Eingeschränkte Weitergabe Dokumentennr.: 0067-7060 V08 08.11.2021

Allgemeine Beschreibung 4-MW-Plattform

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform

Management

Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Inhaltsverzeichnis

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 2 von 47

Inhaltsverzeichnis

1	Einführung	
2	Allgemeine Beschreibung	
3	Mechanische Konstruktion	7
3.1	Rotor	7
3.2	Rotorblätter	7
3.3	Blattlager	8
3.4	Pitchsystem	8
3.5	Nabe	9
3.6	Hauptwelle	9
3.7	Hauptlagergehäuse	9
3.8	Hauptlager	9
3.9	Getriebe	9
3.10	Generatorlager	10
3.11	Kupplung der schnellen Welle	10
3.12	Azimutsystem	
3.13	Kran	
3.14	Türme	
3.15	Maschinenhausrahmen und -dach	
3.16	Wärmekonditionierungssystem (Klimaanlage)	
3.16.1	Generator- und Umrichterkühlung	
3.16.2	Getriebe- und Hydraulikkühlung	
3.16.3	Transformatorkühlung	
3.16.4	Maschinenhauskühlung	
3.16.5	Optionale Luken für Lufteinlass	
4	Elektrisches System	
4.1	Generator	
4.2	Umrichter	
4.3	Mittelspannungstransformator	
4.3.1	Ökodesign – Version IEC 50/60 Hz	
4.4	Mittelspannungskabel	
4.5	Mittelspannungsschaltanlage	
4.5.1	IEC-50-Hz/60-Hz-Version	
4.5.2	IEEE 60-Hz-Version	
4.6	AUX-System	
4.7	Winderfassungssystem	
4.8	Vestas Multi Processor (VMP) Controller	24
4.9	Unterbrechungsfreie Stromversorgung (USV)	
- 5 5	WEA-Schutzsysteme	
5 5.1	Bremskonzept	
5.2	Kurzschlussschutz	
5.2 5.3	Überdrehzahlschutz	
5.4	Lichtbogendetektor	
5. 4 5.5	Rauchmeldesystem	
5.6	Blitzschutz von Rotorblättern, Maschinenhaus, Rotorblattnabe und Turm	
5.0 5.7	EMV	
5. <i>1</i> 5.8	Erdung	
5.6 5.9	Korrosionsschutz	
ა.ყ 6	Sicherheit	
6 .1	Zugang	
6.2	Escape	
6.2 6.3	Räume/Arbeitsbereiche	
0.5	Raume/Arbeitsbereiche	

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform

Management

Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Inhaltsverzeichnis

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 3 von 47

6.4	Boden, Plattformen, Sten- und Arbeitspiatze	
6.5	Transportaufzug	30
6.6	Aufstiegsmöglichkeiten	30
6.7	Bewegliche Teile, Schutzeinrichtungen und Sperrvorrichtungen	30
6.8	Beleuchtung	31
6.9	Notstopp	31
6.10	Unterbrechung der Stromversorgung	31
6.11	Brandschutz/Erste Hilfe	31
6.12	Warnschilder	31
6.13	Handbücher und Warnhinweise	31
7	Umgebung	32
7.1	Chemikalien	
8	Auslegungsrichtlinien	32
8.1	Auslegungsrichtlinien – Baukonstruktion	32
9	Farben	
9.1	Maschinenhausfarbe	33
9.2	Turmfarbe	33
9.3	Rotorblattfarbe	33
10	Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale	34
10.1	Klima- und Standortbedingungen	
10.2	Betriebsbereich – Temperatur und Höhe	
10.3	Betriebsbereich – Temperatur und Höhe	34
10.4	Betriebsbereich – Netzanschluss	37
10.5	Betriebsbereich – Blindleistungskapazität im 4,0-MW-Modus 0	38
10.6	Betriebsbereich – Blindleistungskapazität im blindleistungsoptimierten 4,0-MW-Modus	
	(QO1)	39
10.7	Betriebsbereich – Blindleistungskapazität im leistungsoptimierten 4,2-MW-Modus	
	(PO1)	40
10.8	Betriebsbereich – Temperaturabhängige Blindleistungskapazität	41
10.9	Leistungsmerkmal – Durchfahren von Netzfehlern	42
10.10	Leistung – Blindstrombeitrag	43
10.10.1	Asymmetrischer Blindstrombeitrag	43
10.11	Leistung – Mehrfache Spannungsabfälle	43
10.12	Leistung – Regelung von Wirk- und Blindleistung	44
10.13	Leistungsmerkmal – Spannungsregelung	44
10.14	Leistung – Frequenzregelung	44
10.15	Verzerrung – Störfestigkeit	44
10.16	Hauptbeitragende zum Eigenverbrauch	
11	Zeichnungen	46
11.1	Konstruktionsauslegung – Darstellung der Außenabmessungen	46
11.2	Baukonstruktion – Seitenansichtszeichnung	
12	Allgemeine Einschränkungen, Hinweise und Haftungsausschlüsse	47

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Inhaltsverzeichnis

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 4 von 47

Der Empfänger bestätigt, dass (i) die vorliegende allgemeine Beschreibung nur zur Information des Empfängers bereitgestellt wird und keine Haftungen, Garantien, Versprechen, Verpflichtungen oder andere Zusicherungen (Zusagen) durch Vestas Wind Systems oder eine seiner Tochtergesellschaften (Vestas) nach sich zieht oder darstellt. Solche werden ausdrücklich von Vestas nicht anerkannt, und (ii) sämtliche Verpflichtungen von Vestas gegenüber dem Empfänger bezüglich dieser allgemeinen Beschreibung (oder sonstiger Inhalte des vorliegenden Dokuments) müssen in unterzeichneten, zwischen dem Empfänger und Vestas geschlossenen schriftlichen Verträgen dargelegt sein; die im vorliegenden Dokument enthaltenen Angaben sind diesbezüglich nicht verbindlich.

Siehe allgemeine Einschränkungen, Hinweise und Haftungsausschlüsse (inklusive Abschnitt 12, S. 45) dieser allgemeinen Beschreibung

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Einführung

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 5 von 47

Einführung

Die in der vorliegenden allgemeinen Beschreibung enthaltenen Konfigurationen einer 4-MW-Plattform-Windenergieanlage sind im Folgenden aufgelistet. Die Bezeichnungen folgen der Norm IEC 61400-22.

Die Windklassen nach DIBt 2012 sind dort angegeben, wo eine entsprechende Beschränkung besteht.

Die vollständige Windklasseneinordnung findet sich in der Leistungsspezifikation zur betreffenden Windenergieanlagenvariante.

Die vorliegende allgemeine Beschreibung enthält Daten und Beschreibungen, die für alle Plattformvarianten gelten.

Die variantenspezifischen Leistungsdaten sind den Leistungsspezifikationen zur jeweiligen Windenergieanlage und dem erforderlichen Betriebsmodus zu entnehmen.

Klassifizierung Windenergieanla gentyp	Windenergieanlagentyp Betriebsmodus
	V117-4.0 MW IEC IB / IEC IIA 50/60 Hz Modus 0
V447 4 0/4 0 BBW	V117-4.0 MW IEC IB / IEC IIA 50/60 Hz blindleistungsoptimierter Modus (QO1)
V117-4.0/4.2 MW Starker Wind	V117-4.2 MW IEC S / IEC IIA 50/60 Hz leistungsoptimierter Modus (PO1)
Starker Willia	V117-3.8 MW IEC IB / IEC IIA 50/60 Hz lastoptimierter Modus (LO1)
	V117-3.6 MW IEC IB / IEC IIA+ 50/60 Hz lastoptimierter Modus (LO2)
	V117-4.0 MW IEC IB-T / IEC IIA 50/60 Hz Modus 0
V117-4.0/4.2 MW	V117-4.0 MW IEC IB-T / IEC IIA-T 50/60 Hz blindleistungsoptimierter Modus (QO1)
Wirbelsturm	V117-4.2 MW IEC S-T / IEC IIA-T 50/60 Hz leistungsoptimierter Modus (PO1)
	V117-3.8 MW IEC IB-T / IEC IIA-T 50/60 Hz lastoptimierter Modus (LO1)
	V117-3.6 MW IEC IB-T / IEC IIA+-T 50/60 Hz lastoptimierter Modus (LO2)
	V136-4.0 MW IEC IIB / IEC IIIB 50/60 Hz Modus 0
	V136-4.0 MW IEC IIB / IEC IIIB 50/60 Hz blindleistungsoptimierter Modus (QO1)
	V136-4.2 MW IEC S / IEC IIIB 50/60 Hz leistungsoptimierter Modus (PO1)
	V136-3.8 MW IEC IIB / IEC IIIB 50/60 Hz lastoptimierter Modus (LO1)
V136-4.0/4.2 MW	V136-3.6 MW IEC IIB / IEC IIIB 50/60 Hz lastoptimierter Modus (LO2)
V 130-4.0/4.2 IVIVV	V136-4.0 MW DIBt S 50 Hz Modus 0
	V136-4.0 MW DIBt S 50 Hz blindleistungsoptimierter Modus (QO1)
	V136-4.2 MW DIBt S 50 Hz lastoptimierter Modus (PO1)
	V136-3.8 MW DIBt S 50 Hz lastoptimierter Modus (LO1)
	V136-3.6 MW DIBt S 50 Hz lastoptimierter Modus (LO2)
V150-4.0/4.2 MW	V150-4.0 MW IEC IIIB 50/60 Hz Modus 0
V 13U-4.U/4.Z IVIVV	V150-4.0 MW IEC IIIB 50/60 Hz blindleistungsoptimierter Modus (QO1)

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Allgemeine Beschreibung

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 6 von 47

Klassifizierung Windenergieanla gentyp	Windenergieanlagentyp Betriebsmodus		
	V150-4.2 MW IEC S 50/60 Hz lastoptimierter Modus (PO1)		
	V150-3.8 MW IEC IIIB / IEC S 50/60 Hz lastoptimierter Modus (LO1)		
	V150-3.6 MW IEC IIIB / S 50/60 Hz lastoptimierter Modus (LO2)		
	V150-4.0 MW DIBt S 50 Hz Modus 0		
	V150-4.0 MW DIBt S 50 Hz blindleistungsoptimierter Modus (QO1)		
V150-4.0/4.2 MW	V150-4.2 MW DIBt S 50 Hz lastoptimierter Modus (PO1)		
(fortlaufend)	V150-3.8 MW DIBt S 50 Hz lastoptimierter Modus (LO1)		
	V150-3.6 MW DIBt S 50 Hz lastoptimierter Modus (LO2)		

Tabelle 1 1: Aufgeführte Konfigurationen einer 4-MW-Plattform-Windenergieanlage

2 Allgemeine Beschreibung

Die 4-MW-Plattform von Vestas umfasst eine Familie von Windenergieanlagen mit der gleichen Konstruktionsgrundlage.

Zu der 4-MW-Plattform-Familie von Windenergieanlagen gehören die Modelle V105-3.45/3.6 MW, V112-3.45/3.6 MW, V117-3.45/3.6 MW, V126-3.45 MW LTq, V126-3.45/3.6 MW HTq, V136-3.45/3.6 MW, V117-4.0/4.2 MW starker Wind, V117-4.0/4.2 MW Taifun, V136-4.0/4.2 MW und V150-4.0/4.2 MW.

Für V105-3.45/3.6 MW, V112-3.45/3.6 MW, V117-3.45/3.6 MW, V126-3.45 MW LTq, V126-3.45/3.6 MW HTq und V136-3.45/3.6 MW siehe allgemeine Beschreibung 0053-3707.

Diese allgemeine Beschreibung gilt nur für V117-4.0/4.2 MW starker Wind, V117-4.0/4.2 MW Taifun, V136-4.0/4.2 MW und V150-4.0/4.2 MW.

Es handelt sich dabei um Aufwindanlagen mit Pitch-Regelung, aktiver Windnachführung und Dreiblattrotor.

Die Windenergieanlagen in dieser allgemeinen Beschreibung sind mit Rotoren mit Durchmessern im Bereich von 117 m bis 150 m und einer Nennleistung von 4,0 MW ausgestattet.

Ein blindleistungsoptimierter 4,0-MW-Modus (QO1) ist für alle Varianten verfügbar.

Ein leistungsoptimierter 4,2-MW-Modus (PO1) ist für alle Varianten verfügbar.

Zudem sind ein lastoptimierter 3,8-MW-Modus (LO1) und ein lastoptimierter 3,6-MW-Modus (LO2) für alle Varianten verfügbar.

