

Schallimmissionsprognose für sechs neue Windenergieanlagen, WP Volkmarsdorf Landkreis Helmstedt, Niedersachsen

Auftraggeber: Swisspower Renewables Volkmarsdorf GmbH

Charlottenstraße 35/36

10117 Berlin

Verfasser: planGIS GmbH

Sedanstr. 29

30161 Hannover

Hannover, März 2021

Auftrag:	Schallimmissionsprognose für sechs neue Windenergieanlagen am Standort Volkmarsdorf, Landkreis Helmstedt, Niedersachsen.
Auftraggeber:	Swisspower Renewables Volkmarsdorf GmbH Charlottenstraße 35/36 10117 Berlin
Projektnummer:	4_21_001
Datum:	18.03.2021
Revision:	00
Bearbeitung:	W. Pachmar
	DiplGeogr. Wiebke Packmor
Geprüft von:	A. Thomasla
	DiplGeogr. Roland Konopka

RECHTLICHER HINWEIS:

planGIS hat diese Schallimmissionsprognose gewissenhaft und nach dem allgemein anerkannten Stand der Technik erstellt. Die Berechnungsergebnisse der Schallimmissionsprognose basieren indes auf Datenmaterial, das planGIS von Dritten, beispielsweise von dem Hersteller der Windenergieanlagen, bereitgestellt wurde. planGIS kann diese Daten Dritter nicht auf Richtigkeit, Aktualität und / oder Vollständigkeit prüfen. Folglich kann planGIS auch keine Gewähr und Haftung für diese Daten übernehmen. Der Auftraggeber wird daher darauf hingewiesen und erkennt an, dass sämtliche seiner Entscheidungen, sei es in kommerzieller, technischer, steuerlicher oder rechtlicher Hinsicht, die auf diesem Dokument basieren, in seiner alleinigen Verantwortung liegen. planGIS ist hinsichtlich der Daten Dritter von jeglicher Haftung befreit und der Auftraggeber wird planGIS insoweit von jeder Haftung freistellen.

Revisionsverlauf

Revision	Datum	Details
Revision 00	18.03.2021	Originaler Bericht:
		20210318_Schallimmissionsprognose_plan-
		GIS_WP_Volkmarsdorf_Rev00

Inhaltsverzeichnis

1	Gr	undlagen zur Schallberechnung	1
1.1		Einleitung	1
1.2	2 /	Allgemeines zur Schallproblematik	2
1	.2.1	1 Grundlagen	2
1	.2.2	2 Normen und gesetzliche Grundlagen	2
1	.2.3	3 Schallleistungs-, Schalldruck-, Mittelungs- und Beurteilungspegel	3
1	.2.4	4 Vorbelastung, Zusatz- und Gesamtbelastung	3
1	.2.5	5 Schallimmissionen von Windenergieanlagen	3
1.3	3 I	Immissionsprognose	4
1	.3.1	1 Grundlagen	4
1	.3.2	2 Ausbreitungsmodell für Windkraftanlagen	5
1	.3.3	3 Zuschläge für Einzeltöne (Tonhaltigkeit) K _T	7
1	.3.4	4 Zuschläge für Impulse (Impulshaltigkeit) K _I	7
1	.3.5	5 Tieffrequente Geräusch und Infraschall	7
2	Sc	challimmissionsprognose	9
2.1		Aufgabenstellung	9
2.2	2 I	Immissionsorte und Windenergieanlagen10	0
2.3	3 5	Schallleistungspegel und Qualität der Prognose14	4
2.4		Ergebnisse der Schallberechnung18	8
2.5	5 1	Ergebnisse der Schallberechnung mit nächtlicher Schallreduzierung20	0
3	Zu	ısammenfassung und Empfehlungen23	3

Anhang

1 Grundlagen zur Schallberechnung

1.1 Einleitung

Windenergieanlagen (WEA) lösen im Gegensatz zu konventionellen Stromerzeugungsanlagen deutlich weniger negative Beeinträchtigungen für Natur und Umwelt (wie z. B. Flächenverbrauch und Schadstoffausstoß) aus. Aus diesem Grund stellen sie auch einen wichtigen Baustein alternativer Energieträger im Rahmen der Diskussion um den Klimawandel dar.

Eine der negativen Umwelteinwirkungen durch Windenergieanlagen besteht in der Geräuschentwicklung, die einerseits vom mechanischen Triebstrang (Getriebe, Generator, usw.) und anderseits vom sich drehenden Rotor verursacht wird. Dieser Schall wird aufgrund seiner Geräuschart von den meisten Menschen als unangenehm und lästig empfunden und somit als Lärm wahrgenommen. Da die Menschen alltäglich schon verschiedensten Arten von Lärm ausgesetzt sind (siehe Abbildung 1), ist es gerade bei den "sanften Energien" wichtig, dass der Mensch durch sie nicht auch noch zusätzlichen Lärmbelästigungen ausgesetzt wird.

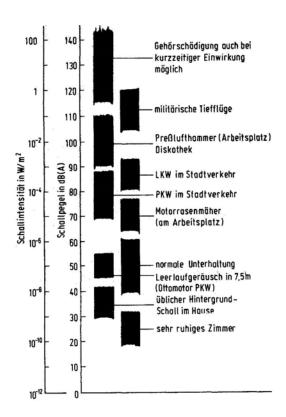


Abbildung 1: Lärmarten und ihre Auswirkungen auf den Menschen

Durch eine Schallprognose kann bereits im Vorfeld untersucht werden, ob durch den Einsatz von Windenergieanlagen Schallgrenzwerte oder Immissionsrichtwerte überschritten werden könnten. So kann bereits im Vorfeld eine Beeinträchtigung von Nachbarn durch die Anlagengeräusche ausgeschlossen werden.

1.2 Allgemeines zur Schallproblematik

1.2.1 Grundlagen

Der Schall besteht aus Luftdruckschwankungen, die das menschliche Ohr wahrnimmt. Abbildung 2 zeigt den Hörbereich des menschlichen Ohrs in einem logarithmischen Maßstab.

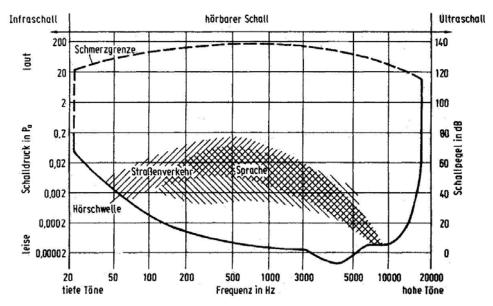


Abbildung 2: Hörbereich des Menschen

Der hörbare Bereich liegt zwischen ca. 20 Hz (Hertz) und 16.000 Hz. Das Ohr nimmt Druckschwankungen ab 0,00002 Pascal (Pa) (= 20 dB) wahr, ab 20 Pa (= 120 dB) wird der Schall als schmerzhaft wahrgenommen. Der Schall unter 20 Hz wird als Infraschall (Körperschall), der Schall über 20.000 Hz als Ultraschall bezeichnet.

1.2.2 Normen und gesetzliche Grundlagen

Die gesetzliche Grundlage für die Schallproblematik bildet das Bundesimmissionsschutzgesetz (BImSchG). Bauliche Anlagen müssen den Gewerbeaufsichts- bzw. Umweltämtern auf Basis der "Technischen Anleitung zum Schutz gegen Lärm" (TA Lärm) auf ihre Verträglichkeit gegenüber der Umwelt und dem Menschen geprüft werden. Als Richtlinien für die Beurteilung der Lärmproblematik gelten zahlreiche Normen nach DIN und VDI.

In der Baunutzungsverordnung (BauNVO) sind die Baugebietsarten festgelegt, denen nach der TA Lärm eine Immissionsschutz-Rangfolge zugeordnet ist. So gelten **nachts** folgende Immissionsrichtwerte außerhalb von Gebäuden:

- 35 dB(A) für reines Wohn-, Erholungs- bzw. Kurgebiet
- 40 dB(A) für allgemeines Wohngebiet und Kleinsiedlungsgebiet (vorwiegend Wohnungen)
- 45 dB(A) für Kern-, Misch-, und Dorfgebiete ohne Überwiegen einer Nutzungsart
- 50 dB(A) für Gewerbegebiet (vorwiegend gewerbliche Anlagen).

1.2.3 Schallleistungs-, Schalldruck-, Mittelungs- und Beurteilungspegel

Die kennzeichnende Größe für die Geräuschemission einer Windenergieanlage wird durch den Schallleistungspegel Lw beschrieben. Der Schallleistungspegel LwA ist der maximale Wert in Dezibel / dB (A-bewertet), der von einer Geräusch- oder Schallquelle (Emissionsort, WEA) abgestrahlt wird. Eine Windenergieanlage verursacht im Bereich des hörbaren Frequenzbandes unterschiedlich laute Geräusche. Da das menschliche Gehör Schall mit unterschiedlicher Frequenz, bei gleichem Leistungspegel, unterschiedlich stark wahrnimmt (siehe Abbildung 2), wird in der Praxis der Schallleistungspegel über einen Filter gemessen, der der Hörcharakteristik des Menschen angepasst ist. So können verschiedenartige Geräusche miteinander verglichen und bewertet werden. Dieser über einen Filter (mit der Charakteristik "A" nach IEC 651, Index A) gemessene Schallleistungspegel wird "A-bewerteter Schallpegel" genannt und ist der Wert der Schallquelle, der für die Berechnung der Schallausbreitung nach DIN ISO 9613-2 verwendet wird.

Der Schall breitet sich kreisförmig um die Geräuschquelle aus und nimmt hörbar mit seinem Abstand zu ihr logarithmisch ab. Dabei wirken Bebauung, Bewuchs und sonstige Hindernisse dämpfend. Die Luft absorbiert den Schall. Reflexionen (z. B. am Boden) und weitere Geräuschquellen wirken Lärm verstärkend. Die Schallausbreitung erfolgt hauptsächlich in Windrichtung.

Der Schalldruckpegel Ls ist der momentane Wert in dB, der an einem beliebigen Immissionsort (z. B. Wohngebäude) in der Umgebung einer oder mehrerer Geräusch- oder Schallquellen gemessen (z. B. mit Mikrofon, Schallmessung), berechnet (mit Immissionsprogrammen nach DIN ISO 9613-2, z. B. IMMI – der Firma Wölfel; WindPRO Modul DECIBEL) oder wahrgenommen werden kann (z. B. durch das menschliche Ohr).

Der Mittelungspegel L_{Aeq} ist der zeitlich gemittelte Wert des Schalldruckpegels. Für die Schallprognose bei Windenergieanlagen wird vom ungünstigsten Fall ausgegangen, dass die Wetter- und Windbedingungen über einen längeren Zeitraum andauern, d. h. der Mittelungspegel wird dem Schalldruckpegel gleichgesetzt. Des Weiteren wird bereits bei der schalltechnischen Vermessung eine Mittelung vorgenommen.

Der Beurteilungspegel L_{rA} resultiert aus dem Mittelungspegel und den Zuschlägen aus der Ton- und Impulshaltigkeit aller Geräuschquellen. Die an den Immissionsorten einzuhaltenden Immissionsrichtwerte beziehen sich auf den Beurteilungspegel.

1.2.4 Vorbelastung, Zusatz- und Gesamtbelastung

Existieren an einem Standort bereits Geräuschquellen (z. B. Windenergieanlagen, Biogasanlagen oder Ställe), so sind diese als Vorbelastung zu berücksichtigen und die neu geplante(n) Anlage(n) als Zusatzbelastung zu bewerten. Die Gesamtbelastung ergibt sich dann aus den Geräuschen aller zu berücksichtigen Anlagen.

1.2.5 Schallimmissionen von Windenergieanlagen

Die Schallabstrahlung einer WEA ist nie konstant, sondern stark von der Leistung und somit von der Windgeschwindigkeit abhängig. So rechnet man grob mit ca. 1 dB(A) Pegelzuwachs pro Zunahme der Windgeschwindigkeit um 1 m/s in 10 m Höhe (v₁₀). Ab einer Windgeschwindigkeit von 10 m/s in 10 m Höhe übertönen im allgemeinen die durch Wind bedingten Umgebungsgeräusche (Rauschen von Blättern, Abrissgeräusche an Häuserkanten, Ästen, usw.) die Anlagengeräusche, da sie mit der Windgeschwindigkeit stärker als die Anlagengeräusche zunehmen (ca. 2,5 dB(A) pro m/s Windgeschwindigkeitszunahme). Die

Umgebungsgeräusche sind dann in der Regel lauter als die WEA, d. h. die Geräuschimmission der WEA verliert an Bedeutung.

In Einzelfällen wurden jedoch geringere Geräuschabstände zwischen den Fremdgeräuschen und den Anlagengeräuschen gemessen. Dies tritt besonders an windgeschützten Orten auf, oder dann, wenn die WEA bei höheren Windgeschwindigkeiten eine Ton- oder Impulshaltigkeit besitzt. Daher hat sich die Vorgehensweise durchgesetzt (federführend der Arbeitskreis "Geräusche von Windenergieanlagen"), dass bei einem Immissionsrichtwert von 45 dB(A) die Prognose mit dem Schalleistungspegel bei $v_{10} = 10$ m/s oder, da viele Anlagen schon bei einer geringeren Windgeschwindigkeit ihre Nennleistung erreichen, mit dem Wert bei Erreichen von 95 % der Nennleistung, erstellt werden soll.

1.3 Immissionsprognose

1.3.1 Grundlagen

Die Prognosen sind nach TA Lärm in ihrer jeweils gültigen Fassung bzw. nach dem Interimsverfahren der DIN ISO 9613-2 (gem. der Empfehlung der Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz LAI und des Arbeitskreises "Geräusche von Windenergieanlagen" 2016) zu erstellen. Da die DIN ISO 9613-2 hochliegende Quellen nur unzureichend abbilden kann, wurde vom NALS mit dem VDI 4101 Blatt 2 eine Erweiterung der DIN ISO 9610-2:1999-10 erarbeitet, welche auch für hochliegende Quellen geeignet ist. Evtl. bestehende Vorbelastungen durch gewerbliche Geräusche an den Immissionsorten müssen weiterhin berücksichtigt werden.

In der Regel werden bei der schalltechnischen Vermessung von Windenergieanlagen der Abewertete Schallleistungspegel und nach der FGW-Richtlinie auch oktavbandbezogene Werte ermittelt.

