Europäischen Parlaments und des Rates

vom 17. Mai 2006

über Maschinen und zur Änderung der Richtlinie 95/16/EG (Neufassung)

Die Einhaltung der EMV-Richtlinie und der Maschinenrichtlinie wird durch die in der Norm für die Produktebene genannten Prüfungen belegt:

IEC 61400–1 "Windenergieanlagen – Teil 1: Auslegungsanforderungen" behandelt Sicherheitsaspekte, Integrität von Qualitätssicherung und Konstruktion und legt die Sicherheitsanforderungen bei Entwicklung, Aufstellung und Betrieb von Windenergieanlagen-Generatorsystemen fest.

IEC 61400–1 nennt die grundlegenden Auslegungsanforderungen zur Gewährleistung der Konstruktionsintegrität von Windenergieanlagen. Ziel ist der angemessene Schutz vor Schäden durch unterschiedlichste Gefahren während der gesamten geplanten Lebensdauer. Diese Norm gilt für alle Untersysteme von Windenergieanlagen, darunter Steuer- und Schutzmechanismen, interne elektrische Systeme, mechanische Systeme und Trägerkonstruktionen. Diese Norm gilt für Windenergieanlagen jeder Größe.

CISPR 11 "Industrielle, wissenschaftliche und medizinische Geräte – Funkstörungen – Grenzwerte und Messverfahren".

CISPR 11 definiert den Messaufbau und die Messverfahren sowie die zulässigen Grenzwerte für Funkstörungen durch Industriegeräte.

4.1.1 Grundlegende EMV-Anforderungen

0011420553

Die grundlegenden EMV-Anforderungen sind in ANHANG I der EMV-Richtlinie 2014/30/EU unter "Schutzanforderungen" und "Besondere Anforderungen an ortsfeste Anlagen" aufgeführt.

Die Windenergieanlage muss nach dem Stand der Technik so konstruiert und gefertigt sein, dass

- die von ihr verursachten elektromagnetischen Störungen den Pegel nicht übersteigen, bei dem ein bestimmungsgemäßer Betrieb von Funk- und Telekommunikationsgeräten oder anderen Betriebsmitteln nicht mehr möglich ist;
- die Windenergieanlage gegen die bei bestimmungsgemäßem Betrieb zu erwartenden elektromagnetischen Störungen hinreichend unempfindlich sind, um ohne unzumutbare Beeinträchtigung bestimmungsgemäß arbeiten zu können.

4.2 Konformität der Windenergieanlagen

0011420552

Der Nachweis über die Erfüllung der grundlegenden Anforderungen der EMV-Richtlinie wird durch Durchführung einer Messung der *endgültigen Emissionsmenge* erbracht.

Die Messungen der *endgültigen Emissionsmenge* sind verschiedene *in-situ-*Messungen, die an der repräsentativen Windenergieanlage der jeweiligen Mk-Version durchgeführt werden.

Die Zuverlässigkeitsanforderungen umfassen zusätzliche EMV-Testfälle, die die in Abschnitt Abschnitt 3 *Blitzschutz*, Seite 4 beschriebenen Auswirkungen von Blitzschlägen behandeln.

In situ kommt aus dem Lateinischen und bedeutet wörtlich "vor Ort".

4.3 Anerkannte Regeln der Technik

0011420551

Zur Einhaltung der anerkannten Regeln der Technik hat Vestas einige individuelle Richtlinien entwickelt, die sich besonders mit der Aufstellung spezieller Bauteile in einer Windenergieanlage befassen.

Die Beurteilung der EMV- und Blitzschutz-Installationsmethoden erfolgt auf Systemebene.

4.4 Komponentenübergreifende Konformität

0011420550

Zur Gewährleistung komponentenübergreifender Konformität müssen alle elektronischen Bauteile aufgrund der anspruchsvollen Blitzumgebung die generischen EMV-Konformitätsanforderungen sowie die Zuverlässigkeitsanforderungen von Vestas erfüllen.

Hinsichtlich der Immunität gegenüber ausgestrahlten und leistungsgestrahlten Störungen erfüllen alle in der Windenergieanlage verbauten Komponenten die jeweiligen Produktstandards oder zumindest die Anforderungen der IEC 61000-6-2. Für elektronische Komponenten gilt im Hinblick auf die Beurteilung der funktionalen Sicherheit die Norm IEC 61326-3-1.

Für die interne Umgebung gelten die Emissionsanforderungen aus der Norm IEC 61000-6-4 oder die entsprechenden Produktnormen für Komponenten.