Bei der Windenergieanlagenfamilie kommen das Konzept OptiTip[®] sowie ein Energieerzeugungssystem auf Grundlage eines Induktionsgenerators mit Vollumrichter zum Einsatz. Mit diesen Komponenten kann die Windenergieanlage

Typ: T05 – Allgemeine Beschreibung

Management

Allgemeine Beschreibung 4-MW-Plattform Mechanische Konstruktion

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 7 von 47

den Rotor mit variabler Drehzahl betreiben, wodurch sich auch bei hohen Windgeschwindigkeiten die Nennleistung (ungefähr) erreichen lässt. Bei geringen Windgeschwindigkeiten arbeiten das Konzept OptiTip[®] und das Energieerzeugungssystem zusammen, um die abgegebene Leistung durch eine Optimierung von Rotordrehzahl und Pitchwinkel zu maximieren.

Ein Betrieb der Windenergieanlage im blindleistungsoptimierten 4,0-MW-Modus (QO1) lässt sich über eine gegenüber dem 4,0-MW-Modus-0-Betrieb erweiterte Umgebungstemperatur-Herabregelungsstrategie erzielen.

Ein Betrieb der Windenergieanlage im leistungsoptimierten 4,2-MW-Modus (PO1) lässt sich über eine gegenüber dem 4,0-MW-Modus-0-Betrieb erweiterte Umgebungstemperatur-Herabregelungsstrategie sowie eine verringerte Blindleistungskapazität erzielen.

3 Mechanische Konstruktion

3.1 Rotor

Die Windenergieanlage ist mit einem Rotor mit drei Rotorblättern und einer Nabe ausgestattet. Der Anstellwinkel der Rotorblätter wird vom mikroprozessorgesteuerten Pitchregelungssystem OptiTip® reguliert. Die Rotorblätter werden also je nach dem vorherrschenden Wind kontinuierlich auf den optimalen Pitchwinkel eingestellt.

Rotor	V117	V136	V150
Durchmesser	117 m	136 m	150 m
Drehbereich	1075 1 m ²	14527 m ²	17671 m ²
Drehzahl, dynamischer Betriebsbereich	6,7 – 17,5	5,6 – 14,0	4,9 – 12,0
Drehrichtung Im Uhrzeigersinn (von vorn gesehen)		gesehen)	
Ausrichtung	Windwärts		
Neigung	6°		
Konischer Winkel der Nabe	4°	4°	5,5°
Blattzahl 3			
Aerodynamische Bremsen	Volle Fahnenstellung		

Tabelle 3-1: Rotordaten

3.2 Rotorblätter

Die Rotorblätter werden aus Kohle- und Glasfaser gefertigt und bestehen aus zwei Blattprofilen, die an einem Träger befestigt sind oder mit eingelassener Struktur.

Management
Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Mechanische Konstruktion

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 8 von 47

Rotorblätter	V117	V136	V150
Typbeschreibung	Blattprofile	Prepreg oder	Prepreg oder
	verbunden	strukturell	strukturell
	mit Träger	eingegossene	eingegossene
		Blattprofilschalen	Blattprofilschalen
Rotorblattlänge	57,15 m	66,66 m	73,66 m
Material	Glasfaserverstärktes Epoxidharz, Karbonfasern und		
	massive Metallspitze (SMT)		
Befestigung der	Stahleinsätze zur Verankerung		
Rotorblätter			
Blattprofile	Auftriebsprofil		
Maximale Profilsehne	4,0 m	4,1 m	4,2 m
Profilsehne bei 90 %	1,1 m	1,2 m	1,4 m
Rotorblattradius			

Tabelle 3.2 Rotorblattdaten

3.3 Blattlager

Die Blattlager ermöglichen den Blättern einen Betrieb mit unterschiedlichen Pitchwinkeln.

Blattlager	
Art des Blattlagers (V117/V136)	Zweireihige Vierpunktkugellager
Art des Blattlagers (V150)	3-reihige Rollenlager
Schmierung	Manuelle Fettschmierung

Tabelle 3-3: Blattlagerdaten

3.4 Pitchsystem

Die Windenergieanlage ist mit einem Pitchsystem für jedes Rotorblatt und einem Verteilerblock in der Nabe ausgestattet. Jedes Pitchsystem ist mit flexiblen Schläuchen an den Ventilblock angeschlossen. Der Ventilblock ist mit den Rohren der Drehdurchführung für die Hydraulik in der Nabe über drei Schläuche (Druckleitung, Rücklaufleitung und Ablassleitung) verbunden.

Jedes Pitchsystem besteht aus einem Hydraulikzylinder, der an der Nabe montiert ist. Die Kolbenstange ist über eine Momentarmwelle am Blattlager montiert. Ventile zum Unterstützen des Pitchzylinderbetriebs sind auf einem Pitchblock montiert, der direkt mit dem Zylinder verschraubt ist.

Pitchsystem	
Тур	Hydraulik
Nummer	1 pro Rotorblatt
Bereich	-10° bis 95°

Tabelle 3 4: Pitchsystemdaten

Hydrauliksystem		
Hauptpumpe	Zwei redundante interne Getriebeölpumpen	
Druck	260 bar	
Filtration	3 μm (absolut)	

Tabelle 35: Hydrauliksystemdaten.

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Mechanische Konstruktion

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 9 von 47

3.5 **Nabe**

Die Nabe nimmt die drei Rotorblätter auf, überträgt die Reaktionslasten auf das Hauptlager und das Drehmoment auf das Getriebe. Die Nabenstruktur stützt ebenfalls die Rotorblattlager und die Pitchzylinder.

Nabe	
Тур	Gusskugelschalennabe
Material	Gusseisen

Tabelle 3-6: Nabendaten

3.6 Hauptwelle

Die Hauptwelle überträgt die Reaktionskräfte auf das Hauptlager und das Drehmoment auf das Getriebe.

Hauptwelle	
Typbeschreibung	Hohlwelle
Material	Gusseisen oder geschmiedeter Stahl

Tabelle 37: Hauptwellendaten

3.7 Hauptlagergehäuse

Das Hauptlagergehäuse umschließt das Hauptlager und ist der erste Verbindungspunkt des Triebstrangs mit dem Maschinenhausrahmen.

Hauptlagergehäuse	
Material	Gusseisen

Tabelle 3-8: Hauptlagergehäusedaten

3.8 Hauptlager

Das Hauptlager nimmt die Axiallasten auf.

Hauptlager	
Тур	Zweireihiges Pendelrollenlager
Schmierung	Automatische Fettschmierung

Tabelle 39: Hauptlagerdaten

3.9 Getriebe

Das Hauptgetriebe übersetzt die Rotordrehung mit niedriger Drehzahl in eine Generatordrehung mit hoher Drehzahl.

Die Scheibenbremse ist auf der schnellen Welle montiert. Das Schmiersystem des Getriebes ist eine druckgespeiste Einheit.

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Mechanische Konstruktion

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 10 von 47

Getriebe	
Тур	Planetenstufen und eine Stirnradstufe
Material Getriebegehäuse	Guss
Schmiersystem	Druckgespeiste Ölschmierung
Ersatz-Schmiersystem	Ölsumpfbefüllung aus Falltank
Gesamt-Getriebeölvolumen	1000-1500
Ölreinheitscodes	ISO 4406-/15/12
Wellendichtringe	Labyrinth

Tabelle 3 10: Getriebedaten

3.10 Generatorlager

Die Lager sind fettgeschmiert. Das Fett wird kontinuierlich von einer automatischen Schmiereinheit bereitgestellt.

3.11 Kupplung der schnellen Welle

Die Kupplung überträgt das Drehmoment der schnellen Abtriebswelle des Getriebes auf die Antriebswelle des Generators.

Die Kupplung besteht aus zwei Schichtverbundpackungen mit je vier Verschraubungsstellen und einem Glasfaser-Zwischenrohr mit zwei Metallflanschen.

Die Kupplung ist über zweiarmige Flansche an der Bremsscheibe und der Generatornabe montiert.

3.12 Azimutsystem

Das Azimutsystem ist ein aktives System, dessen Grundlage ein robustes, vorgespanntes Gleitlager und PETP als Reibmaterial bilden.

Azimutsystem	
Тур	Gleitlagersystem
Material	Geschmiedeter Azimutkranz, vergütet. Gleitlagerflächen aus PETP
Windnachführgeschwindigkeit (50 Hz)	0,45°/s
Windnachführgeschwindigkeit (60 Hz)	0,55°/s

Tabelle 3 11: Azimutsystemdaten

Azimutgetriebe	
Тур	Mit mehrstufigem Getriebe
Übersetzungsverhältnis gesamt	944:1
Drehzahl bei Volllast	1,4 U/min an der Abtriebswelle

Tabelle 3 12: Azimutgetriebedaten

Management
Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Mechanische Konstruktion

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 11 von 47

3.13 Kran

Im Maschinenhaus ist der interne Servicekran für bis zur zulässigen Nutzlast (SWL) reichende Umschlagvorgänge untergebracht. Der Servicekran ist als Einzelsystem-Kettenzug ausgeführt.

Kran	
Hubkapazität	Maximum 800 kg

Tabelle 3 13: Krandaten

3.14 Türme

Nach den erforderlichen Bauartzulassungen ausgestattete Rohrtürme mit Flanschverbindungen sind in unterschiedlichen Standardhöhen erhältlich. Bei den Türmen wurden die meisten Innenschweißnähte durch Magnetstützen ersetzt, um eine im Wesentlichen glatte Wand zu erzielen.

Magnete stützen die Last in waagerechter Richtung, und Inneneinbauten wie Plattformen, Leitern usw. werden senkrecht (d. h. in Schwerkraftrichtung) durch eine mechanische Verbindung gestützt. Die glatte Turmkonstruktion reduziert die erforderliche Stahlstärke und macht den Turm im Vergleich zu Türmen mit verschweißten Inneneinbauten leichter.

Verfügbare Nabenhöhen sind in den Leistungsspezifikationen für die jeweilige WEA-Version aufgelistet. Die aufgeführten Nabenhöhen enthalten einen Abstand von der Fundamentsektion zur Bodenhöhe von je nach Stärke des Bodenflansches etwa 0,2 m sowie einen Abstand vom oberen Turmflansch zur Mitte der Nabe von 2,2 m.

Türme	
Тур	Zylindrisches/konisches Rohr

Tabelle 3 14: Turmstrukturdaten

3.15 Maschinenhausrahmen und -dach

Das Maschinenhausdach besteht aus Glasfaser. Im Boden befinden sich Luken zum Auf- oder Abkranen von Ausrüstung ins Maschinenhaus und zum Evakuieren von Personen. Der Dachbereich ist mit einem Windsensorsystem und Dachluken ausgestattet.

Die Dachluken können vom Maschinenhausinneren geöffnet werden, um Zugang zum Dach zu erhalten, und von außen, um Zugang zum Maschinenhaus zu erhalten. Der Zugang zum Maschinenhaus vom Turm aus erfolgt durch das Azimutsystem hindurch.

Der Maschinenhausrahmen besteht aus zwei Teilen, einem Gusseisenteil vorn und einer Trägerkonstruktion hinten. Der Vorderteil des Maschinenhausrahmens dient als Unterbau für den Triebstrang, der die Kräfte über das Azimutsystem vom Rotor auf den Turm überträgt. Die Unterseite ist bearbeitet und mit dem

T05 0067-7060 Ver 08 - Approved- Exported from DMS: 2022-09-22 by INVOL

T05 0067-7060 Ver 08 - Approved- Exported from DMS: 2022-09-22 by INVOL

RESTRICTED

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Mechanische Konstruktion

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 12 von 47

Azimutlager verbunden. Die sechs Azimutgetriebe sind mit dem vorderen Maschinenhausrahmen verschraubt.

Die Kranträger sind am oberen Maschinenhausrahmen befestigt. Die unteren Träger der Trägerkonstruktion sind am hinteren Ende miteinander verbunden. Der hintere Teil des Maschinenhausrahmens dient als Unterbau für die Steuerkonsolen, das Kühlsystem und den Transformator. Das Maschinenhausdach ist auf dem Maschinenhausrahmen installiert.

Typbeschreibung	Material
Maschinenhausdach	GFK
Vorderer Maschinenhausrahmen	Gusseisen
Hinterer Maschinenhausrahmen	Trägerkonstruktion

Tabelle 3 15: Maschinenhausrahmen und Abdeckungsdaten

3.16 Wärmekonditionierungssystem (Klimaanlage)

Die Klimaanlage besteht aus wenigen, robusten Komponenten:

- Der Vestas CoolerTop[®] befindet sich oben an der Rückseite des Maschinenhauses. Der CoolerTop[®] stellt einen Freistrom-Luftkühler dar. Dadurch ist sichergestellt, dass sich keine elektrischen Komponenten der Klimaanlage außerhalb des Maschinenhauses befinden.
- Das CoolerTop ist als Standardvariante und als optionale Hochtemperatur-Variante mit verbesserter Kühlleistung bei hohen Umgebungstemperaturen verfügbar (die HT-Version ist nicht für alle Windenergieanlagenvarianten erhältlich; weitere Informationen hierzu erhalten Sie von Vestas).
- Der CoolerTop[®] wird standardmäßig ohne Seitenabdeckungen geliefert.
 Seitenabdeckungen sind optional erhältlich.
- Das Flüssigkühlsystem, welches Getriebe, Hydrauliksysteme, Generator und Umrichter kühlt, wird durch ein elektrisch betriebenes Pumpensystem angetrieben.
- Die Zwangsluftkühlung für den Transformator ist mit einem Elektrolüfter ausgestattet.