Definitionen nach "Dokumentation zur Schallausbreitung – Interimsverfahren für Windkraftanlagen, Fassung 2015-05.1"

1. äquivalenter A-bewerteter Dauerschalldruckpegel

L_{AT} = Schalldruckpegel, in Dezibel, definiert nach Gleichung (1)

$$L_{AT} = 10 \lg \{ [1/T \int_0^T p_A^2(t) dt] / p_0^2 \} dB$$
 (1)

Dabei ist:

p_A(t) der Momentanwert des A-bewerteten Schalldrucks in Pascal;

P₀ der Bezugs-Schalldruck (= 20 x 10⁻⁶ Pa)

T ein festgelegtes Zeitintervall, in Sekunden.

Die Frequenzbewertung A ist in DIN EN 61672-1 für Schallpegelmesser festgelegt.

2. äquivalenter Oktavband-Dauerschalldruckpegel bei Mitwind

 L_{fT} (DW) = Schalldruckpegel, in Dezibel, definiert nach Gleichung (2)

$$L_{fT}(DW) = 10lg\{[1/T \int_0^T p_f^2(t)dt] / p_0^2\} dB$$
 (2)

Dabei ist:

- p_f(t) der Momentanwert des Oktavbandschalldrucks bei Mitwind, in Pascal, und Index f die Bandmittenfrequenz eines Oktavfilters;
- P₀ der Bezugs-Schalldruck (= 20 x 10⁻⁶ Pa)
- T ein festgelegtes Zeitintervall, in Sekunden.

1.3.2 Ausbreitungsmodell für Windkraftanlagen

Dem Interimsverfahren liegt ein einfaches akustisches Ersatzmodell zugrunde: Die Geräusche einer Windkraftanlage werden durch eine einzelne Ersatzquelle beschrieben. Diese Ersatzquelle ist eine ungerichtete, frequenzabhängige Punktschallquelle. Ihre Quellstärke wird durch den immissionswirksamen Schallleistungspegel bestimmt, dieser wird nach dem Messverfahren aus der DIN EN 61400-11 ermittelt. Dabei sind die von diesem Messverfahren bereit gestellten A-bewerteten Terzband-Schallleistungspegel L_{AW,i} in die zugehörigen unbewerteten Oktavband-Schallleistungspegel L_W im Bereich der Oktaven 63 Hz bis 8000 Hz zu überführen. Siehe hierzu weiter Ausführungen und Definitionen in der DIN EN 61400-11:2013-09 und DIN ISO 9613-2:1999-10.

Die Oktavband-Schallleistungspegel L_W gehen als Eingangsgröße in das hier festgelegte modifizierte Verfahren der DIN ISO 9613-2:1999-10 ein.

Der Immissionspegel in einem Aufpunkt IP ergibt sodann aus

$$L_{fT}(DW) = L_W + D_C - A \tag{3}$$

Dabei ist:

Lw: der Oktavband-Schallleistungspegel der Punktquelle, in Dezibel, bezogen auf eine Bezugsschallleistung von einem Picowatt (1 pW);

Dc: die Richtwirkungskorrektur, in Dezibel, die beschreibt, um wieviel der von der Punktquelle erzeugte äquivalente Dauerschalldruckpegel in der festgelegten Richtung von dem Pegel einer ungerichteten Punktschallquelle mit einem Schallleistungspegel Lw abweicht; Dc ist gleich dem Richtwirkungsmaß D $_{\rm l}$ der Punktschallquelle zuzüglich eines Richtwirkungsmaßes D $_{\rm l}$ das eine Schallausbreitung im Raumwinkel von weniger als 4π Sterad berücksichtigt; für eine ungerichtete, ins Freie abstrahlende Punktschallquelle ist Dc = 0 dB;

A die Oktavbanddämpfung, in Dezibel, die während der Schallausbreitung von der Punktquelle zum Empfänger vorliegt.

Der Dämpfungsterm A in der Gleichung (3) ist durch Gleichung (4) gegeben:

$$A = A_{\text{div}} + A_{\text{atm}} + A_{\text{gr}} + A_{\text{bar}} + A_{\text{misc}}$$
(4)

Dabei ist:

A_{div}: Dämpfung aufgrund der geometrischen Ausbreitung:

$$A_{\text{div}} = [20 \text{lg } (d / d_0) + 11] dB$$
 (5)

d: der Abstand zwischen Quelle und Immissionsort;

d₀: der Bezugsabstand (= 1m).

A_{atm}: Dämpfung aufgrund von Luftabsorption – diese ist oktavbandabhängig:

$$A_{\text{atm}} = \alpha d / 1000 \tag{6}$$

a: der Absorptionskoeffizient der Luft, in Dezibel je Kilometer, für jedes Oktavband bei der Bandmittenfrequenz nach folgender Tabelle:

Temperatur Relative		Luftdämpfungskoeffizient α, dB / km							
in °C	Feuchte in %	Bandmittenfrequenz in Hz							
	70	63	125	250	500	1000	2000	4000	8000
10	70	0,1	0,4	1,0	1,9	3,7	9,7	32,8	117

Agr: Dämpfung aufgrund des Bodeneffektes:

Hier gilt modifiziert gegenüber der Regelung nach DIN ISO 9613-2:1999-10

$$A_{\rm gr} = -3 \text{ dB} \tag{7}$$

Es findet somit keine Dämpfung durch den Bodeneffekt statt.

 A_{bar} : Dämpfung aufgrund der Abschirmung (Schallschutz). In der vorliegenden Berechnung wird ohne Schallschutz gerechnet: $A_{\text{bar}} = 0$.

A_{misc}: Dämpfung aufgrund verschiedener weiterer Effekte (Bewuchs, Bebauung, Industrie). <u>In der vorliegenden Berechnung werden diese Effekte nicht berücksichtigt: A_{misc} = 0.</u>

In der Praxis dämpfen u. U. Bebauung und Bewuchs den Schall ($A_{misc} > 0$), so dass die tatsächlichen Immissionswerte unter jenen der Prognose liegen.

Der A-bewertete Langzeitmittelungspegel L_{AT}(LT) ist im langfristigen Mittel wie folgt zu berechnen:

$$L_{AT}(LT) = L_{AT}(DW) - C_{met}$$
(8)

Dabei ist:

C_{met}: Meteorologische Korrektur in Dezibel.

Die Meteorologische Korrektur beschreibt die Dämpfung des Schalls durch meteorologische Einflüsse wie Wind und Temperatur über ein Jahr. Diese zusätzliche Dämpfung wird aber erst in größeren Entfernungen wirksam und ist u. a. von der Nabenhöhe der Anlage abhängig (siehe Formel 11). Bei den Prognosen kann mit dem Parameter $C_0 = 2$ dB gerechnet werden. Die Meteorologische Korrektur bestimmt sich nach den Gleichungen:

$$C_{met} = 0 f \ddot{u} r d_p < 10 (h_s + h_r)$$

$$C_{met} = C_0 [1-10(h_s + h_r)/d_p] f \ddot{u} r d_p > 10(h_s + h_r) (9)$$

Dabei ist:

hs: die Höhe der Schallquelle über dem Boden, in Metern;

h_r: die Höhe des Aufpunktes über dem Boden, in Metern;

d_p: der Abstand zwischen Schallquelle und Empfänger, projiziert auf die Bodenebene, in Metern.

 C_0 kann abhängig von den jeweiligen Anforderungen in den einzelnen Bundesländern ausgeschlossen werden: $C_0 = 0$ dB oder auch bis zu 2 dB betragen.

Liegen den Berechnungen mehrere Schallquellen (u. a. Windpark) zugrunde, so überlagern sich die einzelnen Schalldruckpegel L_{ATi} entsprechend den Abständen zum betrachteten Immissionsort. In der Bewertung der Lärmimmission nach der TA Lärm ist der aus allen Schallquellen resultierende Schalldruckpegel L_{AT} unter Berücksichtigung der Zuschläge nach der folgenden Gleichung zu ermitteln:

$$L_{AT}(LT) = 10 \lg \sum_{i=1}^{n} 10^{0,1(L_{ATi} - C_{met} + K_{Ti} + K_{li})}$$
(10)

Dabei ist:

Lat: Beurteilungspegel am Immissionsort

Lati: Schallimmissionspegel am Immissionsort einer Emissionsquelle i

i: Index für alle Geräuschquellen von 1-n

K_{Ti}: Zuschlag für Tonhaltigkeit einer Emissionsquelle i

K_{ii}: Zuschlag für Impulshaltigkeit einer Emissionsquelle i

1.3.3 Zuschläge für Einzeltöne (Tonhaltigkeit) K_T

Als Quellen für tonhaltige Geräusche sind in erster Linie Getriebe, Generatoren, Azimutgetriebe und eventuelle Hydraulikanlagen zu nennen. Tonhaltigkeiten im Anlagengeräusch sollten konstruktiv vermieden bzw. auf ein Minimum reduziert werden. Heben sich aus dem Anlagengeräusch ein Einzelton oder mehrere Einzeltöne deutlich hörbar hervor, ist nach der TA Lärm für den Zuschlag K_T, je nach Auffälligkeit des Tons, ein Wert von 3 oder 6 dB(A) anzusetzen. Orientiert an der Tonhaltigkeit im Nahbereich K_{TN} (gemessen bei der Emissionsmessung) gilt für Entfernungen über 300 m folgender Zuschlag:

 $K_T = 0$ für $0 \le K_{TN} \le 2$

 $K_T = 3$ für $2 < K_{TN} \le 4$

 $K_T = 6$ für $K_{TN} > 4$

Die Zuschläge für Impuls- und Tonhaltigkeit der Anlagen werden für die entsprechenden Anlagentypen in der Regel bei Schalldruckpegelmessungen durch autorisierte Institute bewertet und werden in den Berichten zur schalltechnischen Vermessung dokumentiert. Sie werden ebenfalls in den technischen Unterlagen der WEA-Hersteller angegeben.

Für Windkraftanlagen-Typen, bei denen in Messberichten nach der FGW-Richtlinie ein $K_{TN} = 2$ dB im Nahbereich ausgewiesen wird, ist am maßgeblichen Immissionsort eine Abnahmemessung zur Beurteilung der Tonhaltigkeit erforderlich. Wird hierbei eine immissionsseitige Tonhaltigkeit festgesellt, müssen Maßnahmen zur Minderung der Tonhaltigkeit ergriffen werden.

1.3.4 Zuschläge für Impulse (Impulshaltigkeit) Kı

Impulshaltige Geräusche können z. B. durch den Turmdurchgang des Rotorblatts entstehen und werden als besonders störend empfunden. Die Beurteilung, ob eine Impulshaltigkeit gegeben ist, kann nach DIN 45645 durchgeführt werden. Enthält das Anlagengeräusch (bewerteter Schallpegel) öfter, d. h. mehrmals pro Minute, deutlich hervortretende Impulsgeräusche oder ähnlich auffällige Pegeländerungen (laut Messung), dann ist nach der TA Lärm die durch solche Geräusche hervorgerufene erhöhte Störwirkung durch einen Zuschlag zum Mittelungspegel zu berücksichtigen. Dieser Zuschlag K_I beträgt wie bei der Tonhaltigkeit, **je nach Auffälligkeit des Tons 3 oder 6 dB(A)**. In der Praxis werden impulshaltige Geräusche konstruktiv vermieden; ihr Auftreten entspricht somit nicht dem Stand der Technik.

1.3.5 Tieffrequente Geräusch und Infraschall

Tieffrequente Geräusche sind definitionsgemäß nach TA Lärm 7.3 Geräusche mit einem vorherrschenden Energieanteil im Frequenzbereich unter 90 Hz. Als Infraschall wird dazu

Schall im Frequenzbereich unterhalb von 20 Hz bezeichnet. Infraschall ist also somit der tiefste Teil im Frequenzspektrum des tieffrequenten Schalls.

Bei Infraschall und tieffrequenten Geräuschen besteht nur ein geringer Toleranzbereich des Menschen, so dass bereits bei geringer Überschreitung der Wahrnehmungsschwelle eine Belästigungswirkung auftritt. Studien zum Thema Infraschall stellen dabei fest, dass für eine Wirkuna von Infraschall unterhalb der Wahrnehmungsschwelle wissenschaftlich gesicherten Ergebnisse gefunden werden konnten (z.B. Ising et al. 1982; Buhmann 1998; UBA 2014, LUBW 2016). Der Höreindruck von WEA ist der eines "tiefen" Geräusches – dieser resultiert jedoch überwiegend aus den hörbaren Geräuschanteilen zwischen etwa 100 und 400 Hz; der Höreindruck von WEA lässt also allein weder auf das Vorhandensein relevanter tieffrequenter Geräusche noch auf Infraschall schließen. Auch die bekannten Tonhaltigkeiten (siehe auch Abschnitt 1.3.3) von WEA liegen oberhalb dieses Frequenzbereichs zwischen etwa 120 Hz und 400 Hz und wirken damit zwar belästigend, sind aber kein Infraschallproblem. Oft liegt der Infraschallpegel auch unterhalb des Infraschallpegels des Umgebungsgeräusches, in manchen Situationen konnte sogar zwischen den Messwerten bei an- und ausgeschalteter WEA kein Unterschied festgestellt werden.

Ein umfangreiches aktuelles Messprojekt der LUBW (LUBW 2016) bestätigte diese Ergebnisse nochmals: Im Nahbereich der WEA (< 300 m) konnten Infraschallpegel von WEA gemessen werden, die alle unterhalb der Wahrnehmungsschwelle lagen. In größeren Entfernungen ab etwa 700 m konnte kein Unterschied mehr gemessen werden, wenn die WEA an oder ausgeschaltet wurde. Eine Abhängigkeit des Infraschallpegels von der Größe des Rotordurchmessers oder der Leistung der WEA zeigte sich nicht. Bei WEA ist zusätzlich zu berücksichtigten, dass der Wind selbst ebenfalls eine bedeutende Infraschallquelle darstellt, wobei mitunter die windinduzierten Infraschallpegel fälschlicherweise der WEA zugeordnet werden. Weitere typische Infraschallquellen sind Verkehr (auch Fahrzeuginnengeräusche enthalten Infraschallanteile), häusliche Quellen wie z.B. Wasch- und Spülmaschinen oder auch Meeresrauschen.

Infraschall ist also ein **ubiquitäres** Phänomen und keineswegs ein spezielles Kennzeichen von WEA. Infraschall und tieffrequente Geräusche von Industrieanlagen (Lüfter, Verdichter, Motoren u.a.) können bekannter Weise schädliche Umwelteinwirkungen hervorrufen. Die dabei im Zusammenhang mit Infraschall von WEA kursierenden Begriffe "Windturbinen-Syndrom" und "Vibroakustische Krankheit" sind keine medizinisch anerkannten Diagnosen.

