

Entwässerungsabschnitt 2 Bau-km 0+378 bis 0+908

Bemessungsgrundlage:

Fläche des kanalisierten Einzugsgebietes $A_{E,k}=0.0$ ha befestigte Fläche $A_{E,b}=0.36$ ha mittlerer Abflussbeiwert $\Psi m,b=0.9$ nicht Befestigte Fläche $A_{E,nb}=0.0$ ha mittlerer Abflussbeiwert $\Psi_{m,nb}=0.2$ vorgegebene Drosselabflussspende $q_{Dr,k}=3$ l/(s*ha) vorgegebene Überschreitungshäufigkeit n=0.2 1/a

Ermittlung der für die Berechnung maßgebenden "undurchlässigen" Fläche Au:

$$A_u = A_{E,b} * \Psi_{m,b} + A_{E,nb} * \Psi_{m,nb} = 0.36 \text{ ha} * 0.9 + 0.0 \text{ ha} * 0.2 = 0.32 \text{ ha}$$

Ermittlung des Abminderungsfaktors f_A:

Mit der Fließzeit t_f = 15 min und der Überschreitungshäufigkeit n = 0,2 1/a ergibt sich gemäß DWA-A 117 Bild 3 der Abminderungsfaktor f_A = 1,0.

Festlegung des Zuschlagsfaktors fz:

Der Zuschlagsfaktor wird gewählt für ein geringes Risikomaß zu $f_z = 1,20$.

Anwendung des einfachen Verfahrens nach DWA-A117 für ausgewählte Dauerstufen

Dauerstufe D	Niederschlagshöhe hN für n= 0,2/a	zugehörige Regenspende r	Drosselabflussspende qDr,R,u	Differenz zwischen r und qDr,R,u	spezifisches Speichervolumen Vs,u
h	mm	l/(s*ha)	l/(s*ha)	l/(s*ha)	m³/ha
3	31,6	29,3	3	26,3	340,85
4	33,6	23,3	3	20,3	350,78
6	36,7	17,0	3	14,0	362,88
9	40,0	12,4	3	9,4	365,47
12	42,6	9,9	3	6,9	357,70

Größtwert bei D = 9: erforderliches spezifisches Volumen $V_{s,u}$ = 365,47 m³/ha Bestimmung des erforderliche Rückhaltevolumens V:

$$V = V_{s,u} * A_u = 365,47 \text{ m}^3/\text{ha} * 0,32 \text{ ha} = 116,95 \text{ m}^3$$

Nachweis Rückhaltevolumen:

Volumen 1 Trapez:

$$V = (a+b) / 2 * h * c = (4,00 m + 9,00 m)/2 * 1,40 m * 12,00 m = 109,20 m3$$

Volumen 2 Prisma:

$$V = G * h_k = 1,28 m^2 * 7,00 m = 8,96 m^3$$

$$G = \frac{1}{2}$$
 * a * b = $\frac{1}{2}$ * 1,83 m * 1,40 m = 1,28 m²

Rückhaltevolumen vorhanden $V_{rück,vorh} = 109,20 \text{ m}^3 + 8,96 \text{ m}^3 = 118,16 > 116,95 \text{ m}^3$