3.16.1 Generator- und Umrichterkühlung

Generator- und Umrichterkühlsysteme arbeiten parallel. Ein im Kühlkreislauf des Generators montiertes dynamisches Durchflussventil teilt den Kühlstrom. Die Kühlflüssigkeit entzieht dem Generator und der Umrichtereinheit über einen Freistrom-Luftkühler an der Oberseite des Maschinenhauses Wärme. Zusätzlich zu Generator, Umrichtereinheit und Kühler beinhaltet die Umwälzanlage eine Elektropumpe und ein thermostatisches Dreiwegeventil.

3.16.2 Getriebe- und Hydraulikkühlung

Getriebe- und Hydraulikkühlung sind parallel geschaltet. Ein im Kühlkreislauf des Getriebes montiertes dynamisches Durchflussventil teilt den Kühlstrom. Die Kühlflüssigkeit entzieht dem Getriebe und der Hydraulikstation über

Management Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 13 von 47

Wärmetauscher und einen Freistrom-Luftkühler an der Oberseite des Maschinenhauses Wärme.

Zusätzlich zu den Wärmetauschern und zum Kühler beinhaltet die Umwälzanlage eine Elektropumpe und ein thermostatisches Dreiwegeventil.

3.16.3 Transformatorkühlung

Der Transformator ist mit einer Zwangsluftkühlung ausgestattet. Das Lüftersystem besteht aus einem mittig platzierten Lüfter unterhalb des Umrichters und einem Lüftungskanal, der zu Stellen unterhalb der und zwischen den Mittelund Niederspannungswicklungen des Transformators führt.

3.16.4 Maschinenhauskühlung

Die von mechanischen und elektrischen Installationen erzeugte Warmluft wird mittels eines im Maschinenhaus befindlichen Gebläsesystems aus dem Maschinenhaus abgeführt.

3.16.5 **Optionale Luken für Lufteinlass**

Bestimmte Lufteinlässe im Maschinenhaus können optional mit Luken ausgerüstet werden, die als Teil der Wärmeregulierungsstrategie betrieben werden können. Bei einer Unterbrechung der Stromnetzverbindung der Windenergieanlage werden die Luken automatisch geschlossen.

4 **Elektrisches System**

4.1 Generator

In die Windenergieanlage ist ein Dreiphasen-Induktionsgenerator mit Kurzschlussläufer eingebaut, der über ein Vollumrichtersystem an das Stromnetz angeschlossen ist. Das Generatorgehäuse ist so beschaffen, dass innerhalb des Stators und des Rotors Kühlluft zirkulieren kann.

Der Luft-Wasser-Wärmeaustausch erfolgt in einem externen Wärmetauscher.

Generator	
Тур	Asynchron mit Kurzschlussläufer
Nennleistung [P _N]	4250/4450 kW
Frequenz [f _N]	0–100 Hz
Spannung, Stator [U _{NS}]	3 x 800 V (bei Nenndrehzahl)
Anzahl der Pole	6
Wicklungstyp	Vakuumdruckimprägniert
Wicklungsverschaltung	Dreieck
Nenndrehzahl	1450–1550 U/min
Überdrehzahlgrenze gemäß IEC (2 Minuten)	2400 U/min
Generatorlager	Hybrid/Keramik
	Voerae

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 14 von 47

Generator	
Temperatursensoren, Stator	Drei Pt100-Sensoren an kritischen Lastpunkten und drei als Reserve
Temperatursensoren, Lager	1 pro Lager
Isolierstoffklasse	Н
Gehäuse	IP54

Tabelle 4-1 Generatordaten

4.2 Umrichter

Der Umrichter ist ein Vollumrichtersystem für die Steuerung des Generators und der Qualität des in das Stromnetz gespeisten Stroms. Das Umrichtersystem besteht aus drei maschinenseitigen Umrichtereinheiten und drei netzseitigen Umrichtereinheiten, die im Parallelbetrieb mit einer gemeinsamen Steuerung laufen.

Der Umrichter wandelt den frequenzvariablen Wechselstrom vom Generator in Festfrequenz-Wechselstrom mit den gewünschten, für das Stromnetz geeigneten Wirk- und Blindleistungswerten (und weiteren Stromnetzanschlussparametern) um.

Der Umrichter befindet sich im Maschinenhaus und hat eine netzseitige Nennspannung von 720 V. Die generatorseitige Nennspannung beträgt je nach Generatordrehzahl bis zu 800 V.

Umrichter	
Scheinnennleistung [S _N]	5100 kVA
Nennspannung im Stromnetz	3 x 720 V
Nennspannung im Generator	3 x 800 V
Nennnetzstrom	4100 A (≤30 °C Umgebungstemperatur)/4150 A (≤20 °C Umgebungstemperatur)
Generatornennstrom	3600 A (≤30 °C Umgebungstemperatur)/3650 A (≤20 °C Umgebungstemperatur)
Gehäuse	IP54

Tabelle 4-2: Umrichterdaten

4.3 Mittelspannungstransformator

Der Mittelspannungstransformator befindet sich in einem separaten, verschlossenen Raum im hinteren Teil des Maschinenhauses.

Beim Transformator handelt es sich um einen dreiphasigen, dreigliedrigen, selbstauslöschenden Trockentransformator mit zwei Wicklungen. Die Wicklungen sind auf der Mittelspannungsseite als Dreieck und auf der Niederspannungsseite sternförmig geschaltet.

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 15 von 47

Der Transformator entspricht den IEC-Normen, erfüllt aber auch die von der EU-Kommission festgelegten europäischen (Ökodesign-)Verordnungen (EU) Nr. 548/2014 und Nr. 2019/1783.

An Standorte in Ländern, in denen die EU-Vorschriften gelten, wird der folgende Transformator geliefert:

- Ökodesign gemäß den Stufe-1-Vorgaben (gültig in der EU bis zum 1. Juli 2021)¹.
- Ökodesign gemäß den Stufe-2-Vorgaben (gültig in der EU ab dem 1. Juli 2021)¹.

In die übrigen Länder wird standardmäßig das Ökodesign gemäß den Stufe-1-Vorgaben geliefert.

4.3.1 Ökodesign – Version IEC 50/60 Hz

Transformator	
Typbeschreibung	Ökodesign-Trockengießharz-Transformator.
Grundstruktur	Dreiphasiger, dreigliedriger Transformator
	mit zwei Wicklungen
Zugrunde gelegte Normen	IEC 60076-11, IEC 60076-16, IEC 61936-1,
	Verordnung der Europäischen Kommission
	Nr. 548/2014 und Verordnung der
	Europäischen Kommission Nr. 2019/1783.
Kühlung	AF
Nennleistung	5150 kVA
Nennspannung, WEA-seitig	
U _m 1,1 kV	0,720 kV
Nennspannung, netzseitig	
U _m 24,0 kV	15,7–22,0 kV
U _m 36,0 kV	22,1–33,0 kV
U _m 40,5 kV	33,1–36,0 kV
Isolationspegel AC/LI/LIC	
	3 ² / 3 / 3 kV
	50 ² / 125 / 125 kV
	70 ² / 170 / 170 kV
U _m 40,5 kV	
Stufenschalter für den	±2 x 2,5 %
lastlosen Zustand	
Frequenz	50/60 Hz
Schaltgruppe	Dyn5
Leerlaufstrom ³	~0,5 %
Positive Kurzschluss-	9,9 %
Mitimpedanz bei	
Nennleistung,	
Referenztemperatur nach	
IEC 60076-11 ⁴	0.004
Positiver	~0,8 %
Kurzschlusswiderstand bei	
Nennleistung,	
Referenztemperatur gemäß IEC 60076-11 ³	
IEC 000/0-11	

T05 0067-7060 Ver 08 - Approved- Exported from DMS: 2022-09-22 by INVOL

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 16 von 47

Transformator		
Nullkurzschlussimpedanz bei	~8,3 %	
Nennleistung,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Referenztemperatur gemäß		
IEC 60076-11 ³		
Nullkurzschlusswiderstand	~0,7 %	
bei Nennleistung,	,	
Referenztemperatur gemäß		
IEC 60076-11 ³		
Leerlaufblindleistung ³	~20 kVAr	
Volllastblindleistung ³	~550 kVAr	
Einschaltspitzenstrom ³	5–8 x Î _n A	
Halbe Scheitelwert-Zeit ³	~0,6 s	
Schallleistungspegel	≤80 dB(A)	
Durchschnittlicher	≤ 90 K	
Temperaturanstieg in der		
max. Höhe		
Maximale Höhe ⁵	2000 m	
Isolierklasse		
NS-Spule	155 (F)	
MS-Spule	155 (F) oder 180 (H)	
Umweltklasse	E2	
Klimaklasse	C2	
Brandschutzklasse	F1	
Korrosionsschutzklasse	C4	
Gewicht	≤11000 kg	
Temperaturüberwachung	Pt100-Sensoren	in
	Niederspannungswicklungen und Kern	
Überspannungsschutz	Überspannungsableiter	an
	Mittelspannungsklemmen	
Temporäre Erdung	Drei Erdungspunkte mit Ø 25 mm	

Tabelle 43: Transformatordaten zur Ökodesign-IEC-50-Hz/60-Hz-Version.

Die Transformatorverlustgrenzen werden bei Nennleistung als Kombination aus Nennlastverlust und Leerlaufverlust angegeben, die den Peak Efficiency Index (PEI) der Ökodesign-Anforderungen erfüllen müssen.

Die Maximalverluste werden durch die PEI-Grenzwerte beschrieben und erstrecken sich über einen Bereich zwischen der Verlustvariante 1 und 2, siehe Abbildung 4 1Abbildung 4 2.

Die Werte der Verlustvarianten werden basierend auf der Energieverlustoptimierung mit dem WEA-Benutzerprofil ausgewählt. Daher ist der Energieverlust der Transformatoren zwischen Verlustvariante 1 und 2 vergleichbar.

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 17 von 47

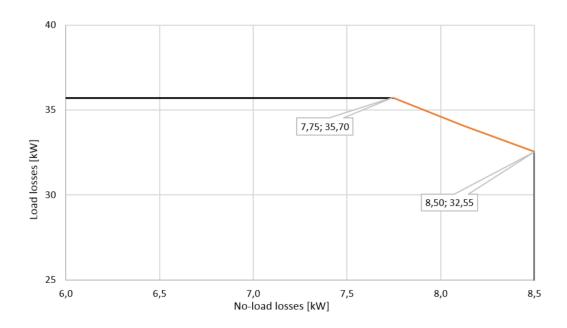


Abbildung 41 Transformatorverluste zulässiger Bereich für Stufe 1

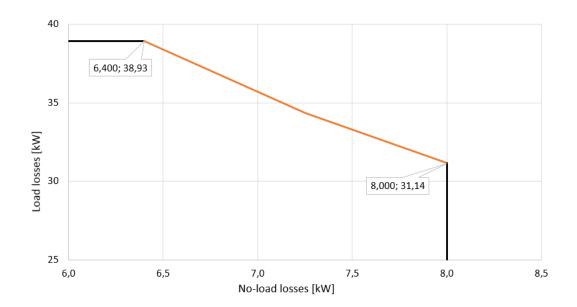


Abbildung 42 Transformatorverluste zulässiger Bereich für Stufe 2

Die tatsächlichen Nennlastverluste variieren je nach Betriebsmodus der Anlage. Daher sind in 44: die Nennlastverluste bei unterschiedlichen Betriebsarten für die beiden Verlustvarianten angegeben. 44: behandelt sowohl die Bauweise des Transformators der Stufe 1 als auch der Stufe 2. Weitere Neuberechnungen der

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 18 von 47

Nennlastverluste bei verschiedenen Betriebsmodi sind Abbildung 4 3 zu entnehmen.