Tieffrequente Geräusche und Infraschall (Körperschall) sind bei Windenergieanlagen messtechnisch nachweisbar, aber für den Menschen nicht hörbar. Nach den Untersuchungen der Infraschallwirkungen auf den Menschen erwies sich unhörbarer (nicht wahrnehmbarer) Infraschall als unschädlich. Weiterhin werden die Windenergieanlagen infraschallentkoppelt installiert, so dass sich der Infraschall nicht über den Boden ausbreiten kann. Der Körperschall ist daher nur in unmittelbarer Nähe um die WEA vorhanden, dabei aber nicht wahrnehmbar. In diesem Zusammenhang sei auf die Untersuchung am Windpark Weiberg durch die Kötter Consulting Engineers GmbH & Co. KG vom Mai 2015 im Kreis Paderborn verwiesen, welche sich diesem Thema intensiv gewidmet hat. Es konnte auch hierbei zweifelsfrei nachgewiesen werden, dass keine wahrnehmbaren tieffrequenten Geräusche innerhalb der Wohnbebauung zu messen waren. Ferner lag der Infraschall erheblich unterhalb der relevanten und damit für den Menschen wahrnehmbaren Schwelle.

2 Schallimmissionsprognose

2.1 Aufgabenstellung

Die Swisspower Renewables Volkmarsdorf GmbH plant im Rahmen eines Repowerings die Errichtung und den Betrieb sechs neuer Windenergieanlagen am Standort Volkmarsdorf. Dabei handelt es sich um WEA des Typs GE 5.5-158 der Firma General Electric mit einer Nabenhöhe von 161 m, einem Rotordurchmesser von 158 m und einer Leistung von 5.500 kW, nördlich von Almke und westlich von Volkmarsdorf, Landkreis Helmstedt, Niedersachsen. Die bestehenden 15 Windenergieanlagen werden im Zuge des Repowerings abgebaut.

Vorbelastungen durch bestehende WEA sind in dem Bereich der neu geplanten Anlagen nach dem Repowering nicht mehr vorhanden. Im Untersuchungsgebiet sind als Vorbelastung eine Biogasanlage und ein BHKW vorhanden.

Für die geplante Errichtung der neuen Anlagen sind in der vorliegenden Prognose die Schallimmissionen durch die Windenergieanlagen auf die Bebauung ermittelt worden. Die Standorte der geplanten Anlagen und die Immissionsorte sind in Abbildung 3 dargestellt.

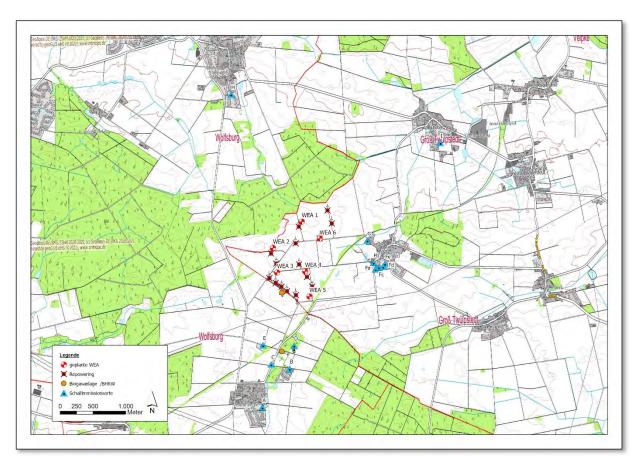


Abbildung 3: Standorte der Windenergieanlagen und Lage der Schallimmissionsorte

Abbildung 4: Detailkarte Volkmarsdorf

Die Schallimmissionsprognose erfolgt gem. den Empfehlungen der Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz (LAI) und des Arbeitskreises "Geräusche von Windenergieanlagen" auf der Grundlage des "Interimsverfahrens zur Prognose der Geräuschimmissionen von Windkraftanlagen" - Fassung 2015-05.1 und der DIN ISO 9613-2. Das Geländerelief und günstige Schallausbreitungsbedingungen (70 % Luftfeuchte und 10 °C) in Mitwindrichtung werden berücksichtigt.

2.2 Immissionsorte und Windenergieanlagen

Die **Berechnung** der Schallimmissionen erfolgte mit dem Schallberechnungsmodul des Programms IMMI – Version 2020 der Firma Wölfel. Hierbei handelt es sich um eine nach DIN 45687 qualitätsgesicherte Software für die Berechnung von Lärm und Luftschadstoffen.

Mit diesem Schallberechnungsmodul lassen sich die Lärmimmissionen sowohl von existierenden als auch von geplanten WEA an verschiedenen Schallimmissionsorten berechnen, ferner können Flächenschallquellen (Gewerbegebiete) in die Ausbreitungsberechnung eingebunden werden. Sowohl punktförmige Schallimmissionsorte als auch größere Areale (Polygone) können vom Anwender auf einer Hintergrundkarte grafisch eingegeben werden. Zu jedem Immissionsort kann eine Vorbelastung, der Immissionsrichtwert, eine maximale Zusatzbelastung, ein einzuhaltender Sicherheitsabstand zum Immissionsrichtwert und ein minimaler räumlicher Abstand eingegeben werden. Die Einhaltung der angegebenen Bedingungen wird auf Berechnungsausdrucken dokumentiert.

Für die vorliegende Schallprognose wurde das Interimsverfahren im Berechnungsmodell nach ISO 9613-2 angewandt, es findet somit für <u>hohe Quellen</u> eine frequenzabhängige Schallausbreitungsberechnung statt.

Es wurde ein hoch aufgelöstes digitales Geländemodell (DGM 10) mit einer Rasterweite von 10 m und einer Oberflächengenauigkeit von wenigstens +/- 0,2 m zur Berechnung eingesetzt.

Die **Immissionsorte** in der vorliegenden Prognose wurden anhand von online verfügbaren ALKIS-Daten, durch die Auswertung der aktuellen Flächennutzungspläne der Gemeinden Groß Twülpstedt und der Stadt Wolfsburg, unter Beachtung gültiger Bebauungspläne der Ortschaften, sowie anhand von Luftbildern in Abstimmung mit dem Auftraggeber ausgewählt. Darüber hinaus sind alle Immissionsorte bei einem Ortstermin am 05.02.2021 persönlich vor Ort überprüft worden.

Bei dieser Standortaufnahme wurden die Gebäude hinsichtlich möglicher Schallreflexionen untersucht. Die an den relevanten Immissionsorten angetroffenen Gebäudeanordnungen geben jedoch keine Hinweise auf mögliche relevante Schallreflexionen. Für die vorliegende Prognose kann daher festgestellt werden, dass keine Gebäudeanordnungen gegeben sind, die zu möglichen relevanten Schallreflexionen führen, welche eine Überschreitung der Richtwerte zur Folge haben.

Es wurde bei dem Ortstermin auch festgestellt, dass keine weiteren relevanten Immissionsorte zu berücksichtigen sind. Es handelt sich bei den Immissionsorten um die am nächsten gelegene Wohnbebauung der umliegenden Ortschaften. Insgesamt wurden 13 Immissionsorte festgelegt (siehe Abbildung 3, sowie Tabelle 2) und wie folgt eingestuft:

Die Immissionsorte A, I und H werden durch die jeweils gültigen FNP und B-Pläne als allgemeine Wohngebiete eingestuft und werden dementsprechend berücksichtigt. Der **Immissionsort** В liegt in einem B-Plangebiet, welches als Sondergebiet "Wochenendhausgebiet" ausgewiesen ist. Vorgaben bezüglich dieser Gebietsart gibt es in der TA Lärm nicht. Nach DIN 18005 ist hier ein Orientierungswert von 50 dB(A) tagsüber und 35 dB(A) während der Nachtstunden für Wochenendhausgebiete anzusetzen. Das Wochenendhausgebiet wird nach Angaben der Stadt Wolfsburg Inaugenscheinnahme beim Ortstermin entgegen der Festsetzung im B-Plan als dauerhaftes Wohngebiet genutzt. Nach einem Urteil des Bundesverwaltungsgerichts ist die dauerhafte Wohnnutzung in einem als Wochenendhausgebiet durch einen B-Plan festgeschriebenen Gebiet nicht vorgesehen.

"Eine dauerhafte Wohnnutzung ist mit der allgemeinen Zweckbestimmung eines Sondergebiets für die Erholung nicht vereinbar. Prägendes Merkmal der in einem Sondergebiet nach § 10 BauNVO zulässigen Unterbringungsmöglichkeiten ist das gelegentliche Wohnen während der Freizeit. Sondergebiete nach § 10 BauNVO kommen daher grundsätzlich nicht für Unterbringungsmöglichkeiten in Betracht, die dem dauernden Wohnen dienen; dies ist den Bauge-BauNVO bieten nach den §§ 2 ff. vorbehalten (Söfker, Ernst/Zinkahn/Bielenberg/Krautzberger, BauGB, Bd. VI, Stand Januar 2013, § 10 BauNVO Rn. 5)" (BVerwG, Urteil vom 11.07.2013 – 4 CN 7.12, RN 11).

Das Wochenendhausgebiet wird nicht mehr gemäß B-Plan genutzt und ist zudem vom Außenbereich umgeben. Im Norden schließt das Gelände des Sportvereins Komet Almke mit zwei Fußballplätzen an und im Nordwesten liegen das Schwimmbad mit Parkplatz und der Jugendzeltplatz. Aufgrund der Nutzung als dauerhaftes Wohngebiet, der Lage angrenzend an den Außenbereich und an Nutzungen wie dem Sportverein (nicht unerhebliche Lärmbelastung auch am Wochenende), welche nicht mit der Einstufung als reines Wohngebiet vereinbar ist, wird der Bereich der Wohnnutzung "Im Dornsiek" als faktisches allgemeines Wohngebiet mit 40 dB(A) eingestuft.

Die Immissionsorte C, und Fa - Fd liegen nach den entsprechenden Flächennutzungsplänen in einem Wohngebiet. Der Bereich nördlich Almke ist hierbei zwar im FNP als Wohnbereich ausgewiesen, es existiert allerdings noch keine Wohnbebauung. Trotzdem wird hier am Rande des im FNP ausgewiesenen Wohngebietes der Immissionsort C gesetzt und als allgemeines Wohngebiet eingestuft, um eine Überschreitung für zukünftige Nutzungen sicher auszuschließen.

Für das Wohngebiet im Bereich der Immissionsorte Fa - Fd liegen der B-Plan Lusten und der Teilbebauungsplan Volkmarsdorf Süd 2 vor. Der B-Plan Lusten definiert den westlichen Bereich als Dorfgebiet (Siedlung 19, 19A, 21, 23, 25, 25A, 27 und 29). In dem B-Plan Volkmarsdorf Süd wird keine Nutzungsart festgesetzt ebenso wie in der Innenbereichssatzung für die angrenzenden Flurstücke. In dem FNP ist der Bereich der Gebäude Hauptstraße 41, 39A, 39, 37 und 35, der Klein Sisbecker Str. 2, 4, 6, 8 und 10 und alle nördlich hiervon liegenden Gebäude als Mischgebiet gekennzeichnet, alle südlich liegenden Gebäude als Wohngebiet. In dem Wohngebiet wurden vier Immissionsorte gesetzt. Flurstück 64/3 -Siedlung 21 - Fa, Flurstück 63/3 - Hauptstr. 41 - Fb, Flurstück 65/11 - Siedlung 17 - Fc, Flurstück 66/13 - Siedlung 11 - Fd und Fe Siedlung 4. Hierbei werden die beiden Immissionsorte Fa und Fb als Dorf-Mischgebiet eingestuft. Für den Immissionsort Fa liegt ein B-Plan vor und für den Immissionsort Fb wird für die Einstufung der FNP und die Gebietscharakteristik herangezogen. Auch bei einer Einstufung des Immissionsortes Fb als allgemeines Wohngebiet, ist dieses Gebäude umgeben von einer Nutzung als Dorf-Mischgebiet und liegt angrenzend an den Außenbereich. Nach TA-Lärm könnte somit eine Gemengelage mit einem erhöhten Wert von z.B. 42,5 dB(A) herangezogen werden. Die in dem Teilbebauungsplan Volkmarsdorf Süd 2 dargestellten Flurstücke werden von dem Landkreis Helmstedt als allgemeines Wohngebiet eingestuft. In diesen Bereich fällt der Immissionsort Fc. Für den östlich hiervon liegenden Bereich, anfangend mit dem Immissionsort Fd wird von dem Landkreis ein Gebietscharakter eines reinen Wohngebietes festgestellt. Aus gutachterlicher Sicht kann für das gesamte Gebiet östlich des B-Planes Lusten ein WA angenommen werden. In den vorliegenden FNP, B-Plänen und Innenbereichssatzung ist das Gebiet als Wohngebiet, aber nicht als reines Wohngebiet definiert. Die nördlichste Häuserreihe ist zudem im FNP als Dorfgebiet ausgewiesen. Die aktuell bestehenden Windenergieanlagen überschreiten seit Jahren die Nachtwerte für ein reines Wohngebiet (35 dB(A)) rechnerisch um ca. 7 dB(A). Nach gutachterlicher Einschätzung wird hier deshalb ein faktisches allgemeines Wohngebiet als angemessen erachten. Selbst bei einer Einstufung als reines Wohngebiet grenzt im Norden ein Dorf-Mischgebiet an ein reines Wohngebiet und im Süden der Außenbereich an das Wohngebiet. Hierdurch kann die Bildung einer Gemengelage nach TA-Lärm 6.7 und OVG Münster 8 B 736-17 herangezogen werden.

Der Immissionsort D wurde am nördlichen Rand eines Jugendzeltplatzes gesetzt. Vorgaben bezüglich dieser Gebietsart gibt es in der TA Lärm nicht. Nach DIN 18005 ist hier ein **Orientierungswert** von 55 dB(A) für die Tagstunden bzw. 40 dB(A) während des nächtlichen Zeitraumes entsprechend eines allgemeinen Wohngebietes für Campingplätze anzusetzen. Auf dem Gelände des Jugendzeltplatzes steht ein BHKW, welches an den am nächsten gelegenen Zeltplätzen je nach genauen Schallemissionen zu Überschreitungen des Wertes von 40 dB(A) in einer Ausbreitungsrechnung ohne den Bewuchs führen kann. Für allgemeine Wohngebiete, welche an den Außenbereich grenzen, wird durch die Bildung einer Gemengelage eine Erhöhung der Richtwerte der TA-Lärm in Randlage regelmäßig zugelassen. So wird auch bei den Orientierungswerten der DIN gutachterlich eine leichte Erhöhung der Werte in Randlage als zulässig erachtet, gerade da der Zeltplatz durch sein

BHKW vermutlich selber in einem anderen Bereich des Zeltplatzes eine solche Erhöhung erzeugt.