Transformatorverluste, Stufe 1			
Peak Efficiency Index (PEI)	> 99,354		
Verlustvariante 1			
Leerlaufverlust	7,75 kW		
Lastverlust bei	bei 5150 kVA	bei	bei
Leistung,		4200 kVA ⁶	4000 kVA ⁶
Referenztemperatur	≤ 35,70 kW	≤ 23,75 kW	≤ 21,54 kW
gemäß IEC 60076-11			
Verlustvariante 2			
Leerlaufverlust	8,5 kW	T	I
Lastverlust bei	bei 5150 kVA	bei	bei
Leistung,		4200 kVA ⁶	4000 kVA ⁶
Referenztemperatur	≤ 32,55 kW	≤ 21,65 kW	≤ 19,64 kW
gemäß IEC 60076-11			
Transformatorverluste, Stufe	2		
D. I. E(C.) (DEI)	22.22		
Peak Efficiency Index (PEI)	> 99,387		
Various variants 4			
Verlustvariante 1	0.4130/		
Leerlaufverlust	6,4 kW	ha!	la a l
Lastverlust bei	bei 5150 kVA	bei 4200 kVA ⁶	bei 4000 kVA ⁶
Leistung, Referenztemperatur	< 30.03 141/		
gemäß IEC 60076-11	≤ 39,93 kW	≤ 25,89 kW	≤ 23,49 kW
Verlustvariante 2			
Leerlaufverlust	8,0 kW	L	
Lastverlust bei	bei 5150 kVA	bei	bei
Leistung,	DOI O 130 RVA	4200 kVA ⁶	4000 kVA ⁶
	< 31 14 kW		
gemäß IEC 60076-11	UI, I + KVV	, , , , , , , , , , , ,	_ 10,75 KVV
Referenztemperatur	≤ 31,14 kW	≤ 20,71 kW	≤ 18,79 kW

Tabelle 44: Transformatorverluste zur Ökodesign-IEC-50-Hz/60-Hz-Version.

HINWEIS

⁶ Informationswerte auf der Grundlage des Betriebsmodus, siehe Abbildung 4 3.

¹ Das Datum gibt das Datum für den Versand des Transformators vom Hersteller an.

² Bei 1000 m. Gemäß IEC 60076-11 ist die Wechselstrom-Prüfspannung höhenabhängig.

³ Basierend auf den berechneten Durchschnittswerten, über verschiedene Spannungen und Hersteller gemittelt.

⁴ Gemäß IEC-Norm-Toleranzen.

⁵ Die max. Höhe des Transformators lässt sich dem Standort der Windenergieanlage entsprechend einstellen. Bei der Spannungsklasse Um 40,5 kV ist die Höhe für Ökodesign Stufe 2 auf 1000 m begrenzt.

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 19 von 47

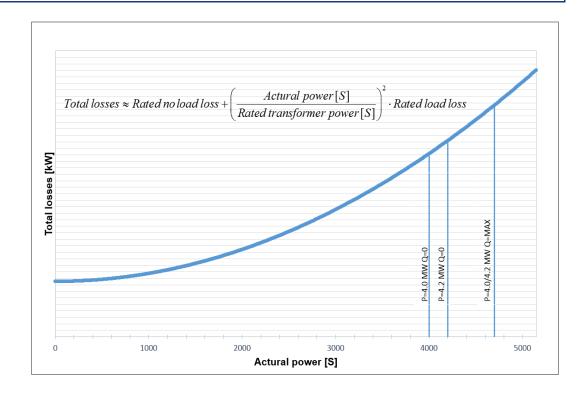


Abbildung 43: Gesamtverluste im Vergleich zur tatsächlichen Leistung.

4.4 Mittelspannungskabel

Das Mittelspannungskabel verläuft vom Transformator im Maschinenhaus am Turm hinunter zur Mittelspannungsschaltanlage in der untersten Turmsektion. Das Mittelspannungskabel kann aus zwei verschiedenen Konstruktionen bestehen:

- Ein dreiadriges, kautschukisoliertes, halogenfreies Mittelspannungskabel mit einem dreiadrigen geteilten Erdleiter.
- Ein vieradriges, kautschukisoliertes, halogenfreies Mittelspannungskabel.

Übersetzung der Originalbetriebsanleitung: T05 0067-7060 VER 08

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform

Management
Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

MittelspannungskabelMittelspannungskabelisolierungVerbesserter Werkstoff EPR auf Ethylen-Propylen-(EP-)Basis oder hochmodularer bzw. Hart-Ethylen-Propylen-Kautschuk HEPRVorkonfektioniertMS-Abschluss im Transformatorende T-Verbinder Typ C in SchaltanlagenendeMaximale Spannung24 kV bei 19,1–22,0 kV Nennspannung 42 kV bei 22,1–36,0 kV NennspannungLeiterquerschnitte3 x 70/70 mm² (einzelner PE-Kern) 3 x 70 + 3 x 70/3 mm² (geteilter PE-Kern)

Tabelle 45: Mittelspannungskabeldaten

4.5 Mittelspannungsschaltanlage

Im Turmkeller wird eine gasisolierte Schaltanlage als integraler Bestandteil der Windenergieanlage installiert. Deren Steuerung ist in das Sicherungssystem der Windenergieanlage integriert, das den Zustand der Schaltanlage sowie der für die Mittelspannungssicherheit relevanten Geräte innerhalb der Windenergieanlage überwacht. Mit dem als "Ready to Protect" bezeichneten System wird gewährleistet, dass bei jeglicher Spannungsbeaufschlagung von Mittelspannungskomponenten der Windenergieanlage sämtliche Schutzvorrichtungen zuverlässig funktionieren. Um sicherzustellen, dass die Schaltanlage stets zum Auslösen bereit ist, ist sie mit redundanten Auslösekreisen, die aus einer aktiven Auslösespule und einer Unterspannungsspule bestehen, ausgestattet.

Bei einem Netzausfall trennt der Leistungsschalter nach einer einstellbaren Zeit die Windenergieanlage vom Netz.

Wenn das Netz wieder verfügbar ist, werden alle relevanten Schutzeinrichtungen automatisch über die USV hochgefahren.

Sind alle Schutzeinrichtungen wieder in Betrieb, wird der Leistungsschalter nach einer einstellbaren Zeit wieder geschlossen. Diese Wiederschließen-Funktion kann außerdem für die Einrichtung einer sequenziellen Unterspannungsetzung eines Windparks verwendet werden, um gleichzeitige Anlaufströme von allen Windenergieanlagen zu vermeiden, sobald nach einem Ausfall wieder Netz vorhanden ist.

Falls der Leistungsschalter aufgrund einer Fehlererkennung ausgelöst hat, wird der Leistungsschalter so lange für eine Wiederverbindung blockiert, bis ein manuelles Rücksetzen durchgeführt worden ist.

Um unbefugten Zutritt zum Transformatorraum bei aufgeschalteter Spannung zu verhindern, enthält der Erdungsschalter des Leistungsschalters ein Schlüsselverriegelungssystem, dessen Gegenstück an der Zugangstür zum Transformatorraum angebracht ist.

Die Schaltanlage ist in drei Varianten mit zunehmendem Funktionsumfang erhältlich; siehe Tabelle 4 6. Darüber hinaus lässt sich die Schaltanlage entsprechend der Zahl an Versorgungsnetzkabeln konfigurieren, die in die jeweilige Windenergieanlage eintreten sollen. Die Konstruktion des jeweilige Windenergieanlage eintreten sollen.

Management
Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 21 von 47

Schaltanlagensystems ist dahingehend optimiert, dass solche Versorgungsnetzkabel sich noch vor Errichtung des Turms an die Schaltanlage anschließen lassen; dank ihrer gasdichten Abdichtung bietet sie dennoch bereits dann Schutz vor Niederschlag- und Kondenswasserabscheidung im Innern.

Die Schaltanlage steht in einer IEC- und in einer IEEE-Version zur Verfügung. Letztere ist allerdings nur in der höchsten Spannungsklasse erhältlich. Die elektrischen Parameter der Schaltanlage zur IEC-Version sind Tabelle 4 7, die zur IEEE-Version Tabelle 4 8 zu entnehmen.

Variante IEC-Normen IEEE-Normen	Basic o o o o	Streamline •	Standard ©
	••	_	•
IEEE-Normen	•	0	
			•
Vakuum-Leistungsschalterkonsole	•	•	•
Überstrom-, Kurzschluss- und Erdungsfehlerschutz	0	•	•
Leistungsschalter/Erdungsschalter in Leistungsschalterkonsole	•	•	•
Anzeigesystem für an Leistungsschalter anliegende Spannung	•	•	•
Anzeigesystem für an Versorgungsnetzkabeln anliegende Spannung	•	•	•
Doppelte Versorgungsnetzkabelverbindung	•	•	•
Dreifache Versorgungsnetzkabelverbindung	•	0	0
Vorkonfigurierte Relaiseinstellungen	•	•	•
Integration des WEA-Sicherheitssystems	•	•	•
Redundante Auslösespulenkreise	•	•	•
Auslösespulenüberwachung	•	•	•
Handbedienung außerhalb des Turms	•	•	•
Sequenzielle Unterspannungsetzung	•	•	•
Wiedereinschaltblockadefunktion	•	•	•
Heizelemente	•	•	•
Schlüsselverriegelungssystem für Leistungsschalterkonsole	•	•	•
Motorbetrieb des Leistungsschalters	•	•	•
Kabelkonsole für Versorgungsnetzkabel (konfigurierbar)	0	•	•
Lasttrennschalterkonsolen für Versorgungsnetzkabel – max. drei Konsolen (konfigurierbar)	0	•	•
Erdungsschalter für Versorgungsnetzkabel	0	•	•
Internal arc classification (Interne Störlichtbogenklassifizierung)	0	•	•
Überwachung der Miniaturtrennschalter	0	•	•
Motorbetätigung der Lasttrennschalter	0	0	•
SCADA-Betätigung und Rückmeldung des Leistungsschalters	0	0	•
SCADA-Betätigung und Rückmeldung der Lasttrennschalter	0	0	•

Tabelle 46: Varianten und Funktionsumfang der Mittelspannungsschaltanlage

Management
Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 22 von 47

4.5.1 IEC-50-Hz/60-Hz-Version

Mittelspannungsschaltanlage		
Typbeschreibung	Gasisolierte Schaltanlage	
Zugrunde gelegte Normen	IEC 62271-103	
Zugrunde gelegte Normen	IEC 62271-103	
	62271-1, 62271-100, 62271-102, 62271-102,	
la alia yena adiyyen		
Isoliermedium	SF ₆	
Bemessungsspannung	45.7.00.011/	
	15,7–22,0 kV	
U _r 36,0 kV		
U _r 40,5 kV	33,1–36,0 kV	
Bemessungs-Isolationspegel AC // LI		
Üblicher Wert/über den Isolierabstand		
U _r 24,0 kV	50/60/125/145 kV	
U _r 36,0 kV	70/80/170/195 kV	
U _r 40,5 kV	85/90/185/215 kV	
Bemessungsfrequenz	50/60 Hz	
Bemessungs-Betriebsstrom	630 A	
Bemessungs-Kurzzeithaltestrom		
U _r 24,0 kV	20 kA	
U _r 36,0 kV		
U _r 40,5 kV		
Bemessungs-Stehspitzenstrom		
50/60 Hz		
U _r 24,0 kV	50/52 kA	
	62,5/65 kA	
U _r 40,5 kV	62,5/65 kA	
Kurzschluss-Bemessungsdauer	1 s	
Störlichtbogenklassifizierung (Option)		
U _r 24,0 kV	IAC A FLR 20 kA, 1 s	
U _r 36,0 kV	IAC A FLR 25 kA, 1 s	
U _r 40,5 kV IAC A FLR 25 kA, 1 s		
Anschlussschnittstelle	Außenkegel-Plug-in-Buchsen, IEC-	
	Schnittstelle C1.	
Kategorie der Betriebsverfügbarkeit (LSC)	LSC2	
Schutzart		
Gasvorratsbehälter	IP 65	
Gehäuse		
Niederspannungs-Schaltschrank		
Korrosionsschutzklasse	C3	

Tabelle 47: Daten zur Mittelspannungsschaltanlage in der IEC-Version

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform

Typ: T05 - Allgemeine Beschreibung

Management

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 23 von 47

4.5.2 IEEE 60-Hz-Version

Mittelspannungsschaltanlage		
Typbeschreibung	Gasisolierte Schaltanlage	
Zugrunde gelegte Normen	IEEE 37.20.3, IEEE C37.20.4,	
	IEC 62271-200, ISO 12944.	
Isoliermedium	SF ₆	
Bemessungsspannung		
U _r 38,0 kV	22,1–36,0 kV	
Bemessungs-Isolationspegel AC/LI	70/150 kV	
Bemessungsfrequenz	60 Hz	
Bemessungs-Betriebsstrom	600 A	
Bemessungs-Kurzzeithaltestrom	25 kA	
Bemessungs-Stehspitzenstrom	65 kA	
Kurzschluss-Bemessungsdauer	1 s	
Störlichtbogenklassifizierung (Option)	IAC A FLR 25 kA, 1 s	
Anschlussschnittstellen-	Außenkegel-Plug-in-Buchsen,	
Versorgungsnetzkabel	IEEE-386-Schnittstelle vom	
	Typ Deadbreak, 600 A.	
Schutzart		
Gasvorratsbehälter	NEMA 4X/IP 65	
Gehäuse	-	
Niederspannungs-Schaltschrank	NEMA 2/IP 3X	
Korrosionsschutzklasse	C3	

Tabelle 48: Daten zur Mittelspannungsschaltanlage in der IEEE-Version

4.6 AUX-System

Das AUX-(Hilfs-)System wird von einem separaten 650/400/230-V-Transformator gespeist, der im Maschinenhaus im Umrichterschrank aufgestellt ist. Alle Motoren, Pumpen, Lüfter und Heizungen werden von diesem System versorgt.

230-V-Verbraucher werden von einem 400/230-V-Transformator gespeist, der im Turmfundament aufgestellt ist. Die interne Heizung und die Lüftung der Schaltschränke sowie eine spezifische Option für 230-V-Verbraucher werden von einem Eigenbedarfstransformator im Umrichterschrank gespeist.

Stromanschlüsse		
Einphasig (Maschinenhaus)	230 V (16 A) (Standard)	
	110 V (16 A) (Option)	
	2 x 55 V (16 A) (Option)	
Einphasig (Turmplattformen)	230 V (10 A) (Standard)	
	110 V (16 A) (Option)	
	2 x 55 V (16 A) (Option)	
Dreiphasig (Maschinenhaus und Turmfundament)	3 x 400 V (16 A)	
Turmundament)		

Tabelle 49: AUX-Systemdaten

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Elektrisches System

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 24 von 47

4.7 Winderfassungssystem

Die Windenergieanlage ist mit einem Windmessungssystem ausgestattet, das unter allen Witterungsbedingungen die Windgeschwindigkeit und die Windrichtung ermitteln kann. Es besteht aus mindestens einem Windsensor, der mit verschiedenen Estimatoren kombiniert ist. Dies ermöglicht eine Schätzung der Windverhältnisse im gesamten Rotorbereich.

4.8 Vestas Multi Processor (VMP) Controller

Die Windenergieanlage wird von der Steuerung VMP8000 gesteuert und überwacht.

Bei VMP8000 handelt es sich um eine Multiprozessor-Steuerung, die aus einer Hauptsteuerung, dezentralen Steuerungsknoten, dezentralen IO-Knoten und Ethernet-Schaltern sowie anderen Netzwerkkomponenten besteht. Die Hauptsteuerung befindet sich im Turmfuß der Windenergieanlage. Sie führt die Steueralgorithmen der Windenergieanlage aus und ist für die IO-Kommunikation zuständig.

Bei dem Kommunikationsnetzwerk handelt es sich um ein zeitgesteuertes Ethernet-Netzwerk (TTEthernet).

Das VMP8000-Steuerungssystem erfüllt folgende Hauptfunktionen:

- Überwachung des Gesamtbetriebs.
- Synchronisierung des Generators mit dem Netz während des Aufschaltvorgangs.
- Betrieb der Windenergieanlage bei unterschiedlichen Fehlerzuständen
- Automatische Windnachführung des Maschinenhauses
- OptiTip® Pitchwinkel-Einstellungssystem
- Blindleistungsregelung und Betrieb mit variabler Drehzahl
- Verringerung der Geräuschemissionen
- Überwachung der Umgebungsbedingungen
- Stromnetzüberwachung
- Überwachung des Rauchmeldesystems

4.9 Unterbrechungsfreie Stromversorgung (USV)

Bei einem Netzausfall versorgt eine USV bestimmte Komponenten mit Strom.

- der 230-VAC-USV als Reservespannungsversorgung für das Maschinenhaus und den Nabensteuerungssystemen
- 2. der 24-VDC-USV als Reservespannungsversorgung für die Steuerungssysteme im Turmfuß und das RtoP-System (Ready to Protect)
- 3. der 230-VAC-USV als Reservespannungsversorgung für Innenbeleuchtung in Turm, Maschinenhaus und Nabe

T05 0067-7060 Ver 08 - Approved- Exported from DMS: 2022-09-22 by INVOL

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform WEA-Schutzsysteme

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 25 von 47

Autonomiezeitraum	Standard	Optional
Steuerungssystem* (230 VAC und 24 VDC USV)	30 Min.	Bis zu 19,5 Stunden **
Ready to Protect (bereit zum Schützen) (24-VDC-USV)	7 Tage	80 Tage***

Tabelle 4 10:USV-Daten

Beleuchtungsschalttafel			
Autonomiezeitraum	Standard	Optional	
Innenbeleuchtung	30 Min.	60 min****	

Tabelle 4 11:USV-Daten

- *Die Steuerung umfasst: Steuerung der Windenergieanlage (System VMP8000), MS-Schaltanlagenfunktionen und Fernüberwachung.
- ** Upgrade der 230-VAC-USV für Steuerungssystem mit zusätzlichen Batterien notwendig.
- ***Upgrade der 24-VDC-USV mit zusätzlichen Batterien notwendig.
- ****Upgrade der 230-VAC-USV für Innenbeleuchtung mit zusätzlichen Batterien notwendig.

HINWEIS

Angaben zu alternativen Autonomiezeiträumen können bei Vestas erfragt werden.

5 WEA-Schutzsysteme

5.1 Bremskonzept

Die Hauptbremse der Windenergieanlage ist aerodynamischer Art. Das Anhalten der Windenergieanlage erfolgt, indem die drei Rotorblätter in volle Fahnenstellung gebracht werden (einzelnes Drehen der einzelnen Rotorblätter).

5.2 Kurzschlussschutz

/08 : Platform Allg nreibung	latform Allgemeine Beschreibung 4-MW-Plattform WEA-Schutzsysteme WEA-Schutzsysteme		
Allgemeine Beschreibung 4-MW-Plattform WEA-Schutzsysteme WEA-Schutzsysteme Jedes Rotorblatt verfügt über einen hydraulischen Druckspeicher als Energieversorgung zum Drehen des Rotorblatts. Zusätzlich ist eine mechanische Scheibenbremse an der schnellen Welle des Getriebes mit einem separaten Hydrauliksystem vorhanden. Die mechanische Bremse wird ausschließlich als Feststellbremse und beim Betätigen der Not- Stopp-Taster verwendet. Trennschalter für Eigen- bedarfsversorgung. Gesicherter Trennschalter (T5V-HA Jehr M. Weitergabe Weitergabe Seite 26 von 47 Trennschalten Welle des Getriebes mit einem separaten Hydrauliksystem vorhanden. Die mechanische Bremse wird ausschließlich als Feststellbremse und beim Betätigen der Not- Stopp-Taster verwendet. Trennschalter für Eigen- bedarfsversorgung. Gesicherter Trennschalter (T5V-HA Jehr M. Weitergabe Seite 26 von 47 Trennschalten Welle des Getriebes mit einem separaten Hydrauliksystem vorhanden. Die mechanische Bremse wird ausschließlich als Feststellbremse und beim Betätigen der Not- Stopp-Taster verwendet. Trennschalter 1 für Umrichtermodule MTZ2 1600 A Jehr M. Weitergabe Seite 26 von 47			
Trennschalter	Trennschalter für Eigen- bedarfsversorgung. Gesicherter Trennschalter (T5V-HA 400A TMA 800V) und Notstrom-Trennschalter (T4V-HA 125A TMA 800V), die gemeinsam	Trennschalter 1 für Umrichtermodule MTZ2 1600 A 1000 V	Trennschalter 2 für Umrichtermodule MTZ2 3200 A 1000 V
Abschaltleistung, Icu, Ics	getestet wurden. 75 kA Effektivwert @ max. 840 V lcs = 100 %	66 kA Effektivwert @ max. 1000 V lcs = 100 %	66 kA Effektivwert @ max. 1000 V lcs = 100 %
Einschaltleistung Icm	166 kA Spitzenwert @ max. 840 V	145 kA Spitzenwert @ max. 1000 V	145 kA Spitzenwert @ max. 1000 V

Tabelle 51: Daten zum Kurzschlussschutz

5.3 Überdrehzahlschutz

Die Drehzahl von Generator und Hauptwelle wird von induktiven Sensoren erfasst und von der Steuerung der Windenergieanlage berechnet, um vor Überdrehzahl und Drehfehlern zu schützen.

Die sicherheitsrelevante Partition der VMP8000-Steuerung überwacht die Rotordrehzahl. Bei Überdrehzahl löst die sicherheitsrelevante Partition der VMP8000-Steuerung unabhängig von der nicht sicherheitsrelevanten Partition die Notfahnenstellung (volle Fahnenstellung) der drei Rotorblätter aus.

Überdrehzahlschutz		
Sensortyp	Induktiv	
Auslösewert (je nach Version)	12,0-17,5 U/min/2000 (Generatordrehzahl)	

Tabelle 5 2: Daten zum Überdrehzahlschutz

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform WEA-Schutzsysteme

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 27 von 47

5.4 Lichtbogendetektor

Die Windenergieanlage ist mit einem Lichtbogen-Nachweissystem einschließlich mehrerer Lichtbogendetektoren ausgestattet, die im Mittelspannungs-Transformatorraum und im Umrichterschrank angeordnet sind. Das Lichtbogen-Nachweissystem ist an das Sicherheitssystem der Windenergieanlage angeschlossen, wodurch sichergestellt wird, dass sich die Mittelspannungsschaltanlage sofort öffnet, wenn ein Lichtbogen festgestellt wird.

5.5 Rauchmeldesystem

Die Windenergieanlage ist mit einem Rauchmeldesystem ausgerüstet, das mehrere Rauchmelder im Maschinenhaus (oberhalb der Scheibenbremse), im Transformatorenraum und oberhalb der Mittelspannungsschaltanlage im Turmfuß einschließt. Das Rauchmeldesystem ist an das Sicherheitssystem der Windenergieanlage angeschlossen, wodurch sichergestellt ist, dass sich die Mittelspannungsschaltanlage bei Raucherkennung sofort öffnet.

5.6 Blitzschutz von Rotorblättern, Maschinenhaus, Rotorblattnabe und Turm

Die Blitzschutzanlage (BSA) schützt die Windenergieanlage vor Sachschäden durch Blitzschläge. Die BSA besteht aus fünf Hauptkomponenten:

- Blitzrezeptoren. Alle Blitzrezeptorflächen an den Rotorblättern, außer den Massivmetallspitzen (SMT), sind unlackiert.
- Ableitungssystem (ein System, um den Blitzstrom durch die Windenergieanlage nach unten abzuleiten, um Schäden am LPS selbst oder an anderen Teilen der Windenergieanlage zu vermeiden oder zu vermindern).
- Überspannungs- und Überstromschutz
- Abschirmung gegen magnetische und elektrische Felder
- Erdungssystem.

T05 0067-7060 Ver 08 - Approved- Exported from DMS: 2022-09-22 by INVOL

Management
Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform WEA-Schutzsysteme

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 28 von 47

V136-Blätter und V150-Blätter:

Blitzschutzkonstruktionsparameter			Schutzklasse I
Scheitelwert des Blitzstroms	i _{max}	[kA]	200
Impulsladung	Q _{impulse}	[C]	100
Langzeitladung	Q _{long}	[C]	200
Gesamtladung	Q _{total}	[C]	300
Spezifische Energie	W/R	[MJ/Ω]	10
Durchschnittliche Steilheit	di/dt	[kA/µs]	200

Tabelle 5 3: Blitzschutzkonstruktionsparameter (IEC)

Nabe/Maschinenhaus/Turm/Fundament und V117-Blätter:

Blitzschutzkonstruktionsparameter			Schutzklasse I
Scheitelwert des Blitzstroms	i _{max}	[kA]	200
Impulsiadung	Q _{impulse}	[C]	200
Langzeitladung	Q _{long}	[C]	600
Gesamtladung	Q _{total}	[C]	800
Spezifische Energie	W/R	[MJ/Ω]	20
Durchschnittliche Steilheit	di/dt	[kA/μs]	200

Tabelle 5 4: Blitzschutzkonstruktionsparameter (IEC & JIS)

HINWEIS

Das Blitzschutzsystem ist nach den IEC- und JIS-Normen konstruiert (siehe Abschnitt 8Auslegungsrichtlinien auf Seite 28).

5.7 **EMV**

Die Windenergieanlage und die zugehörige Ausrüstung erfüllen die EU-Rechtsvorschriften zur elektromagnetischen Verträglichkeit (EMV):

 RICHTLINIE 2014/30/EU DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 26. Februar 2014 zur Harmonisierung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit.

5.8 Erdung

Das Vestas-Erdungssystem besteht aus einer Reihe von einzelnen Erdungseinheiten, die zu einem gemeinsamen Erdungssystem verbunden sind.

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform

Management
Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Sicherheit

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 29 von 47

Das Vestas-Erdungssystem umfasst das TN-System und das Blitzschutzsystem für jede Windenergieanlage. Es dient als Erdungssystem für das Mittelspannungs-Verteilsystem innerhalb des Windparks.

Das Vestas-Erdungssystem ist an die unterschiedlichen Fundamentarten angepasst. Das Erdungssystem ist entsprechend der jeweiligen Fundamentart in separaten Unterlagen detailliert beschrieben.