Die Immissionsorte E und G liegen im Außenbereich, bzw. in einem Dorf-Mischgebiet und sind im Nachtzeitraum mit 45 dB(A) zu beurteilen.

Bei den hier getroffenen Einstufungen sei angemerkt, dass der Raum aktuell durch die bestehenden 15 Windenergieanlagen vorbelastet ist. Bei der Genehmigung der bestehenden Windenergieanlagen wurden das allgemeine Wohngebiet in Volkmarsdorf, der Zeltplatz und das Wochenendhausgebiet in den Schallgutachten nicht als Immissionsorte aufgenommen. Die aktuelle tatsächliche Belastung durch die bestehenden Windenergieanlagen liegt im WA in Volkmarsdorf und bei dem Zeltplatz deutlich über den hier vorgeschlagenen Richtwerten, auch in dem Wochenendhausgebiet werden schon in der IST-Situation Werte entsprechend eines allgemeinen Wohngebietes erreicht. Durch das Repowering und die oben vorgeschlagenen Einstufungen wird eine Verbesserung im Vergleich zur IST-Situation erreicht.

Entsprechend werden die für das Projekt relevanten Immissionsorte wie folgt eingestuft:

- Allgemeines Wohngebiet / Wochenendhäuser (Nacht-Richtwert 40 dB(A)): 8
 Immissionsorte: A bis D (mit Bildung einer Gemengelage 42,5 dB(A)), Fc Fd und H bis I;
- Dorf- und Mischgebiet / Außenbereich (Nacht-Richtwert 45 dB(A)): vier Immissionsorte: E, Fa - Fb und G

Im Sinne einer konservativen Annahme, bei der Windenergieanlagen rund um die Uhr in Betrieb sind, wird der Berechnung als relevanter Immissionsrichtwert (IRW) typischerweise der Nacht-Zeitraum von 22:00 bis 6:00 Uhr mit 40 dB(A) für allgemeine Wohngebiete und hier auch für Wochenendhausgebiete und 45 dB(A) für Dorf- und Mischgebiete.

Grundlegend wurden die Immissionsorte nach Vorschrift der TA Lärm mit einem Abstand von 0,5 m vor den jeweiligen Fassaden bzw. Fenstern der Wohngebäude festgelegt. In Einzelfällen muss von dieser Praxis jedoch abgewichen werden, da Balkone, Wintergärten oder direkt am Wohnhaus anschließende Terrassenflächen als schützenswerte und zu berücksichtigende Objekte vorhanden sind. Bei landwirtschaftlichen Gehöften sind ferner Stallungen und Nebengebäude mit dem Wohnhaus oftmals direkt verbunden und bilden eine Grundfläche. Dennoch sind hierbei nur dauerhaft der Wohnnutzung gewidmete Gebäudeteile zu berücksichtigen, sodass die Immissionsaufpunkte teilweise an den Giebelseiten der Hauptdächer gesetzt worden sind. Dort wo eine Identifizierung nicht zweifelsfrei möglich ist, wird mit einem sehr konservativen Ansatz gearbeitet, indem der Immissionsaufpunkt vor der nächsten, in Richtung WEA ausgerichteten Fassade gesetzt wird, bzw. weiter als die vorgegebenen 0,5 m von dieser entfernt liegt und damit näher an der Schallquelle als erforderlich.

Vorbelastungen der Immissionsorte durch Schallemissionen von existierenden WEA bestehen im Untersuchungsgebiet nach dem Repowering nicht. Hierbei sei angemerkt, dass der Raum aktuell durch die bestehenden 15 Windenergieanlagen vorbelastet ist. Als Vorbelastung wird eine Biogasanlage an der Volkmarsdorfer Straße 101 und ein BHKW auf dem Gelände des Jungendzeltplatzes Almke mit Erfahrungswerten von 85 dB und einer Quellhöhe von 8 m berücksichtigt.

Tabelle 1: Daten der Windenergieanlagen

WEA- Bezeich-	Status		TRS 89 ne 32	WEA Typ	Leistung	Rotor- durch-	Naben- höhe
nung	Status	Ost	Nord	WEA Typ	in kW	messer	ü. Grund
		Ве	estehende A	nlagen / Repowerin	g		
VB 1	Repowering	627.597	5.803.764	E-66/18.70	1.800	70 m	65 m
VB 2	Repowering	627.662	5.803.564	E-66/18.70	1.800	70 m	65 m
VB 3	Repowering	627.476	5.803.328	E-66/18.70	1.800	70 m	65 m
VB 4	Repowering	627.158	5.803.516	E-66/18.70	1.800	70 m	65 m
VB 5	Repowering	627.111	5.803.253	E-66/18.70	1.800	70 m	65 m
VB 6	Repowering	626.736	5.803.099	E-66/18.70	1.800	70 m	65 m
VB 7	Repowering	626.815	5.802.947	E-66/18.70	1.800	70 m	65 m
VB 8	Repowering	627.164	5.802.933	E-66/18.70	1.800	70 m	65 m
VB 9	Repowering	627.284	5.802.743	E-66/18.70	1.800	70 m	65 m
VB 10	Repowering	627.363	5.802.597	E-66/18.70	1.800	70 m	65 m
VB 11	Repowering	626.710	5.802.723	E-40/6.44	600	44 m	78 m
VB 12	Repowering	626.806	5.802.653	N29	250	29 m	50 m
VB 13	Repowering	626.895	5.802.593	N27	180	27 m	40 m
VB 14	Repowering	626.979	5.802.525	N29	250	29 m	50 m
VB 15	Repowering	627.114	5.802.466	E-66/18.70	1.800	70 m	65 m
BGA	Bestand	626.899	5.802.503	•	-	-	8 m
BHKW	Bestand	626.901	5.801.611	-	-	1	8 m
			Zusa	tzbelastung			
WEA 1	geplant	627.204	5.803.592	GE 5.5-158	5.500	158 m	161 m
WEA 2	geplant	626.765	5.803.182	GE 5.5-158	5.500	158 m	161 m
WEA 3	geplant	626.827	5.802.810	GE 5.5-158	5.500	158 m	161 m
WEA 4	geplant	627.254	5.802.827	GE 5.5-158	5.500	158 m	161 m
WEA 5	geplant	627.321	5.802.445	GE 5.5-158	5.500	158 m	161 m
WEA 6	geplant	627.477	5.803.327	GE 5.5-158	5.500	158 m	161 m

2.3 Schallleistungspegel und Qualität der Prognose

Zur Berechnung der Belastung wurden gemäß dem Interimsverfahren zur Prognose der Geräuschimmissionen von Windkraftanlagen und den Hinweisen zum Schallimmissionsschutz bei Windkraftanlagen das nachfolgende Oktavbandspektrum bei einer Windgeschwindigkeit von 10 m/s in einer Höhe von 10 m über Boden bzw. 95 % der Nennleistung zugrunde gelegt.

Gem. der TA Lärm und dem Interimsverfahren sind im Rahmen von Schallimmissionsprognosen zudem Aussagen über die Qualität der Prognose zu treffen. Hierbei geht es um die Sicherstellung der "Nicht-Überschreitung" der Immissionsrichtwerte. Der Nachweis ist mit einer Wahrscheinlichkeit von 90 % zu führen und wird als obere Vertrauensbereichsgrenze aller

Unsicherheiten (insbesondere der Emissionsdaten und der Ausbreitungsrechnung) zusammengefasst.

Nach vorliegenden Herstellerangaben / Messberichten ergibt sich für die geplanten und im Antragsverfahren befindlichen Windkraftanlagen folgender Summen-Schallleistungspegel:

- WEA Typ E-66/18.70 unter Volllast mit 103 dB(A), 1.800 kW und 70 m NH, L_{WA, 95%}: 104,4 dB(A) (inkl. oberer Vertrauensbereichsgrenze) als Schallleistungspegel gemäß Genehmigung 103 dB(A) (Referenzspektrum) + 1,4 dB(A) Sicherheitszuschlag.
- WEA Typ E-40/6.44 unter Volllast mit 101 dB(A), 600 kW und 78 m NH, L_{WA, 95%}: 102,5 dB(A) (inkl. oberer Vertrauensbereichsgrenze) als Schallleistungspegel gemäß Genehmigung 101 dB (A) (Referenzspektrum) + 1,5 dB(A) Sicherheitszuschlag.
- WEA Typ N29 unter Volllast mit 101,7 dB(A), 250 kW und 50 m NH, L_{WA, 95%}: 104,7 dB(A) (inkl. oberer Vertrauensbereichsgrenze) als Schallleistungspegel gemäß Genehmigung 101,7 dB (A) (Referenzspektrum) + 3,0 dB(A) Sicherheitszuschlag.
- WEA Typ N27 unter Volllast mit 98 dB(A), 150 kW und 42 m NH, L_{WA, 95%}: 101 dB(A) (inkl. oberer Vertrauensbereichsgrenze) als Schallleistungspegel gemäß Genehmigung 98 dB (A) (Referenzspektrum) + 3,0 dB(A) Sicherheitszuschlag.
- WEA Typ GE 5.5-158 mit Serrations im Betriebsmodus NO 106 dB(A) mit 5.500 kW und 161 m NH, L_{WA, 95%}: 108,1 dB(A) (inkl. oberer Vertrauensbereichsgrenze) als Schallleistungspegel gemäß vorliegenden Herstellerangaben (Noise_Emission-NO_NRO_4.x_5.x-158-50Hz_FGW_DE_r02).
- WEA Typ **GE 5.5-158 mit Serrations** im Betriebsmodus NRO 103 dB(A) mit 4.800 kW und 161 m NH, L_{WA, 95%}: 105,1 dB(A) (inkl. oberer Vertrauensbereichsgrenze) als Schallleistungspegel gemäß vorliegenden Herstellerangaben (Noise_Emission-NO_NRO_4.x_5.x-158-50Hz_FGW_DE_r02).
- WEA Typ **GE 5.5-158 mit Serrations** im Betriebsmodus NRO 102 dB(A) mit 4.650 kW und 161 m NH, L_{WA, 95%}: 104,1 dB(A) (inkl. oberer Vertrauensbereichsgrenze) als Schallleistungspegel gemäß vorliegenden Herstellerangaben (Noise_Emission-NO_NRO_4.x_5.x-158-50Hz FGW DE r02).

Die Gesamtunsicherheit der Schallimmissionsprognose berechnet sich wie folgt:

$$\sigma_{ges} = \sqrt{(\sigma_R^2 + \sigma_P^2 + \sigma_{Prog}^2)}$$

In einer statistischen Betrachtung ergibt sich die obere Vertrauensbereichsgrenze L₀:

$$L_0 = L_m + 1,28 * \sigma_{ges}$$
 mit $L_m = prognostizierter$ Immissionswert

Der Richtwert nach TA Lärm gilt als eingehalten, wenn:

L₀ ≤ Richtwert nach TA Lärm.

Kürzel	Definition	Wert bzw. Quelle alig.*
σ _R	Ungenauigkeit der Schallemissions- Vermessung bei wiederholter Anwen- dung des selben Geräuschmessver- fahrens an derselben WEA zu ver- schiedenen Zeiten, unter verschiede- nen Bedingungen (Windrichtung, Messpersonal, Messgeräte)	 a) 0,5 dB(A), wenn die WEA gem. DIN 61400-11 vermessen wurde – nach LAI immer gegeben b) alternativ Angabe laut Vermessungsbericht oder Herstellerangabe c) 1,5 dB(A), wenn im Vermessungsbericht keine Angabe
	(Wiederholstandardabweichung)	zur Messungenauigkeit vorliegt
σР	Serienstreuung der WEA; Standardabweichung der an verschiedenen WEA einer Serie gemessenen Geräuschemissionswerte bei selbem Messverfahren, Messpersonal und selben Messgeräten (Produktionsstandardabweichung)	a) 1,2 dB(A), wenn weniger als 3 Vermessungen vorliegen b) berechnet nach DIN EN 50376, wenn mind. 3 Vermessungen vorliegen
σ Prog	Prinzipielle Unsicherheit des Progno- semodells der Ausbreitungsberech- nung	1,0 dB(A), wenn die Prognose gemäß DIN ISO 9613-2 berechnet wurde, ohne Bodendämpfung nach dem Interimsverfahren

• Abbildung 4: Berechnung der oberen Vertrauensgrenze (Quelle: Statistisches Verfahren vom LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz NRW; in: Qualität der Schallimmissionsprognose, Handbuch Windenergie, Stand: 30.12.19))

Die Gesamtunsicherheit der vorliegenden Schallimmissionsprognose beträgt:

Für die **GE 5.5-158** liegen aktuell noch keine Messberichte vor, daher wird für die **Gesamtunsicherheit** ein Zuschlag im Sinne der oberen Vertrauensbereichsgrenze von 2,1 dB(A) vergeben.

 $\sigma_{ges} = \sqrt{(0.5 \text{ dB}(A)^2 + 1.2 \text{ dB}(A)^2 + 1.0 \text{ dB}(A)^2)} = 1.6 \text{ dB}(A) \text{ (gerundet)}.$

Als Zuschlag im Sinne der oberen Vertrauensbereichsgrenze ergibt sich somit ein Wert von 1,28 * σ_{ges} = 2,1 dB(A) (gerundet).

Die neu geplanten WEA sind laut Herstellerangaben und Messberichten weder ton- noch impulshaltig.

Der Zuschlag kann bereits emissionsseitig durch Addition zum Schallleistungspegel der einzelnen WEA oder immissionsseitig durch Addition zum prognostizierten Beurteilungspegel einbezogen werden. Die emissions- und immissionsseitige Einrechnung sind mathematisch äquivalent¹.

Die Schallimmissionsprognose beeinflussende Randbedingungen sind:

• Für die E-66/18.70 – **Volllastbetrieb** ohne Zuschläge:

Oktav-Schallleistungspegel nach Referenzsprektrum für 103 dB(A)									
Frequenz [Hz]	63	125	250	500	1000	2000	4000	8000	
Lwa [dB]	82,7	91,1	95,3	97,5	97,0	95,0	91,0	80,1	

¹ Vgl. auch Agatz, M. (2019): Windenergie-Handbuch. 16. Ausgabe. Download unter: http://windenergie-handbuch.de/wp/windenergie-handbuch/.