Bezüglich des Blitzschutzes der Windenergieanlage fordert Vestas keinen bestimmten, in Ohm gemessenen Widerstand zur Bezugserde. Die Erdung der Blitzschutzsysteme basiert auf dem Aufbau und der Bauweise des Vestas-Erdungssystems.

Ein wichtiger Teil des Vestas-Erdungssystems ist die Hauptpotenzialausgleichsschiene, die sich am Kabeleintritt aller Zuleitungen zur Windenergieanlage befindet. Alle Erdungselektroden sind mit dieser Hauptpotenzialausgleichsschiene verbunden. Zusätzlich sind Potenzialausgleichsverbindungen an allen Zu- oder Ableitungen der Windenergieanlage installiert.

Die Anforderungen der Spezifikation und der Arbeitsanweisungen für das Vestas-Erdungssystem entsprechen den Mindestanforderungen von Vestas und den IEC-Normen. Lokale und nationale sowie projektspezifische Anforderungen können gegebenenfalls zusätzliche Maßnahmen erforderlich machen.

5.9 Korrosionsschutz

Die Klassifizierung des Korrosionsschutzes folgt der Norm EN ISO 12944-2.

Korrosionsschutz	Außenbereiche	Innenbereiche
Maschinenhaus	C5	C3
Nabe	C5	C3
Turm	C5	C3

Tabelle 5-5: Daten zum Korrosionsschutz zu Maschinenhaus, Nabe und Turm

6 Sicherheit

Mit den im vorliegenden Abschnitt enthaltenen Sicherheitsspezifikationen werden in beschränktem Umfang allgemeine Informationen zur Sicherheitsausstattung der Windenergieanlage bereitgestellt. Sie entbinden den Käufer und seine Vertreter nicht von seiner Pflicht, alle erforderlichen Sicherheitsmaßnahmen zu treffen, zu denen u. a. Folgendes zählt: (a) Erfüllen aller geltenden Vereinbarungen, Anweisungen und Anforderungen bezüglich Sicherheit, Betrieb, Wartung und Service; (b) Erfüllen aller sicherheitsrelevanten Gesetze, Vorschriften und Verordnungen und (c) Durchführen aller erforderlichen Sicherheitsschulungen und -fortbildungen.

6.1 Zugang

Zugang zur Windenergieanlage besteht von außen über eine Tür an der Eingangsplattform, ca. drei Meter über dem Boden. Die Tür ist mit einem Schloss versehen. Der Zugang zur oberen Plattform im Turm erfolgt über eine Leiter oder einen Transportaufzug. Zugang zum Maschinenhaus von der oberen Plattform aus

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Sicherheit

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 30 von 47

besteht über eine Leiter. Der Zugang zum Transformatorraum im Maschinenhaus ist durch ein Schloss gesichert. Unberechtigter Zugriff auf Elektroschalttafeln und Stromtafeln in der Windenergieanlage ist gemäß IEC 60204-1 2006 untersagt.

6.2 **Escape**

Zusätzlich zu den normalen Zugangswegen führen alternative Flucht- und Rettungswege aus dem Maschinenhaus durch die Kranluke, aus der Nabenabdeckung durch Öffnen des Nasenkonus oder vom Dach des Maschinenhauses. Die Rettungsausrüstung befindet sich im Maschinenhaus.

Die Luke im Dach kann von innen und außen geöffnet werden. Die Flucht aus dem Transportaufzug erfolgt über die Leiter.

Ein Notfallschutzplan in der Windenergieanlage beschreibt die Evakuierung und die Flucht- und Rettungswege.

6.3 Räume/Arbeitsbereiche

Turm und Maschinenhaus sind mit Stromanschlüssen für Elektrowerkzeuge zur Wartung und Instandhaltung der Windenergieanlage ausgestattet.

6.4 Böden, Plattformen, Steh- und Arbeitsplätze

Alle Plattformen weisen eine rutschfeste Oberfläche auf.

Pro Turmsektion ist ein Boden vorhanden.

Ruheplattformen sind alle neun Meter an der Turmleiter zwischen den Plattformen angebracht.

In der Windenergieanlage sind Fußstützen für Wartungs- und Servicezwecke angebracht.

6.5 **Transportaufzug**

Die Windenergieanlage wird optional mit montiertem Transportaufzug geliefert.

6.6 Aufstiegsmöglichkeiten

Die Turmleiter ist mit einem Fallsicherungssystem ausgestattet, entweder einem Schienen- oder Drahtseilsystem.

Die Servicebereiche in den Windenergieanlagen sind mit Anschlagpunkten Arbeitspositionierung, ausgestattet. Der Anschlagpunkt kann zur Rückhaltesicherung, zum Fallschutz und zum Anbringen einer Abstiegsvorrichtung verwendet werden, um die Rettung oder Flucht aus der Windenergieanlage zu ermöglichen.

Anschlagpunkte sind gelb markiert und für 22,5 kN getestet.

6.7 Bewegliche Teile, Schutzeinrichtungen und Sperrvorrichtungen

Alle beweglichen Teile im Maschinenhaus sind abgeschirmt.

T05 0067-7060 Ver 08 - Approved- Exported from DMS: 2022-09-22 by INVOL

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform

Management
Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Sicherheit Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 31 von 47

Die Windenergieanlage ist mit einer Rotorarretierung zur Sperrung von Rotor und Triebstrang ausgestattet.

Die Zylinderstellung kann mit mechanischen Werkzeugen in der Nabe blockiert werden.

6.8 Beleuchtung

Die Windenergieanlage ist im Turm, im Maschinenhaus und in der Nabe beleuchtet.

Für den Fall eines Stromausfalls ist eine Notbeleuchtung vorhanden.

6.9 Notstopp

In Maschinenhaus, Nabe und in der untersten Turmsektion sind Not-Stopp-Taster angebracht.

6.10 Unterbrechung der Stromversorgung

Die Windenergieanlage ist mit Trennschaltern ausgestattet, die ein Abschalten der gesamten Stromzufuhr bei Inspektions- oder Wartungsmaßnahmen ermöglichen. Die Schalter sind beschildert und befinden sich im Maschinenhaus und in der untersten Turmsektion.

6.11 Brandschutz/Erste Hilfe

Im Maschinenhaus müssen während Service und Wartung ein 5-kg- bis 6-kg- CO₂-Feuerlöscher, ein Erste-Hilfe-Kasten und eine Feuerlöschdecke vorhanden sein.

- Ein 5-kg- bis 6-kg-CO₂-Feuerlöscher ist nur bei Service und Wartung erforderlich, es sei denn, im Maschinenhaus ist die dauerhafte Anbringung eines Feuerlöschers behördlich vorgeschrieben.
- Erste-Hilfe-Kästen sind nur bei Service und Wartung erforderlich.
- Feuerlöschdecken müssen nur bei nicht-elektrischen heißen Arbeiten vorhanden sein.

6.12 Warnschilder

Im Inneren oder an der Außenseite der Windenergieanlage angebrachte Warnschilder müssen vor Betrieb oder Wartung der Windenergieanlage zur Kenntnis genommen werden.

6.13 Handbücher und Warnhinweise

Das "Vestas Firmenhandbuch zum Arbeitsschutz" sowie Handbücher für Betrieb, Wartung und Service der Windenergieanlage bieten zusätzliche Sicherheitshinweise und -informationen für Betrieb, Wartung oder Instandhaltung der Windenergieanlage.

Management
Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Umgebung Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 32 von 47

7 Umgebung

7.1 Chemikalien

In der Windenergieanlage verwendete Chemikalien werden gemäß dem Umweltsystem von Vestas Wind Systems A/S beurteilt, das nach ISO 14001:2015 zertifiziert ist. Innerhalb der Windenergieanlage kommen die folgenden Chemikalien zum Einsatz:

- Frostschutzmittel zum Vermeiden des Einfrierens des Kühlsystems.
- Getriebeöl zum Schmieren des Getriebes.
- Hydrauliköl zum Pitchen der Rotorblätter und Betätigen der Bremse.
- Fett zum Schmieren der Lager.
- Unterschiedliche Reinigungsmittel und -chemikalien zur Wartung der Windenergieanlage.

8 Auslegungsrichtlinien

8.1 Auslegungsrichtlinien – Baukonstruktion

Die Konstruktion der Windenergieanlage wurde u. a. gemäß den folgenden Normen entwickelt und getestet:

Auslegungsrichtlinien		
Maschinenhaus und Nabe	IEC 61400-1: Ausgabe 3	
	EN 50308	
Turm	IEC 61400-1: Ausgabe 3	
	Eurocode 3	
	DNV-OS-J102	
	IEC 1024-1	
	IEC 60721-2-4	
Rotorblätter	IEC 61400 (Teile 1, 12 und 23)	
	IEC WT 01 IEC	
	DEFU R25	
	ISO 2813	
	DS/EN ISO 12944-2	
Getriebe	IEC 61400-4	
Generator	IEC 60034	
Transformator	IEC 60076-11, IEC 60076-16,	
Transfermater	CENELEC HD637 S1	
	IEC 62305-1: 2006	
Blitzschutz	IEC 62305-3: 2006	
	IEC 62305-4: 2006	
	IEC 61400-24:2010	
	JIS C 1400-24 2014	
Drehende elektrische Maschinen	IEC 34	
	Vestas.	

Eingeschränkte

Seite 33 von 47

Weitergabe

Übersetzung der Originalbetriebsanleitung: T05 0067-7060 VER 08

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Farben

Auslegungsrichtlinien Sicherheit von Maschinen, Sicherheitsrelevante Teile von IEC 13849-1 Steuerungen Maschinensicherheit - elektrische IEC 60204-1 Ausrüstung von Maschinen

Tabelle 8 1 Konstruktionscodes

9 **Farben**

9.1 Maschinenhausfarbe

Farbe von Vestas Nacelles	
Standard-Maschinenhausfarbe	RAL 7035 (Hellgrau)
Standard-Logo	Vestas

Tabelle 9 1: Farbe, Maschinenhaus

9.2 **Turmfarbe**

Farbe von Vestas-Turmsektionen		
	Außen:	Innen:
Standard-Turmfarbe	RAL 7035 (Hellgrau)	RAL 9001 (Cremeweiß)

Tabelle 92: Farbe, Turm

9.3 Rotorblattfarbe

Rotorblattfarbe		
Standard-Rotorblattfarbe RAL 7035 (Hellgrau). Alle Blitzrezeptor den Rotorblättern, außer den Massivmetallspitzen (SMT), sind unlach		
Farbvarianten Tip-Ende	RAL 2009 (Verkehrsorange), RAL 3020 (Verkehrsrot)	
Glanzgrad	< 30 % DS/EN ISO 2813	

Tabelle 93: Farbe, Rotorblätter

T05 0067-7060 Ver 08 - Approved- Exported from DMS: 2022-09-22 by INVOL

Dokumentennr.: 0067-7060 V08
Dokumentenverantwortlicher: Platform
Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 34 von 47

10 Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale

Die tatsächlichen Klima- und Standortbedingungen weisen viele Variablen auf und sind bei der Beurteilung der tatsächlichen Windenergieanlagenleistung zu berücksichtigen. Die Auslegungs- und Betriebsparameter in diesem Abschnitt stellen keine Garantien, Gewährleistungen und Zusicherungen bezüglich der Windenergieanlagenleistung an tatsächlichen Standorten dar.

10.1 Klima- und Standortbedingungen

Die Werte beziehen sich auf die Nabenhöhe:

Auslegungsparameter-Extremwerte	
Windklima	Alle
Umgebungstemperaturbereich (Windenergieanlage für Standardtemperatur)	-40 °C bis +50 °C

Tabelle 10 1 Auslegungsparameter-Extremwerte

10.2 Betriebsbereich – Temperatur und Höhe

Nachstehende Werte beziehen sich auf die Nabenhöhe und hängen von den Sensoren und der Steuerung der Windenergieanlage ab.

Betriebsbereich – Temperatur		
Umgebungstemperaturbereich (V117 und V136 Standardanlage)	-20 °C bis +45 °C	
Umgebungstemperaturbereich (V117 und V136 Windenergieanlage für Niedrigtemperaturgebiete)	-30 °C bis +45 °C	
Umgebungstemperaturbereich (V150 Standardanlage)	-30 °C bis +45 °C	

Tabelle 10 2: Betriebsbereich – Temperatur

HINWEIS

Die Windenergieanlage stellt die Energieerzeugung ein, sobald die Umgebungstemperaturen auf über +45 °C steigen.

Niedrigtemperatur-Optionen der Windenergieanlage können bei Vestas erfragt werden.

Die Windenergieanlage ist standardmäßig für den Betrieb in Höhen bis 1000 m ü. d. M. und optional für bis zu 2000 m ü. d. M. ausgelegt.

10.3 Betriebsbereich – Temperatur und Höhe

Die Windenergieanlage ist in Abhängigkeit von der Temperatur in zwei CoolerTop-Konfigurationen mit unterschiedlicher Leistung erhältlich. Abbildung 101 zeigt die Leistung für den standardmäßigen Cooler Top und Abbildung 102 zeigt die Leistung für den Hochtemperatur-CoolerTop. (die HT-Version ist nicht für alle

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 35 von 47

Windenergieanlagenvarianten erhältlich; weitere Informationen hierzu erhalten Sie von Vestas).

Die Werte in den Diagrammen beziehen sich auf die Nabenhöhe und hängen von den Sensoren und der Steuerung der Windenergieanlage ab. Bei Umgebungstemperaturen über dem in den Abbildungen gezeigten Grenzwert hält die Windenergieanlage eine gedrosselte Produktion aufrecht. Die gedrosselten Werte sind abhängig von der Höhe der Windenergieanlage.

Die Diagramme zeigen die Drosselungskurve bei PO1. Modus 0, LO1 und LO2 folgen der gleichen Drosselungskurve, jedoch mit einer Nennleistung bei jeweils 4,0 MW, 3,8 MW und 3,6 MW.

Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 36 von 47

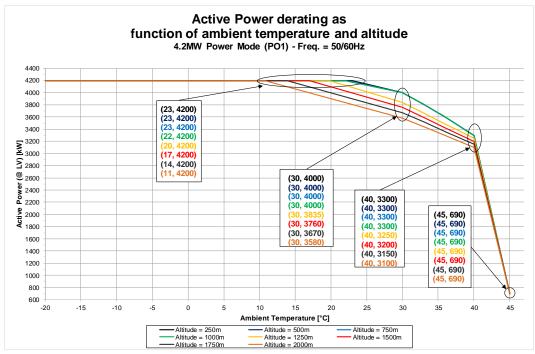


Abbildung 101: Temperaturabhängiger gedrosselter Betrieb – Standard-CoolerTop.

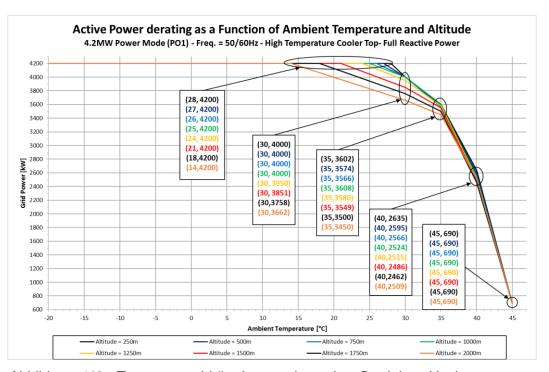


Abbildung 102: Temperaturabhängiger gedrosselter Betrieb – Hochtemperatur-CoolerTop.

T05 0067-7060 Ver 08 - Approved- Exported from DMS: 2022-09-22 by INVOL

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 37 von 47

10.4 Betriebsbereich – Netzanschluss

Betriebsbereich – Netzanschluss		
Nennphasenspannung	[U _{NP}]	720 V
Nennfrequenz	[f _N]	50/60 Hz
Max. Frequenzgradient	±4 Hz/s	
Max. negative Gegenspannung	3 % (Anschluss) 2 % (Betrieb)	
Gefordertes Leerlauf-Kurzschluss- Mindestverhältnis beim Anschluss der Windenergieanlage an das Mittelspannungsnetz	5.0 (Vestas für niedrigere Kurzschlussverhältnisse kontaktieren)	
Maximaler Kurzschlussstrom	Weitere Informationen erhalten Sie bei Vestas.	

Tabelle 103: Betriebsbereich - Netzanschluss

Generator und Umrichter werden in folgenden Fällen getrennt:*

Schutzeinstellungen	
Spannung 1800 s lang über 110 %** des Nennwerts	792 V
Spannung 60 s lang über 116 % des Nennwerts	835 V
Spannung 2 s lang über 125 % des Nennwerts	900 V
Spannung 0,150 s lang über 136 % des Nennwerts	979 V
Spannung 180 s lang unter 90 %** des Nennwerts (FRT)	648 V
Spannung 12 s lang unter 85 % des Nennwerts (FRT)	612 V
Spannung 4,8 Sekunden lang unter 80 % des Nennwerts (FRT)	576 V
Frequenz 0,2 s lang über 106 % des Nennwerts	53/63,6 Hz
Frequenz 0,2 s lang unter 94 % des Nennwerts	47/56,4 Hz

Tabelle 10 4: Trennwerte für Generator und Umrichter

HINWEIS

^{*} Über die Lebensdauer der Windenergieanlage gemittelt dürfen innerhalb eines Jahres nicht mehr als 50 Netzausfälle auftreten.

^{**} Die Windenergieanlage kann für einen dauerhaften Betrieb bei Spannungsschwankungen von ±13 % konfiguriert werden. Die Blindleistungskapazität ist für diesen erweiterten Einstellungsbereich auf einen noch festzulegenden Wert begrenzt.

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 38 von 47

Betriebsbereich – Blindleistungskapazität im 4,0-MW-10.5 Modus 0

Die Blindleistungskapazität der 4,0-MW-Windenergieanlage im Modus 0 auf der Niederspannungsseite des Mittelspannungstransformators ist in Abbildung 10 3 dargestellt:

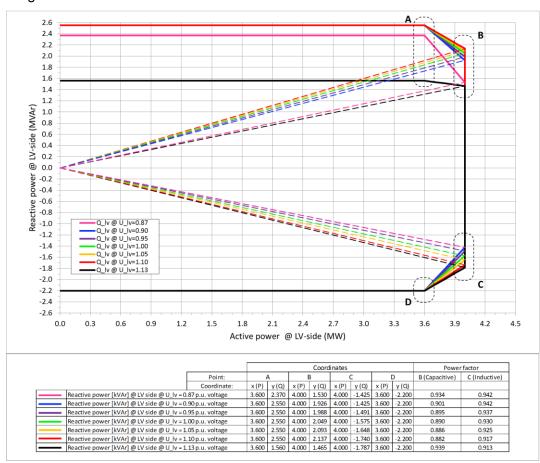


Abbildung 10 3: Blindleistungskapazität im 4,0-MW-Modus 0.

Beim Betrieb mit der Nennleistung von 4,0 MW auf der Niederspannungsseite des Mittelspannungstransformators beträgt die Blindleistungskapazität auf der Mittelspannungsseite des Mittelspannungstransformators ca.:

- cos φ (Mittelspannung) = 0,95/0,90 kapazitiv/induktiv bei U (Mittelspannung) = 0,90 pu-Spannung
- cos φ (Mittelspannung) = 0,93/0,87 kapazitiv/induktiv bei U (Mittelspannung) = 1,10 pu-Spannung

Blindleistung wird durch den Vollumrichter erzeugt. Daher werden keine herkömmlichen Kondensatoren in der Windenergieanlage verwendet.

Die Windenergieanlage kann die Blindleistungskapazität bei schwachem Wind ohne erzeugte Wirkleistung halten.

T05 0067-7060 Ver 08 - Approved- Exported from DMS: 2022-09-22 by INVOL

Dokumentennr.: 0067-7060 V08
Dokumentenverantwortlicher: Platform
Management

Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 39 von 47

10.6 Betriebsbereich – Blindleistungskapazität im blindleistungsoptimierten 4,0-MW-Modus (QO1)

Optional ist im blindleistungsoptimierten 4,0-MW-Modus (QO1) bei einer Umgebungstemperatur von unter +20 °C und einer Höhe von ≤1000 m ü. d. M. eine erweiterte Blindleistungskapazität möglich. Die entsprechende Blindleistungskapazität ist in Abbildung 104 dargestellt:

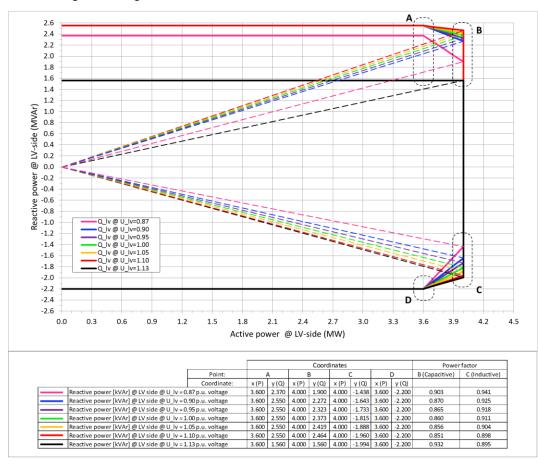


Abbildung 104: Blindleistungskapazität im blindleistungsoptimierten 4,0-MW-Modus (QO1).

Beim Betrieb im blindleistungsoptimierten 4,0-MW-Modus (QO1) auf der Niederspannungsseite des Mittelspannungstransformators beträgt die Blindleistungskapazität auf der Mittelspannungsseite des Mittelspannungstransformators ca.:

- cos φ (Mittelspannung) = 0,92/0,88 kapazitiv/induktiv bei U
 (Mittelspannung) = 0,90 pu-Spannung
- cos φ (Mittelspannung) = 0,90/0,85 kapazitiv/induktiv bei U (Mittelspannung) = 1,10 pu-Spannung

Die Windenergieanlage kann die Blindleistungskapazität bei schwachem Wind ohne erzeugte Wirkleistung halten.

HINWEIS

Im blindleistungsoptimierten 4.0-MW-Modus (QO1) wird die Blindleistung bei einer Umgebungstemperatur von mehr als +20 °C heruntergeregelt und konvergiert bei +30 °C mit der Blindleistungskapazität des 4,0-MW-Modus 0, wie in Abbildung 10 3 gezeigt.

Seite 40 von 47

Weitergabe

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform Management

Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale

10.7 Betriebsbereich – Blindleistungskapazität im leistungsoptimierten 4,2-MW-Modus (PO1)

Die Blindleistungskapazität im leistungsoptimierten 4,2-MW-Modus (PO1) ist in Abbildung 10 *5* dargestellt:

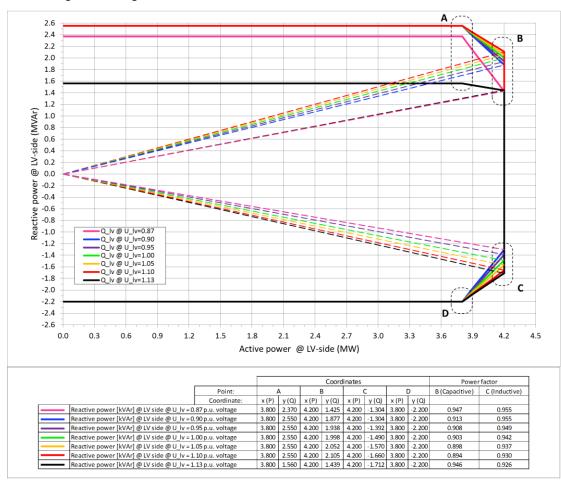


Abbildung 10 5: Die Blindleistungskapazität im leistungsoptimierten 4,2-MW-Modus (PO1).

Beim Betrieb im leistungsoptimierten 4,2-MW-Modus (PO1) auf der Niederspannungsseite des Mittelspannungstransformators beträgt die Blindleistungskapazität auf der Mittelspannungsseite des Mittelspannungstransformators ca.:

- cos φ (Mittelspannung) = 0,95/0,91 kapazitiv/induktiv bei U (Mittelspannung) = 0,90 pu-Spannung
- cos φ (Mittelspannung) = 0,94/0,88 kapazitiv/induktiv bei U (Mittelspannung) = 1,10 pu-Spannung

Die Windenergieanlage kann die Blindleistungskapazität bei schwachem Wind ohne erzeugte Wirkleistung halten.

HINWEIS

Der leistungsoptimierte 4,2-MW-Modus (PO1) und der 4,0 MW blindleistungsoptimierte Modus (QO1) schließen sich gegenseitig aus (da Q gegen P getauscht wird).

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform Management

Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 41 von 47

10.8 Betriebsbereich – Temperaturabhängige Blindleistungskapazität

Die in Abbildung 10 3 Abbildung 104 und Abbildung 10 5 gelten für Umgebungstemperaturen, bei denen keine Wirkleistungsdrosselung gemäß Error! Reference source not found. Error! Reference source not found. erforderlich ist.

Bei Umgebungstemperaturen von bis zu 40°C, bei denen die Wirkleistung infolge der Umgebungstemperatur gedrosselt wird, ist die Form des PQ-Diagramms (z. B. Abbildung 10 3: Punkte A, B, C und D) eingehalten. Die Wirkleistung für die Punkte A, B, C und D wird jedoch entsprechend der Gesamt-WEA-Wirkleistungsdrosselung gemäß Abbildung 101 und Abbildung 102

Bei Umgebungstemperaturen zwischen 40°C und 45°C wird die Blindleistung proportional zur Wirkleistungsdrosselung gedrosselt.

Abbildung 10-6 zeigt ein anschauliches Beispiel einer Drosselung der Blindleistung.