Für die E-40/6.44 – Volllastbetrieb ohne Zuschläge:

Oktav-Schallleistungspegel nach Vermessungsbericht: WT 1706/01 vom 2001-3-21									
Frequenz [Hz]	Frequenz [Hz] 63 125 250 500 1000 2000 4000 8000								
Lwa [dB]	Lwa [dB] 83,2 88,7 93,2 97,1 95,2 89,5 84,1 73,1								

Für die N29 – Volllastbetrieb ohne Zuschläge:

Oktav-Schallleistungspegel nach Referenzsprektrum für 101,7 dB(A)									
Frequenz [Hz] 63 125 250 500 1000 2000 4000 8000									
Lwa [dB]	81,4	89,8	94,0	96,2	95,7	93,7	89,7	78,8	

Für die N27 – Volllastbetrieb ohne Zuschläge:

Oktav-Schallleistungspegel nach Referenzsprektrum für 98 dB(A)										
Frequenz [Hz]	Frequenz [Hz] 63 125 250 500 1000 2000 4000 8000									
Lwa [dB] 77,7 86,1 90,3 92,5 92,0 90,0 86,0 75,1										

• Für die GE 5.5-158 – **Volllastbetrieb** ohne Zuschläge:

Oktav-Schallleist	Oktav-Schallleistungspegel (nach Herstellerdokument: Noise_Emission-NO_NRO_4.x_5.x-158-50Hz_FGW_DE_r02) für v _{10 m/s LWA, max} in dB – Volllast										
Frequenz [Hz]	63	125	250	500	1000	2000	4000	8000			
Lwa [dB]	87,2	92,6	97,2	99,7	101,3	99,1	91,7	76,0			

• Für die GE 5.5-158 – schalloptimierter Betrieb **103 dB** – 4.800 kW ohne Zuschläge:

Oktav-Schallleist	Oktav-Schallleistungspegel (nach Herstellerdokument: Noise_Emission-NO_NRO_4.x_5.x-158-50Hz_FGW_DE_r02) für v _{10 m/s} LWA, max in dB – Volllast									
Frequenz [Hz]	63	125	250	500	1000	2000	4000	8000		
Lwa [dB]	84,0	90,2	95,2	97,3	97,8	95,1	88,4	73,8		

• Für die GE 5.5-158 – schalloptimierter Betrieb **102 dB** – 4.650 kW ohne Zuschläge:

Oktav-Schallleistungspegel (nach Herstellerdokument: Noise_Emission-NO_NRO_4.x_5.x-158-50Hz_FGW_DE_r02) für v _{10 m/s} LWA, max in dB – NRO 102									
Frequenz [Hz]	Frequenz [Hz] 63 125 250 500 1000 2000 4000 8000							8000	
L _{WA} [dB]	1 2 2								

- Richtwirkungskorrektur (D_c): nach Interimsverfahren ist hier mit einem Wert von 0 dB zu rechnen;
- Dämpfung aufgrund geometrischer Ausbreitung: siehe detaillierte Berechnung im Anhang;
- Dämpfung aufgrund von Luftabsorption: siehe detaillierte Berechnung im Anhang;
- Dämpfung aufgrund des Bodeneffektes (Agr): nach Interimsverfahren ist hier mit einem Wert von -3 dB zu rechnen (negative Dämpfung entspricht der Bodenreflexion), keine Bodendämpfung nach Interimsverfahren;
- Dämpfung aufgrund von Abschirmung wird nicht berücksichtigt;
- Dämpfung aufgrund verschiedener anderer Effekte: siehe detaillierte Berechnung im Anhang;
- Meteorologische Korrektur: findet keine Anwendung C_{met} = 0,0 dB(A).

Verwendung des Interimsverfahrens unter DIN ISO 9613-2, mit frequenzselektiver Berechnung ohne Bodendämpfung.

Diese der Schallimmissionsprognose zugrunde gelegten konservativ angesetzten Faktoren führen dazu, dass die Berechnungsergebnisse insgesamt "auf der sicheren Seite" einzustufen sind.

Für die bekannten Unsicherheitsfaktoren bei WEA gilt:

- Serienstreuungen σ_P sind statistisch unabhängig voneinander,
- Messungenauigkeit σ_R ist für WEA des gleichen Typs statistisch abhängig, für WEA verschiedenen Typs statistisch unabhängig,
- Prognoseunabhängigkeit σ_{ges} ist statistisch abhängig.

In den Nebenbedingungen zur Genehmigung kann folgender Schallleistungspegel festgeschrieben werden. <u>Dieser Summenpegel darf bei einer Vermessung der WEA am Ort nicht</u> überschritten werden:

$$L_{e, max} = \bar{L}_w + 1,28 * \sqrt{\sigma_R^2 + \sigma_P^2}$$

Dabei ist:

Le, max: der maximal zulässige Emissionspegel

 \bar{L}_{W} : der deklarierte (mittlerer) Schallleistungspegel

 σ_R : die Messunsicherheit und σ_P : die Serienstreuung

$$L_{e. max} = 106.0 dB(A) + 1.28 * \sqrt{0.5^2 + 1.2^2}$$

 $L_{e. max} = 106,0 dB(A) + 1,7 dB(A)$

L_{e, max} = 107,7 dB(A) unter Volllastbedingungen

Oktav-Schallleistungspegel (nach Herstellerdokument) für v _{10 m/s Le, max, Okt} in dB – Volllast								
Frequenz [Hz]	Frequenz [Hz] 63 125 250 500 1000 2000 4000 8000							
Le, max, Okt [dB] 88,9 94,3 98,9 101,4 103,0 100,8 93,4 77,7								

$$L_{e, max} = 103.0 \text{ dB(A)} + 1.28 * \sqrt{0.5^2 + 1.2^2}$$

 $L_{e, max} = 103,0 dB(A) + 1,7 dB(A)$

$L_{e, max} = 104,7 dB(A) NRO 103$

Oktav-Schallleistungspegel (nach Herstellerdokument) für v _{10 m/s Le, max, Okt} in dB –NRO 103								
Frequenz [Hz]	Frequenz [Hz] 63 125 250 500 1000 2000 4000 8000							
L _{e, max, Okt} [dB] 85,7 91,9 96,9 99,0 99,5 96,8 90,1 75,5								

$$L_{e, max} = 102,0 \text{ dB(A)} + 1,28 * \sqrt{0,5^2 + 1,2^2}$$

 $L_{e, max} = 102.0 dB(A) + 1.7 dB(A)$

$L_{e, max} = 103,7 dB(A) NRO 102$

Oktav-Schallleistungspegel (nach Herstellerdokument) für v _{10 m/s} Le, max, Okt in dB –NRO 102								
Frequenz [Hz]	Frequenz [Hz] 63 125 250 500 1000 2000 4000 8000							
Le, max, Okt [dB] 84,9 91,3 96,2 98,0 98,3 95,7 89,3 74,8								

2.4 Ergebnisse der Schallberechnung

Die Ergebnisse der Schallberechnungen sind in den Tabellen 2 - 3 dargestellt. Es wurde in Tabelle 2 der IST-Zustand berechnet und in Tabelle 3 wurden für die ausgewählten Immissionsorte die Vor-, Zusatz- und Gesamtbelastung während der Nachtstunden ermittelt. Die detaillierten Ergebnisse sind in den im Anhang befindlichen Berechnungsausdrucken nachzulesen. Laut Windenergieerlass und LAI-Hinweisen ist die Rundungsregel nach Nr. 4.5.1 DIN 1333 anzuwenden.

Tabelle 2: IST-Zustand

Immissionsort	Immissions- richtwert	Beurteilungs- pegel IST-Zustand	Rundungswerte	Reserve zum IRW für den IST-Zustand dB(A)
	(Nacht) dB(A)	dB(A)		
A – Am Hechtstücken 9	40	36,1	36	4
B – Dornsiek 14	35* / 40	40,4	40	-5 / 0
C – geplantes WA	40	40,8	41	-1
D – Jugendzeltplatz Almke	40*/42,5	43,7	44	-4 / -1
E – Mühlenberg 1	45	42,9	43	2
Fa – Siedlung 21	45	42,9	43	2
Fb - Hauptstr. 41	45	43,3	43	2
Fc – Siedlung 17	40	42,5	43	-8 / -3
Fd – Siedlung 11	35* / 40	42,0	42	-7 / -2
Fe – Siedlung 4	35* / 40	41,8	42	-7 / -2
G – Bahnhofstr. 17	45	44,9	45	0
H – Himmelberg 1	40	33,5	34	6
I – B-Plan Parkstraße	40	33,5	34	6

^{*}siehe Erläuterung S. 11 - 13

Im IST-Zustand (15 Windenergieanlagen, Biogasanlage und BHKW) kommt es zu einer Überschreitung der hier festgelegten Richtwerte. Diese Überschreitungen kommen dadurch zustande, dass bei den bestehenden Anlagen von anderen Richtwerten ausgegangen wurde. Das gesamte Gebiet der Immissionsorte F in Volkmarsdorf wurde mit einer 45 dB(A) eingestuft, der Campingplatz und das Wochenendhausgebiet waren nicht Gegenstand der Untersuchung. Aktuell werden rechnerisch Werte an dem Wochenendhausgebiet (IO B) von 40 dB(A), an dem Campingplatz von 44 dB(A) und in dem südlichen Wohngebiet in Volkmarsdorf (Fa – d) zwischen 42 – 43 dB(A) erreicht. Die Berechnungsergebnisse liegen somit zwar teilweise über den hier festgelegten Richtwerten nehmen aber Werte an, welche für allgemeine Wohngebiete bzw. Dorf-Mischgebiete jederzeit zulässig sind, wodurch nicht von einer immissionsschutzrechtlich bedenklichen Überschreitung gesprochen werden kann. Hierbei ist zusätzlich zu bedenken, dass eine Abschirmung durch Vegetation und Gebäude nicht in der Berechnung enthalten ist.

Tabelle 3: Berechnungsergebnisse Schall -Volllast - Nachtbetrieb

Immissionsort	Immis- sionsricht- wert (Nacht) dB(A)	Beurtei- lungs- pegel Vor- belastung dB(A)	Beurtei- lungs-pe- gel Zusatz-be- lastung dB(A)	Beurtei- lungs- pegel Gesamt- belastung dB(A)	Run- dungs- werte	Reserve zum IRW für die Zu- satz-be- lastung dB(A)	Reserve zum IRW für die Ge- samt-be- lastung dB(A)
A – Am Hechtstücken 9	40	12,3	35,1	35,1	35	5	5
B – Dornsiek 14	35*/40	23,3	39,5	39,6	40	-5 / 0	-5 / 0
C – geplantes WA	40	24,6	39,5	39,7	40	0	0
D – Jugendzeltplatz Almke	40*/42,5	26,9	42,8	42,9	43	-3 / 0	-3 / 0
E – Mühlenberg 1	45	23,1	41,4	41,4	41	4	4
Fa – Siedlung 21	45	7,9	42,6	42,6	43	2	2
Fb - Hauptstr. 41	45	7,8	43,0	43,0	43	2	2
Fc - Siedlung 17	40	7,5	42,2	42,2	42	-2	-2
Fd – Siedlung 11	35*/40	7,1	41,6	41,6	42	-7/-2	-7 / -2
Fe – Siedlung 4	35*/40	6,7	41,4	41,4	41	-6 / -1	-6 / -1
G – Bahnhofstr. 17	45	7,2	44,0	44,0	44	1	1
H – Himmelberg 1	40		33,0	33,0	33	7	7
I – B-Plan Parkstraße	40		32,5	32,5	33	7	7

^{*}siehe Erläuterung S. 11 - 13

Nach dem Abbau der bestehenden Windenergieanlagen hält die **Vorbelastung**, bestehend aus einer Biogasanlage und dem BHKW an allen Immissionsorten die Richtwerte ein.

Unter Berücksichtigung der o. g. Sicherheitszuschläge werden die Immissionsrichtwerte gemäß TA Lärm durch **die Zusatzbelastung** an den Immissionsorten D, Fc – Fe überschritten.

Um an diesen Immissionsorten die Richtwerte einzuhalten, müssen einige der neuen WEA in den Nachtstunden schallreduziert betrieben werden.

Bei Betrachtung der prognostizierten **Gesamtbelastung**, im Volllastbetrieb der neuen WEA, können an den meisten Immissionsorten die Beurteilungspegel eingehalten werden. An den Immissionsorten D, Fc - Fd findet allerdings eine Überschreitung der Immissionsrichtwerte statt. <u>Ein Volllastbetrieb während der Tag-Stunden von 6 – 22 Uhr ist hingegen jederzeit möglich</u>.

2.5 Ergebnisse der Schallberechnung mit nächtlicher Schallreduzierung

Es werden für einen genehmigungskonformen nächtlichen Betrieb folgende Betriebsweisen vorgeschlagen: WEA 1 – WEA 3 Volllast, WEA 4 – WEA 5 schallreduziert im Modus NRO 103 dB(A) und die WEA 6 schallreduziert im Modus NRO 102 dB(A). Die hier betrachteten WEA sind laut Herstellerangaben weder ton- noch impulshaltig.

Tabelle 4: Nachtbetriebsmodi der geplanten WEA

Name	X UTM 32	Y UTM 32	Anlagentyp	NH	Mode / dB(A)	Leistung
WEA 1	627.204	5.803.592	GE 5.5-158	161 m	106	5.500 kW
WEA 2	626.765	5.803.182	GE 5.5-158	161 m	106	5.500 kW
WEA 3	626.827	5.802.810	GE 5.5-158	161 m	106	5.500 kW
WEA 4	627.254	5.802.827	GE 5.5-158	161 m	103	4.800 kW
WEA 5	627.321	5.802.445	GE 5.5-158	161 m	103	4.800 kW
WEA 6	627.477	5.803.327	GE 5.5-158	161 m	102	4.650 kW

Die Ergebnisse der Schallberechnung sind in Tabelle 5 dargestellt. Es wurden für die ausgewählten Immissionsorte die Vor-, Zusatz- und Gesamtbelastung während der Nachtstunden ermittelt. Die detaillierten Ergebnisse sind in den im Anhang befindlichen Berechnungsausdrucken nachzulesen. Laut Windenergieerlass und LAI-Hinweisen ist die Rundungsregel nach Nr. 4.5.1 DIN 1333 anzuwenden.