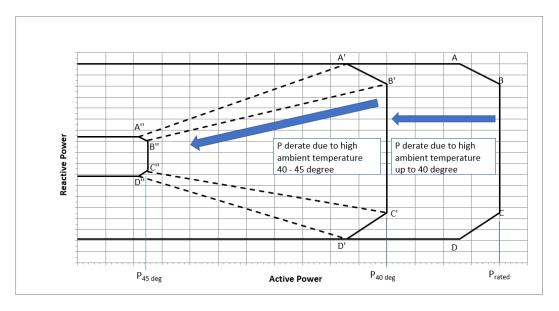


Abbildung 10-6: Temperaturabhängigkeit der Blindleistungskapazität Beispiel zur Veranschaulichung

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform Management

Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 42 von 47

10.9 Leistungsmerkmal – Durchfahren von Netzfehlern

Die Windenergieanlage ist mit einem Vollumrichter ausgestattet, damit sie bei Stromnetzstörungen besser geregelt werden kann. Die Steuerung der Windenergieanlage ist auch bei Netzstörungen voll funktionsfähig.

Die Windenergieanlage ist so ausgelegt, dass sie sich bei Stromnetzstörungen innerhalb der Spannungstoleranzkurve wie dargestellt nicht vom Stromnetz trennt:

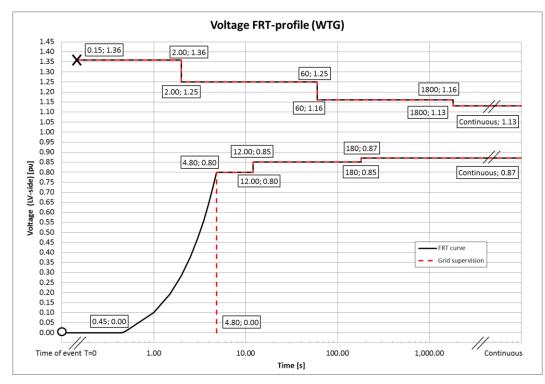


Abbildung 107: Spannungstoleranzkurve für symmetrische und asymmetrische Störungen, wobei U die gemessene Spannung im Stromnetz darstellt.

Bei Stromnetzstörungen außerhalb der Schutzkurve in Abbildung 107 wird die Windenergieanlage vom Stromnetz getrennt.

Zeitspanne bis zur Leistungswiederherstellung	
Leistungswiederherstellung auf 90 % des Niveaus vor einer Störung	max. 0,1 s

Tabelle 10 5 Zeit zur Leistungswiederherstellung

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform Management

Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 43 von 47

10.10 Leistung – Blindstrombeitrag

Der Blindstrombeitrag hängt davon ab, ob die auf die Windenergieanlage einwirkende Störung symmetrischer oder asymmetrischer Art ist. Symmetrischer Blindstrombeitrag

Während symmetrischer Spannungsabfälle speist der Windpark zur Stützung der Stromnetzspannung Blindstrom ein. Der eingespeiste Blindstrom ist eine Funktion der gemessenen Stromnetzspannung.

Der Standardwert ergibt einen Blindstromanteil von 100 % (1 pu) des Nennstroms an der Mittelspannungsseite des Mittelspannungstransformators. Abbildung 10-8 stellt den Blindstrombeitrag als eine Funktion der Spannung dar. Der Blindstrombeitrag ist unabhängig von den tatsächlichen Windbedingungen und dem Leistungsniveau vor einer Störung. Wie in Abbildung 10-8 dargestellt, ist der Gradient für die Blindstromeinspeisung mit einem Blindstrom von 2 % des Nennstroms pro 1 % Spannungsfall definiert. Der Anstieg kann zur Anpassung an die standortspezifischen Anforderungen auf einen Wert von 0–10 % parametriert werden.

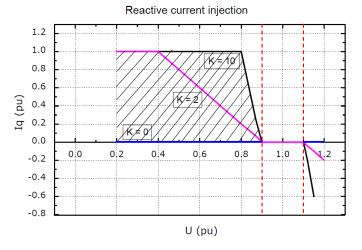


Abbildung 10-8: Blindstromeinspeisung

10.10.1 Asymmetrischer Blindstrombeitrag

Der Blindstrom beruht auf der gemessenen positiven Sequenzspannung und dem verwendeten K-Faktor. Während asymmetrischer Spannungsabfälle wird die Blindstromeinspeisung auf ca. 0,4 pu beschränkt, um einen möglichen Spannungsanstieg auf die gesunden Phasen zu begrenzen.

10.11 Leistung – Mehrfache Spannungsabfälle

Die Windenergieanlage ist so ausgelegt, dass sie Automatische Wiedereinschaltungen (AWE) und mehrfache Spannungsabfälle innerhalb einer kurzen Zeitspanne vertragen kann, da solche Spannungsabfälle nicht gleichmäßig über das Jahr verteilt sind. Beispielsweise stellen zehn Spannungsabfälle einer Dauer von jeweils 200 ms innerhalb von 30 Minuten auf 20 % der Spannung in der Regel kein Problem für die Windenergieanlage dar.

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 44 von 47

10.12 Leistung – Regelung von Wirk- und Blindleistung

Die Windenergieanlage kann Wirk- und Blindleistung über das VestasOnline®-SCADA-System regeln.

Max. Anstiegsrate für externe Steuerung	
Wirkleistung 0,1 pu/s bei einer max. Leistungsniveauänderung um 0,3 pu 0,3 pu/s bei einer max. Leistungsniveauänderung um 0,1 pu	
Blindleistung	20 pu/s

Tabelle 10-6: Anstiegsraten für Wirk-/Blindleistung

Zur Unterstützung der Stromnetzstabilität ist die Windenergieanlage in der Lage, bei Wirkleistungsreferenzen bis 10 % der Nennleistung der Windenergieanlage mit dem Stromnetz verbunden zu bleiben. Bei Wirkleistungsreferenzen unter 10 % kann die Windenergieanlage sich vom Stromnetz trennen.

10.13 Leistungsmerkmal – Spannungsregelung

Die Windenergieanlage ist für eine Integration in die Spannungsregelung VestasOnline[®] durch Ausnutzung der Blindleistungskapazität der Anlage konzipiert.

10.14 Leistung – Frequenzregelung

Die Windenergieanlage lässt sich zur Frequenzregelung durch Begrenzung der abgegebenen Leistung als Funktion der Netzfrequenz (Überfrequenz) konfigurieren. Totbereich und Anstieg sind für die Frequenzregelungsfunktion einstellbar.

10.15 Verzerrung – Störfestigkeit

Die Windenergieanlage lässt sich mit einem (Hintergrund-)Spannungsklirrfaktor von 8 % vor Anschluss an die Netzschnittstelle anschließen und nach Anschluss mit einem Spannungsklirrfaktor von 8 % betreiben.

10.16 Hauptbeitragende zum Eigenverbrauch

Der Stromverbrauch der Windenergieanlage ist als der Energiebetrag definiert, den die Windenergieanlage aufnimmt, wenn sie keine Energie an das Stromnetz liefert. Dies ist im Steuersystem als Production Generator 0 (Null) definiert.

Die in Tabelle 10-7 aufgeführten Komponenten haben den größten Einfluss auf den Eigenbedarf der Windenergieanlage. (Der durchschnittliche Eigenverbrauch hängt von den vorherrschenden Bedingungen, dem Klima, der Windenergieanlagenleistung, den Abschaltzeiten usw. ab.)

Die VMP8000-Steuerung verfügt über einen Ruhemodus, durch den der Eigenbedarf nach Möglichkeit reduziert wird. Ebenso können die Kühlpumpen ausgeschaltet werden, wenn sich die Windenergieanlage im Leerlauf befindet.

Management
Typ: T05 – Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Leitfaden für Betriebsbereichsbedingungen und Leistungsmerkmale Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 45 von 47

Hauptbeitragende zum Eigenbedarf	
Hydraulikmotor	2 x 15 (V117)/18,5 kW (V136 + V150) (master-slave)
Azimutmotoren	Maximal insgesamt 21 kW
Wassererwärmung	10 kW
Wasserpumpen	2,2 + 5,5 kW
Ölerwärmung	7,9 kW
Ölpumpe für Getriebeschmierung	12,5 kW
Steuerung einschließlich Heizelementen für die Hydraulik und alle Steuerungen	ungefähr 3 kW
Leerlaufverlust Mittelspannungstransformator	Siehe Abschnitt 4.3 Mittelspannungstransformator, S. 14

Tabelle 10-7: Angaben zu den Hauptbeitragenden zum Eigenbedarf

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Zeichnungen

Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 46 von 47

11 Zeichnungen

11.1 Konstruktionsauslegung – Darstellung der Außenabmessungen

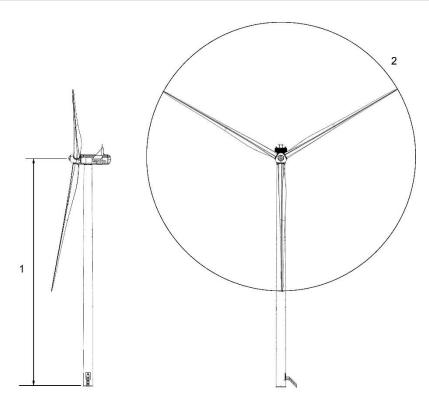


Abbildung 11-1 Darstellung der Außenabmessungen – Aufbau
 Nabenhöhen: vgl.
 Leistungsspezifikationen

2 Rotordurchmesser: 117–150 m

11.2 Baukonstruktion – Seitenansichtszeichnung

Abbildung 11 2: Seitenansichtszeichnung

Dokumentennr.: 0067-7060 V08 Dokumentenverantwortlicher: Platform Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Beschreibung 4-MW-Plattform Allgemeine Einschränkungen, Hinweise und Haftungsausschlüsse Datum: 08.11.2021 Eingeschränkte Weitergabe Seite 47 von 47

12 Allgemeine Einschränkungen, Hinweise und Haftungsausschlüsse

- © 2017 Vestas Wind Systems A/S. Dieses Dokument wurde von Vestas Wind Systems A/S und/oder einer der Tochtergesellschaften des Unternehmens erstellt und enthält urheberrechtlich geschütztes Material, Markenzeichen und andere geschützte Informationen. Alle Rechte vorbehalten. Das Dokument darf ohne vorherige schriftliche Erlaubnis durch Vestas Wind Systems A/S weder als Ganzes noch in Teilen reproduziert oder in irgendeiner Weise oder Form sei es grafisch, elektronisch oder mechanisch, einschließlich Fotokopien, Bandaufzeichnungen oder mittels Datenspeicherungs- und Datenzugriffssystemen vervielfältigt werden. Die Nutzung dieses Dokuments über den ausdrücklich von Vestas Wind Systems A/S gestatteten Umfang hinaus ist untersagt. Marken-, Urheberrechts- oder sonstige Vermerke im Dokument dürfen nicht geändert oder entfernt werden.
- Die allgemeinen Beschreibungen in diesem Dokument gelten für die aktuelle Version der 4-MW-Plattform-Windenergieanlagen. Bei neueren Versionen der 4-MW-Plattform-Windenergieanlagen, die ggf. zukünftig hergestellt werden, gilt u. U. eine andere allgemeine Beschreibung. Falls Vestas eine neuere Version der 4-MW-Plattform-Windenergieanlagen liefern sollte, wird das Unternehmen hierzu eine aktualisierte allgemeine Beschreibung vorlegen.
- Vestas empfiehlt, dass die Werte des Stromnetzes so dicht wie möglich an den Nennwerten liegen und Frequenz und Spannung nur geringfügig vom Nennwert abweichen.
- Im Anschluss an einen Stromnetzausfall und/oder an Zeiträume mit sehr geringer Umgebungstemperatur muss ein gewisser Zeitraum für das Aufwärmen der Windenergieanlage eingeplant werden.
- Für alle angegebenen Start/Stopp-Parameter (z. B. Windgeschwindigkeiten und Temperaturen) ist eine Hysterese-Steuerung vorhanden. Dadurch kann es in bestimmten Grenzsituationen dazu kommen, dass die Windenergieanlage angehalten wird, obwohl unter Berücksichtigung der Umgebungsbedingungen die angegebenen Betriebsparametergrenzwerte nicht überschritten worden sind.
- Das Erdungssystem muss die Mindestanforderungen von Vestas sowie die lokalen und nationalen Anforderungen und Normen erfüllen.
- Die vorliegende allgemeine Beschreibung stellt kein Verkaufsangebot dar; sie beinhaltet keine Garantie oder Zusage und auch keine Prüfung der Leistungskurve und Geräusche (einschließlich und ohne Einschränkung Prüfverfahren für Leistungskurve und Geräusche). Garantien, Zusagen und/oder Prüfungen von Leistungskurve und Geräuschen (einschließlich und ohne Einschränkung Prüfverfahren für Leistungskurve und Geräusche) müssen separat schriftlich vereinbart werden.