Tabelle 5: Berechnungsergebnisse Schall mit nächtlicher Schallreduzierung

Immissionsort	Immis- sionsricht- wert (Nacht) dB(A)	Beurtei- lungs- pegel Vor- belastung dB(A)	Beurtei- lungs-pe- gel Zusatz-be- lastung dB(A)	Beurtei- lungs- pegel Gesamt- belastung dB(A)	Run- dungs- werte	Reserve zum IRW für die Zu- satz-be- lastung dB(A)	Reserve zum IRW für die Ge- samt-be- lastung dB(A)
A – Am Hechtstücken 9	40	12,3	33,7	33,8	34	6	6
B – Dornsiek 14	35*/40	23,3	<u>37,9</u>	<u>38,1</u>	<u>38</u>	-3 / 2	-3 /2
C – geplantes WA	40	24,6	38,1	38,3	38	2	2
D – Jugendzeltplatz Almke	40*/42,5	26,9	<u>41,1</u>	41,2	<u>41</u>	-1 / 1	-1 / 1
E – Mühlenberg 1	45	23,1	40,0	40,1	40	5	5
Fa – Siedlung 21	45	7,9	40,7	40,7	41	4	4
Fb – Hauptstr. 41	45	7,8	41,1	41,1	41	4	4
Fc - Siedlung 17	40	7,5	40,3	40,3	40	0	0
Fd – Siedlung 11	35*/40	7,1	39,7	39,8	<u>40</u>	-5 / 0	-5 / 0
Fe – Siedlung 4	35*/40	6,7	<u>39,6</u>	<u>39,6</u>	<u>40</u>	-5 / 0	-5 / 0
G – Bahnhofstr. 17	45	7,2	42,0	42,0	42	3	3
H – Himmelberg 1	40	-2,1	32,2	32,2	32	8	8
I – B-Plan Parkstraße	40	-2,8	31,2	31,2	31	9	9

^{*}siehe Erläuterung S. 11 - 13

Unter Berücksichtigung der o. g. Sicherheitszuschläge und der nächtlichen Schallreduzierung werden die Immissionsrichtwerte gemäß TA Lärm durch die schallreduzierte Zusatzbelastung an fast allen Immissionsorten eingehalten.

An den Immissionsorten B, D, Fb, Fd und Fe sei auf die Argumentation zur Einstufung auf den Seiten 10 – 12 verwiesen. Wird an dem Immissionsort Fb ein Wert von 45 dB(A), an dem Immissionsort D ein Wert von z.B. 42,5 dB(A) und an den Immissionsorten B, Fd und Fe ein

Immissionsrichtwert von 40 dB(A) festgelegt, so wird dieser Richtwert unter Schallreduzierung durch die Zusatzbelastung eingehalten.

Das gleiche wie bei der Zusatzbelastung gilt auch bei der **schallreduzierten Gesamtbelastung**, welche durch die geringe Vorbelastung kaum von der Zusatzbelastung abweicht.

Aus gutachterlicher Sicht ist die Einstufung des Wochenendhausgebietes (IO B) unter Beachtung des Gebietscharakteristik und einer anzuwendenden Gemengelage mit 40 dB, die leichte Erhöhung des Orientierungswertes von 40 dB nach DIN 18005 für den Zeltplatz (IO D) und die Einstufung des südlichen Bereiches von Volkmarsdorf als allgemeines Wohngebiet wie auf den Seiten 10 – 12 des Gutachtens detailliert aufgeführt angemessen. Eine endgültige Entscheidung liegt im Ermessen der Genehmigungsbehörde.

In Tabelle 6 sind die Berechnungen des IST-Zustandes vor dem Repowering, der Gesamtbelastung der Neuplanung und die reduzierte Gesamtbelastung der Neuplanung aufgelistet. Zudem sind in den letzten beiden Spalten die Differenzen des aktuellen zu dem geplanten Zustand aufgeführt. Es wird ersichtlich, dass durch den Abbau der 15 bestehenden Anlagen und dem Neubau der sechs geplanten WEA schon unter Volllastbedingungen an allen Immissionsorten der berechnete Wert abnimmt. Mit den berechneten schallreduzierten Modi in den Nachtstunden wird der aktuelle Wert weiter gesenkt. Durch den Neubau der geplanten WEA und der vorgeschlagenen Einstufung der Immissionsorte wird die Schallsituation vor Ort verbessert.

Tabelle 6: Berechnungsergebnisse IST-Zustand – GB geplante WEA

Immissionsort	Immis- sionsricht- wert (Nacht) dB(A)	Beurtei- lungs- pegel IST- Zustand	Beurtei- lungs-pe- gel GB dB(A) PLANUNG	Beurtei- lungs- pegel GB red. dB(A) PLANUNG	Differenz IST- Zustand GB Voll- last	Differenz IST- Zustand GB redu- ziert
A – Am Hechtstücken 9	40	36,1	35,1	33,8	-1,0	-2,3
B – Dornsiek 14	35*/40	40,4	39,6	<u>38,1</u>	-0,8	-2,3
C – geplantes WA	40	40,8	39,7	38,3	-1,1	-2,5
D – Jugendzeltplatz Almke	40*/42,5	43,7	42,9	41,2	-0,8	-2,5
E – Mühlenberg 1	45	42,9	41,4	40,1	-1,5	-2,8
Fa – Siedlung 21	45	42,9	42,6	40,7	-0,3	-2,2
Fb – Hauptstr. 41	45	43,3	43,0	41,1	-0,3	-2,2
Fc – Siedlung 17	40	42,5	42,2	40,3	-0,3	-2,2
Fd – Siedlung 11	35*/40	42,0	41,6	<u>39,8</u>	-0,4	-2,2
Fe – Siedlung 4	35* / 40	41,8	41,4	<u>39,6</u>	-0,4	-2,2
G – Bahnhofstr. 17	45	44,9	44,0	42,0	-0,9	-2,9
H – Himmelberg 1	40	33,5	33,0	32,2	-0,5	-1,3
I – B-Plan Parkstraße	40	33,5	32,5	31,2	-1,0	-2,3

^{*}siehe Erläuterung S. 11 - 13

3 Zusammenfassung und Empfehlungen

Die Swisspower Renewables Volkmarsdorf GmbH plant im Rahmen eines Repowerings die Errichtung und den Betrieb sechs neuer Windenergieanlagen am Standort Volkmarsdorf. Dabei handelt es sich um WEA des Typs GE 5.5-158 der Firma General Electric mit einer Nabenhöhe von 161 m, einem Rotordurchmesser von 158 m und einer Leistung von 5.500 kW, nördlich von Almke und westlich von Volkmarsdorf, Landkreis Helmstedt, Niedersachsen. Die bestehenden 15 Windenergieanlagen werden im Zuge des Repowerings abgebaut.

Vorbelastungen durch bestehende WEA sind in dem Bereich der neu geplanten Anlagen nach dem Repowering nicht mehr vorhanden. Im Untersuchungsgebiet sind als Vorbelastung eine Biogasanlage und ein BHKW vorhanden.

Die **Immissionsorte** in der vorliegenden Prognose wurden anhand von online verfügbaren ALKIS-Daten, durch die Auswertung der aktuellen Flächennutzungspläne der Gemeinden Groß Twülpstedt und der Stadt Wolfsburg, unter Beachtung gültiger Bebauungspläne der Ortschaften, sowie anhand von Luftbildern in Abstimmung mit dem Auftraggeber ausgewählt. Darüber hinaus sind alle Immissionsorte bei einem Ortstermin am 05.02.2021 persönlich vor Ort überprüft worden.

Die Immissionsorte A, I und H werden durch die jeweils gültigen FNP und B-Pläne als allgemeine Wohngebiete eingestuft und werden dementsprechend berücksichtigt. Der Immissionsort B liegt in einem B-Plangebiet, welches als Sondergebiet "Wochenendhausgebiet" ausgewiesen ist. Vorgaben bezüglich dieser Gebietsart gibt es in der TA Lärm nicht. Nach DIN 18005 ist hier ein **Orientierungswert** von 50 dB(A) tagsüber und 35 dB(A) während der Nachtstunden für Wochenendhausgebiete anzusetzen.

Aufgrund der Nutzung als Wohngebiet, der Lage angrenzend an den Außenbereich und an Nutzungen wie den Sportverein, welcher auch am Wochenende für eine nicht unerhebliche Lärmbelastung sorgen wird, welche nicht mit der Einstufung als reines Wohngebiet vereinbar ist, wird der Bereich der Wohnnutzung "Im Dornsiek" als faktisches allgemeines Wohngebiet mit 40 dB(A) eingestuft.

Die Immissionsorte C, und Fa - Fd liegen nach den entsprechenden Flächennutzungsplänen in einem Wohngebiet. Der Bereich nördlich Almke ist hierbei zwar im FNP als Wohnbereich ausgewiesen, es existiert allerdings noch keine Wohnbebauung. Trotzdem wird hier am Rande des im FNP ausgewiesenen Wohngebietes der Immissionsort C gesetzt und als allgemeines Wohngebiet eingestuft, um eine Überschreitung für zukünftige Nutzungen sicher auszuschließen.

Für das Wohngebiet F liegen der B-Plan Lusten und der Teilbebauungsplan Volkmarsdorf Süd 2 vor. Der B-Plan Lusten definiert den westlichen Bereich als Dorfgebiet. In dem B-Plan Volkmarsdorf Süd wird keine Nutzungsart festgesetzt ebenso wie in der Innenbereichssatzung für die angrenzenden Flurstücke. Die beiden Immissionsorte Fa und Fb werden als Dorf-Mischgebiet eingestuft. Für den Immissionsort Fa liegt ein B-Plan vor und für den Immissionsort Fb wird die Einstufung nach FNP und die Gebietscharakteristik herangezogen. Aus gutachterlicher Sicht kann für das gesamte Gebiet östlich des B-Planes Lusten ein WA angenommen werden.

Der Immissionsort D wurde am nördlichen Rand eines Jugendzeltplatzes gesetzt. Vorgaben bezüglich dieser Gebietsart gibt es in der TA Lärm nicht. Nach DIN 18005 ist hier ein

Orientierungswert von 55 dB(A) bzw. 40 dB(A) entsprechend eines allgemeinen Wohngebietes für Campingplätze anzusetzen. So wird auch bei den Orientierungswerten der DIN gutachterlich eine leichte Erhöhung der Werte in Randlage als zulässig erachtet, gerade da der Zeltplatz durch sein BHKW vermutlich selber in einem anderen Bereich des Zeltplatzes eine solche Erhöhung erzeugt.

Die Immissionsorte E und G liegen im Außenbereich, bzw. in einem Dorf-Mischgebiet und sind im Nachtzeitraum mit 45 dB(A) anzusetzen.

Bei den hier getroffenen Einstufungen sei angemerkt, dass der Raum aktuell durch die bestehenden 15 Windenergieanlagen vorbelastet ist. Bei der Genehmigung der bestehenden Windenergieanlagen wurde das allgemeine Wohngebiet in Volkmarsdorf, der Zeltplatz und das Wochenendhausgebiet in den Schallgutachten nicht als Immissionsorte aufgenommen. Die aktuelle tatsächliche Belastung durch die bestehenden Windenergieanlagen liegt im WA in Volkmarsdorf und bei dem Zeltplatz deutlich über den hier vorgeschlagenen Richtwerten, auch in dem Wochenendhausgebiet werden schon in der IST-Situation Werte entsprechend eines allgemeinen Wohngebietes erreicht. Durch das Repowering und den oben vorgeschlagenen Einstufungen wird eine Verbesserung im Vergleich zur IST-Situation erreicht.

Im IST-Zustand (15 Windenergieanlagen, Biogasanlage und BHKW) kommt es zu einer Überschreitung der hier festgelegten Richtwerte. Diese Überschreitungen kommen dadurch zustande, dass bei den bestehenden Anlagen von anderen Richtwerten ausgegangen wurde. Das gesamte Gebiet der Immissionsorte F in Volkmarsdorf wurde mit einer 45 dB(A) eingestuft, der Campingplatz und das Wochenendhausgebiet waren nicht Gegenstand der Untersuchung. Aktuell werden rechnerisch Werte an dem Wochenendhausgebiet (IO B) von 40 dB(A), an dem Campingplatz von 44dB(A) und in dem südlichen Wohngebiet in Volkmarsdorf (Fa – d) zwischen 42 – 43 dB(A) erreicht. Die Berechnungsergebnisse liegen somit zwar teilweise über den hier festgelegten Richtwerten nehmen aber Werte an, welche für allgemeine Wohngebiete bzw. Dorf-Mischgebiete jederzeit zulässig sind, wodurch nicht von einer immissionsschutzrechtlich bedenklichen Überschreitung gesprochen werden kann. Hierbei ist zusätzlich zu bedenken, dass eine Abschirmung durch Vegetation und Gebäude nicht in der Berechnung enthalten ist.

Nach dem Abbau der bestehenden Windenergieanlagen hält die **Vorbelastung**, bestehend aus einer Biogasanlage und dem BHKW an allen Immissionsorten die Richtwerte ein.

Unter Berücksichtigung der o. g. Sicherheitszuschläge werden die Immissionsrichtwerte gemäß TA Lärm durch **die Zusatzbelastung** an den Immissionsorten D, Fc – Fe überschritten.

Um an diesen Immissionsorten die Richtwerte einzuhalten, müssen einige der neuen WEA in den Nachtstunden schallreduziert betrieben werden.

Bei Betrachtung der prognostizierten **Gesamtbelastung**, im Volllastbetrieb der neuen WEA, können an den meisten Immissionsorten die Beurteilungspegel eingehalten werden. An den Immissionsorten D, Fc - Fd findet allerdings eine Überschreitung der Immissionsrichtwerte statt. <u>Ein Volllastbetrieb während der Tag-Stunden von 6 – 22 Uhr ist hingegen jederzeit möglich.</u>

Es werden für einen genehmigungskonformen nächtlichen Betrieb folgende Betriebsweisen vorgeschlagen: WEA 1 – WEA 3 Volllast, WEA 4 – WEA 5 schallreduziert im Modus 103 dB(A) und die WEA 6 schallreduziert im Modus 102 dB(A). Die hier betrachteten WEA sind laut Herstellerangaben weder ton- noch impulshaltig.

Unter Berücksichtigung der o. g. Sicherheitszuschläge und der nächtlichen Schallreduzierung werden die Immissionsrichtwerte gemäß TA Lärm durch die schallreduzierte Zusatzbelastung an fast allen Immissionsorten eingehalten.

An den Immissionsorten B, D, Fb, Fd und Fe sei auf die Argumentation zur Einstufung auf den Seiten 10 - 12 verwiesen. Wird an dem Immissionsort Fb ein Wert von 45 dB(A), an dem Immissionsort D ein Wert von z.B. 42,5 dB(A) und an den Immissionsorten B, Fd und Fe ein Immissionsrichtwert von 40 dB(A) festgelegt, so wird dieser Richtwert unter Schallreduzierung durch die Zusatzbelastung eingehalten.

Das gleiche wie bei der Zusatzbelastung gilt auch bei der **schallreduzierten Gesamtbelastung**, welche durch die geringe Vorbelastung kaum von der Zusatzbelastung abweicht.

Aus gutachterlicher Sicht ist die Einstufung des Wochenendhausgebietes (IO B) unter Beachtung der Gebietscharakteristik und einer anzuwendenden Gemengelage mit 40 dB, die leichte Erhöhung des Orientierungswertes von 40 dB nach DIN 18005 für den Zeltplatz (IO D) und die Einstufung des südlichen Bereiches von Volkmarsdorf als allgemeines Wohngebiet wie auf den Seiten 10 – 12 des Gutachtens detailliert aufgeführt angemessen. Eine endgültige Entscheidung liegt im Ermessen der Genehmigungsbehörde.

Damit kann die Errichtung der geplanten Windenergieanlagen aus Gründen der Schallemissionen durch Windenergieanlagen als unbedenklich angesehen werden. Zu berücksichtigen ist allerdings, dass zu den neu geplanten WEA bisher keine Schallvermessungsberichte vorliegen.

Die genehmigende Behörde kann daher nach den Ausführungen zum Interimsverfahren eine Abnahmemessung an den zu errichtenden WEA im Genehmigungsbescheid festschreiben. Liegt zum Zeitpunkt der Inbetriebnahme wenigstens eine Vermessung des WEA-Typs vor, welche gesichert zeigt, dass der maximale Schallleistungspegel nicht überschritten wird, so kann auf eine entsprechende Vermessung am Ort aus gutachterlicher Sicht verzichtet werden.

Anhang

Eingabedaten IMMI

Ergebnisübersicht aus IMMI (kurze Liste)

Karten Schall Vor-, Zusatz- und Gesamtbelastung in A3

Detaillierte Berechnungsergebnisse aus IMMI (lange Liste)

Auszüge aus Schallmessberichten/Datenblättern

Firma:	planGIS GmbH	Vorbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Kurze Liste	Punktberechnung
Immissionsberechnung	Beurteilung nach TA Lärm (2017)
Vorbelastung	Einstellung: Interimsverfahren 2017

					Nacht (22h-6			
IP: Bezeichnung	IP: x /m	IP: y/m	IP: z /m	IRW	Lr	Ü.IRW		
A - Am Hechtstücken 9	626601.3	5800756.1	117.0	40.0	12.3	-27.7		
B - Dornsiek 14	627017.8	5801344.0	126.2	35.0	23.3	-11.7		
C - geplantes WA	626736.1	5801411.9	123.4	40.0	24.6	-15.4		
D - Jugendzeltplatz Almke	627085.8	5801697.0	132.4	40.0	26.9	-13.1		
E - Mühlenberg 1	626610.0	5801703.4	129.2	45.0	23.1	-21.9		
Fa - Siedlung 21	628325.7	5802860.8	128.7	45.0	7.9	-37.1		
Fb - Hauptstraße 41	628296.5	5802958.8	125.1	45.0	7.8	-37.2		
Fc - Siedlung 17	628375.8	5802887.4	128.2	40.0	7.5	-32.5		
Fd - Siedlung 11	628443.6	5802897.4	127.2	35.0	7.1	-27.9		
Fe - Siedlung 4	628473.1	5802942.8	125.5	35.0	6.7	-28.3		
G - Bahnhofstr. 17	628201.3	5803296.0	117.9	45.0	7.2	-37.8		
H - Himmelberg 1	626124.8	5805535.4	109.4	40.0	-2.1	-42.1		
I - B-Plan Parkstraße	629318.3	5804794.6	94.8	40.0	-2.8	-42.8		

Firma:	planGIS GmbH	Zusatzbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Kurze Liste	Punktberechnung
Immissionsberechnung	Beurteilung nach TA Lärm (2017)
Zusatzbelastung	Einstellung: Interimsverfahren 2017

					Nacl	nt (22h-6h)
IP: Bezeichnung	IP: x /m	IP: y/m	IP: z /m	IRW	Lr	Ü.IRW
A - Am Hechtstücken 9	626601.3	5800756.1	117.0	40.0	35.1	-4.9
B - Dornsiek 14	627017.8	5801344.0	126.2	35.0	39.5	4.5
C - geplantes WA	626736.1	5801411.9	123.4	40.0	39.5	-0.5
D - Jugendzeltplatz Almke	627085.8	5801697.0	132.4	40.0	42.8	2.8
E - Mühlenberg 1	626610.0	5801703.4	129.2	45.0	41.4	-3.6
Fa - Siedlung 21	628325.7	5802860.8	128.7	45.0	42.6	-2.4
Fb - Hauptstraße 41	628296.5	5802958.8	125.1	45.0	43.0	-2.0
Fc - Siedlung 17	628375.8	5802887.4	128.2	40.0	42.2	2.2
Fd - Siedlung 11	628443.6	5802897.4	127.2	35.0	41.6	6.6
Fe - Siedlung 4	628473.1	5802942.8	125.5	35.0	41.4	6.4
G - Bahnhofstr. 17	628201.3	5803296.0	117.9	45.0	44.0	-1.0
H - Himmelberg 1	626124.8	5805535.4	109.4	40.0	33.0	-7.0
I - B-Plan Parkstraße	629318.3	5804794.6	94.8	40.0	32.5	-7.5

Firma:	planGIS GmbH	Gesamtbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Kurze Liste	Punktberechnung
Immissionsberechnung	Beurteilung nach TA Lärm (2017)
Gesamtbelastung	Einstellung: Interimsverfahren 2017

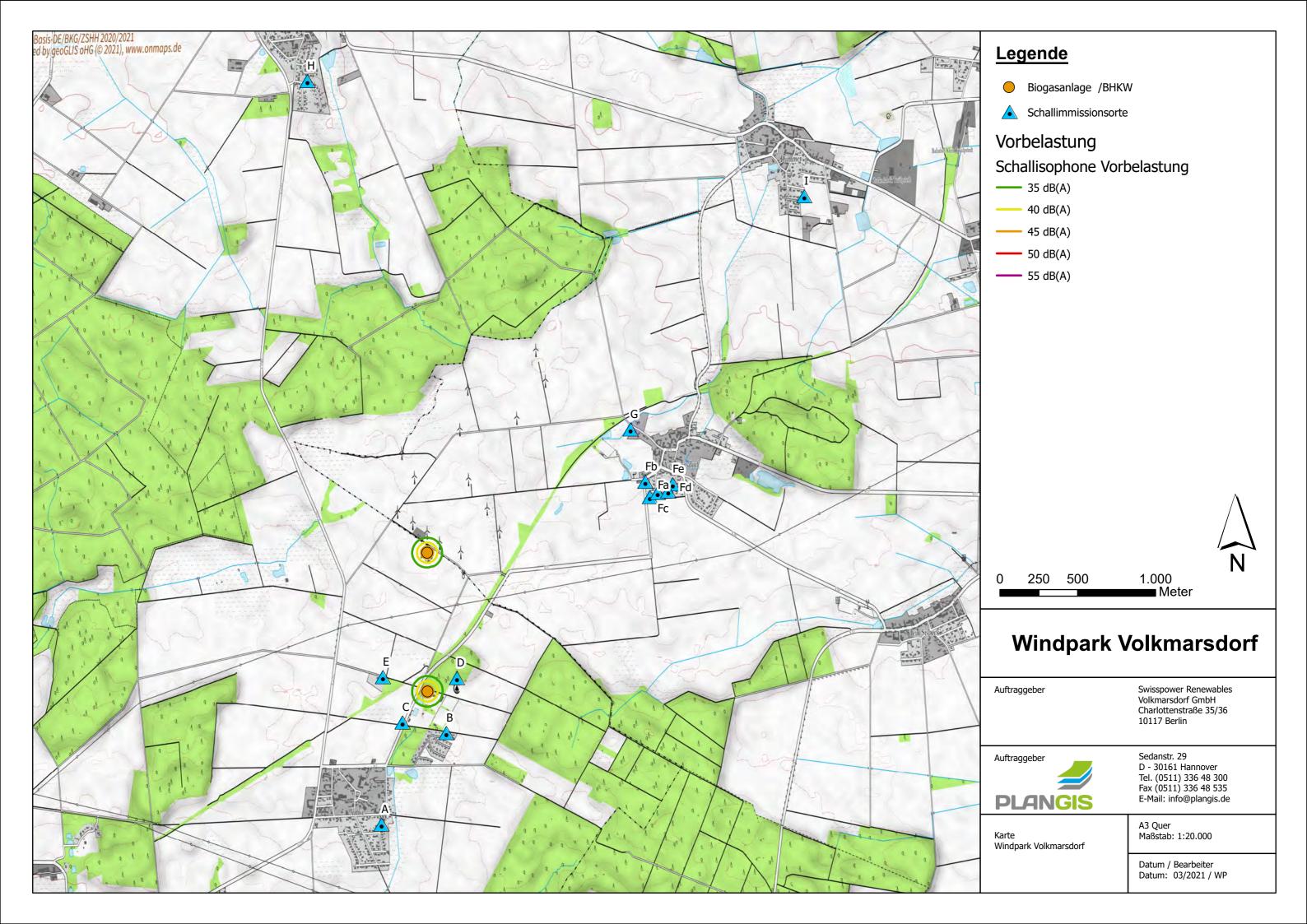
					Nacl	ht (22h-6h)
IP: Bezeichnung	IP: x/m	IP: y/m	IP: z /m	IRW	Lr	Ü.IRW
					LI	
A - Am Hechtstücken 9	626601.3	5800756.1	117.0	40.0	35.1	-4.9
B - Dornsiek 14	627017.8	5801344.0	126.2	35.0	39.6	4.6
C - geplantes WA	626736.1	5801411.9	123.4	40.0	39.7	-0.3
D - Jugendzeltplatz Almke	627085.8	5801697.0	132.4	40.0	42.9	2.9
E - Mühlenberg 1	626610.0	5801703.4	129.2	45.0	41.4	-3.6
Fa - Siedlung 21	628325.7	5802860.8	128.7	45.0	42.6	-2.4
Fb - Hauptstraße 41	628296.5	5802958.8	125.1	45.0	43.0	-2.0
Fc - Siedlung 17	628375.8	5802887.4	128.2	40.0	42.2	2.2
Fd - Siedlung 11	628443.6	5802897.4	127.2	35.0	41.6	6.6
Fe - Siedlung 4	628473.1	5802942.8	125.5	35.0	41.4	6.4
G - Bahnhofstr. 17	628201.3	5803296.0	117.9	45.0	44.0	-1.0
H - Himmelberg 1	626124.8	5805535.4	109.4	40.0	33.0	-7.0
I - B-Plan Parkstraße	629318.3	5804794.6	94.8	40.0	32.5	-7.5

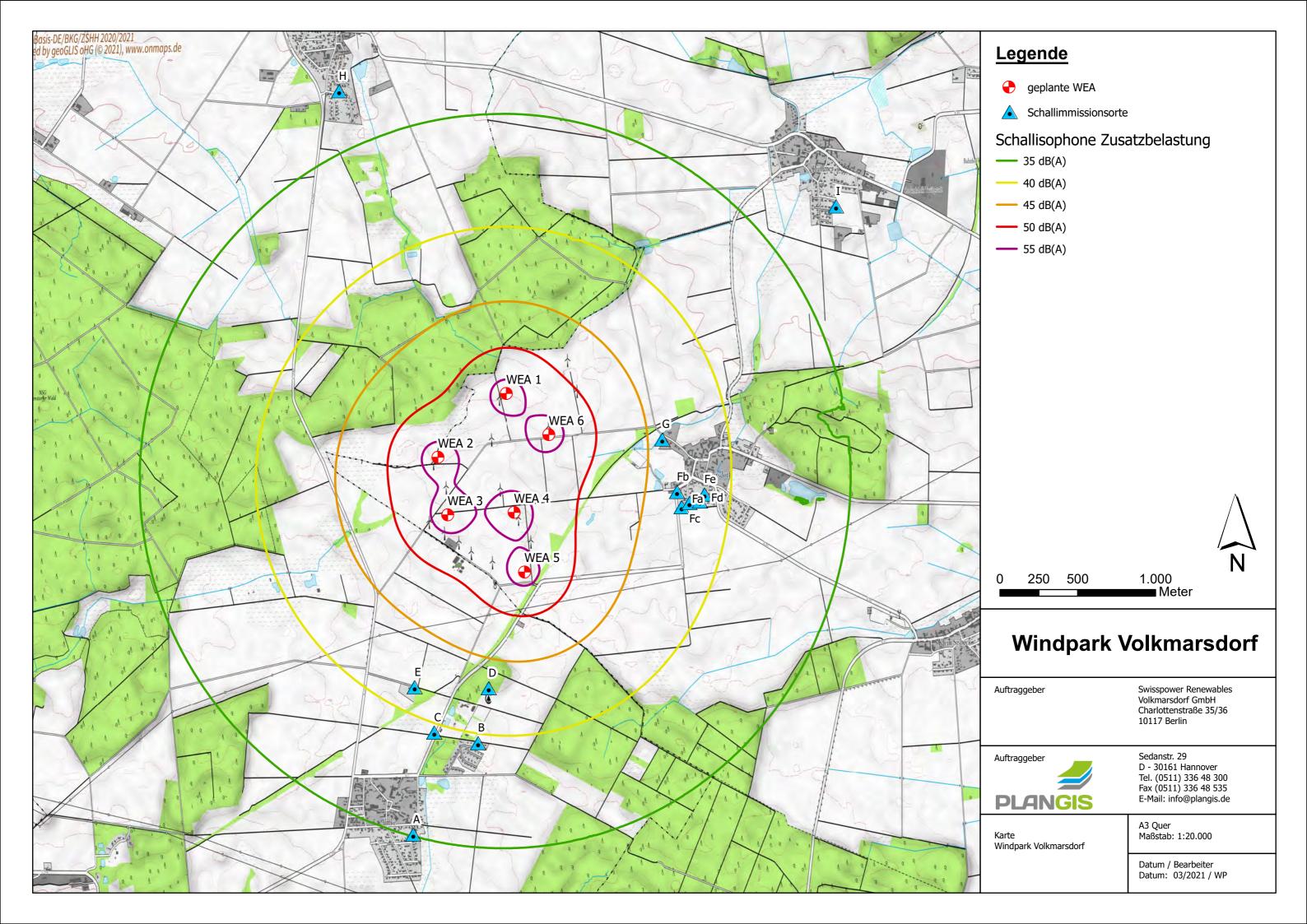
Firma:	planGIS GmbH	Zusatzbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

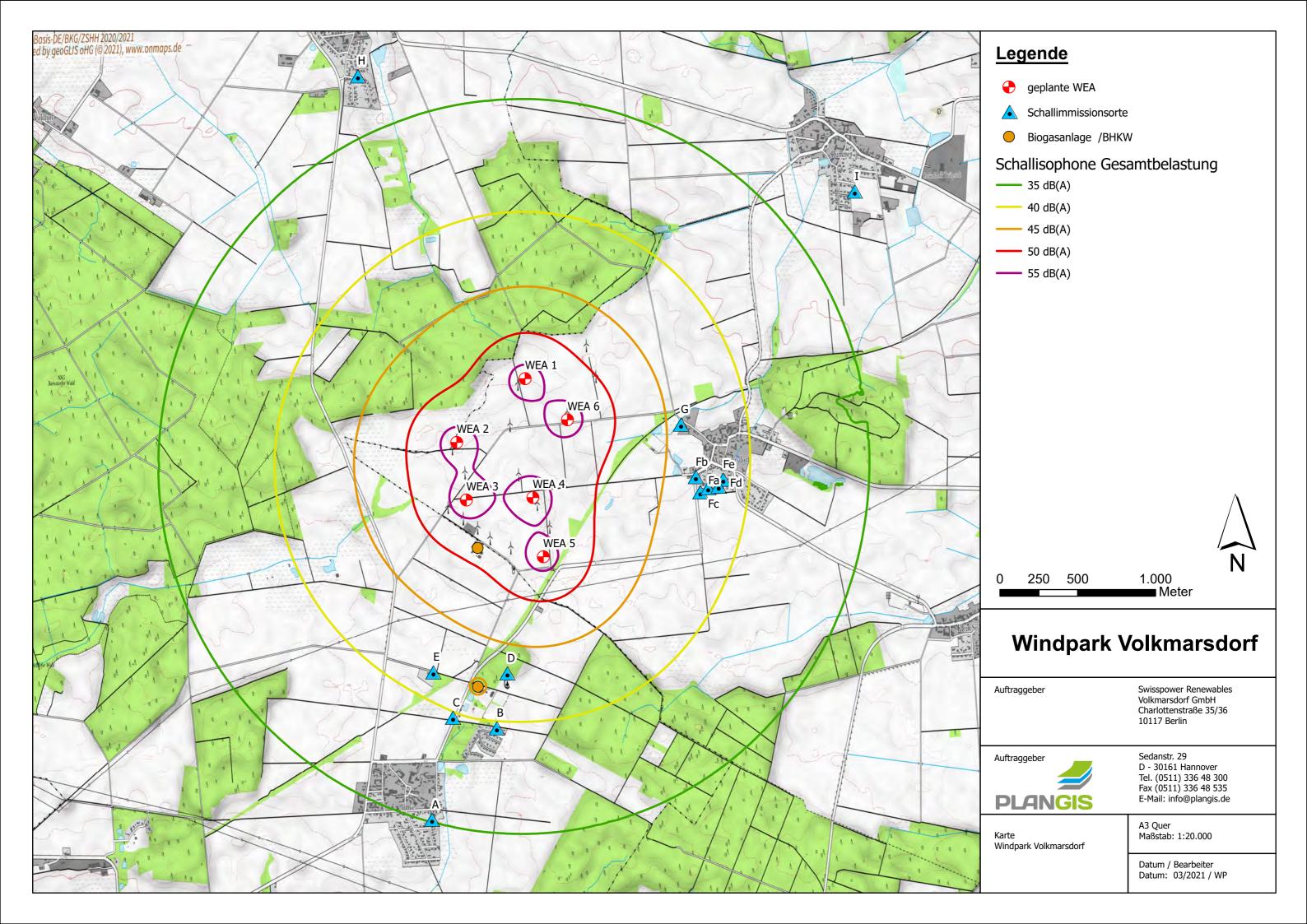
Kurze Liste	Punktberechnung
Immissionsberechnung	Beurteilung nach TA Lärm (2017)
Zusatzbelastung (schallred.)	Einstellung: Interimsverfahren 2017

					Nacl	ht (22h-6h)
IP: Bezeichnung	IP: x/m	IP: y/m	IP: z /m	IRW	Lr	Ü.IRW
A - Am Hechtstücken 9	626601.3	5800756.1	117.0	40.0	33.7	-6.3
B - Dornsiek 14	627017.8	5801344.0	126.2	35.0	37.9	2.9
C - geplantes WA	626736.1	5801411.9	123.4	40.0	38.1	-1.9
D - Jugendzeltplatz Almke	627085.8	5801697.0	132.4	40.0	41.1	1.1
E - Mühlenberg 1	626610.0	5801703.4	129.2	45.0	40.0	-5.0
Fa - Siedlung 21	628325.7	5802860.8	128.7	45.0	40.7	-4.3
Fb - Hauptstraße 41	628296.5	5802958.8	125.1	45.0	41.1	-3.9
Fc - Siedlung 17	628375.8	5802887.4	128.2	40.0	40.3	0.3
Fd - Siedlung 11	628443.6	5802897.4	127.2	35.0	39.7	4.7
Fe - Siedlung 4	628473.1	5802942.8	125.5	35.0	39.6	4.6
G - Bahnhofstr. 17	628201.3	5803296.0	117.9	45.0	42.0	-3.0
H - Himmelberg 1	626124.8	5805535.4	109.4	40.0	32.2	-7.8
I - B-Plan Parkstraße	629318.3	5804794.6	94.8	40.0	31.2	-8.8

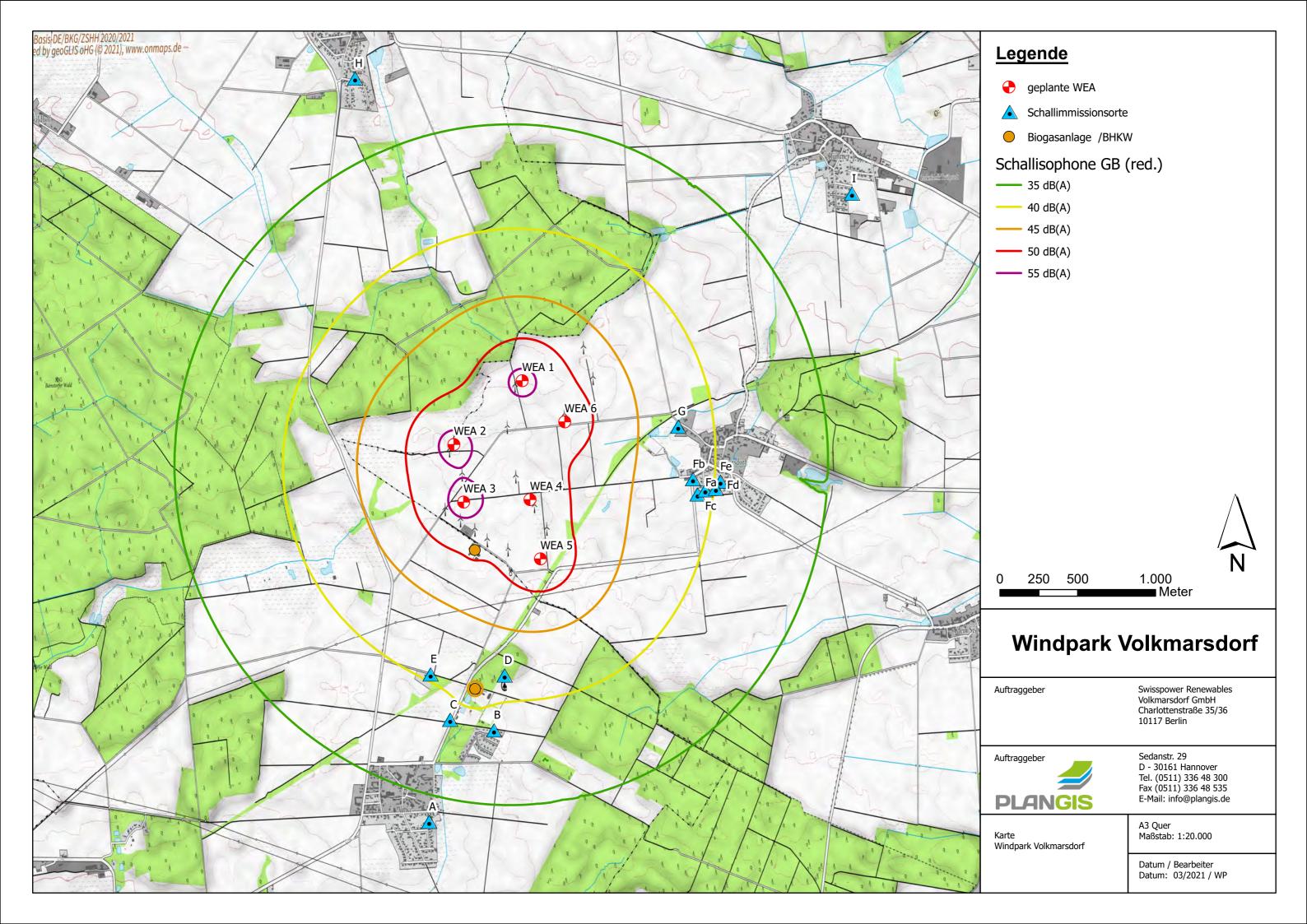
Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

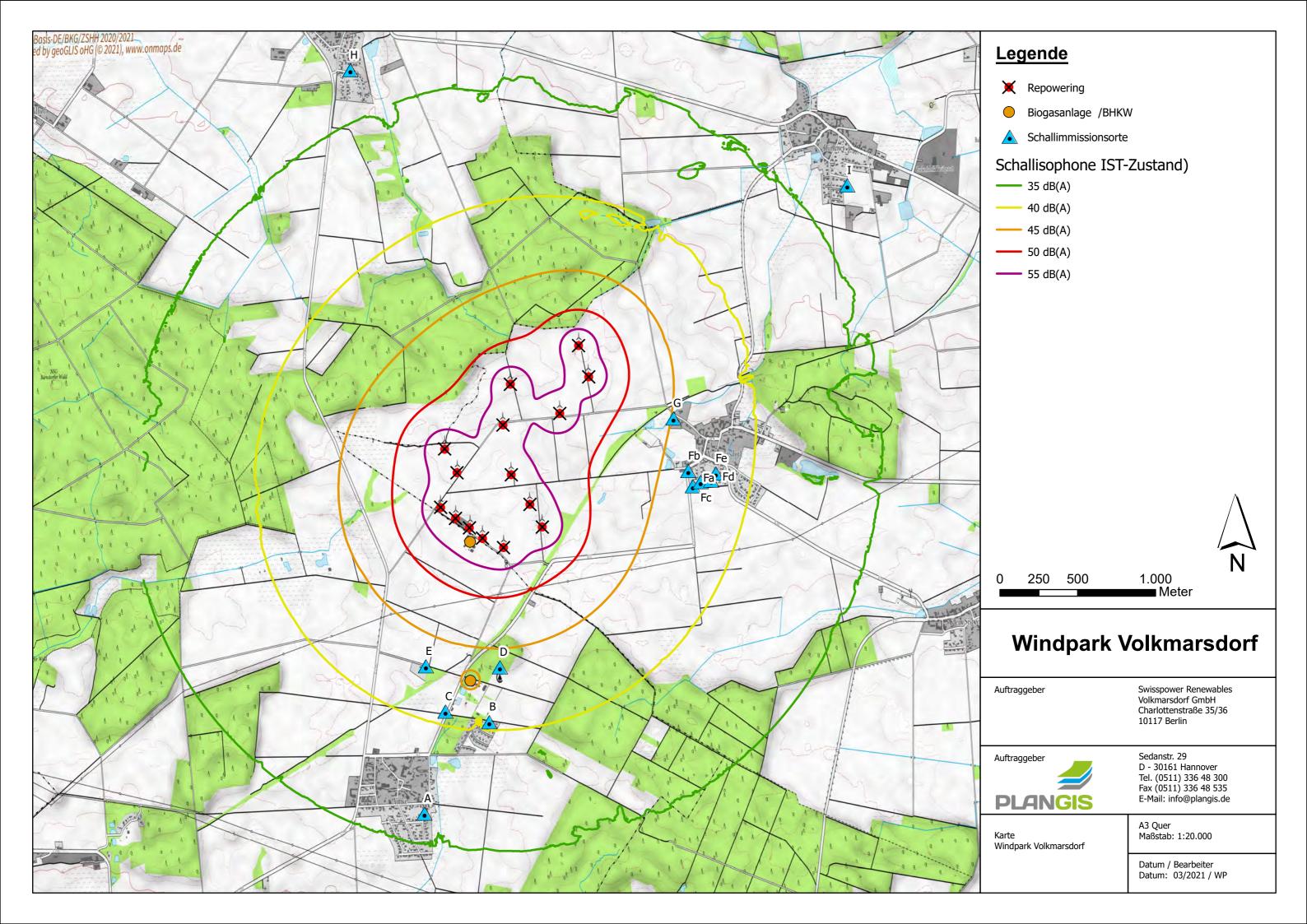

Kurze Liste	Punktberechnung
Immissionsberechnung	Beurteilung nach TA Lärm (2017)
Gesamtbelastung (schallred.)	Einstellung: Interimsverfahren 2017


					Nacl	nt (22h-6h)
IP: Bezeichnung	IP: x /m	IP: y/m	IP: z /m	IRW	Lr	Ü.IRW
A - Am Hechtstücken 9	626601.3	5800756.1	117.0	40.0	33.8	-6.2
B - Dornsiek 14	627017.8	5801344.0	126.2	35.0	38.1	3.1
C - geplantes WA	626736.1	5801411.9	123.4	40.0	38.3	-1.7
D - Jugendzeltplatz Almke	627085.8	5801697.0	132.4	40.0	41.2	1.2
E - Mühlenberg 1	626610.0	5801703.4	129.2	45.0	40.1	-4.9
Fa - Siedlung 21	628325.7	5802860.8	128.7	45.0	40.7	-4.3
Fb - Hauptstraße 41	628296.5	5802958.8	125.1	45.0	41.1	-3.9
Fc - Siedlung 17	628375.8	5802887.4	128.2	40.0	40.3	0.3
Fd - Siedlung 11	628443.6	5802897.4	127.2	35.0	39.8	4.8
Fe - Siedlung 4	628473.1	5802942.8	125.5	35.0	39.6	4.6
G - Bahnhofstr. 17	628201.3	5803296.0	117.9	45.0	42.0	-3.0
H - Himmelberg 1	626124.8	5805535.4	109.4	40.0	32.2	-7.8
I - B-Plan Parkstraße	629318.3	5804794.6	94.8	40.0	31.2	-8.8


Firma:	planGIS GmbH	IST Zustand	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		


Kurze Liste	Punktberechnung		
Immissionsberechnung	Beurteilung nach TA Lärm (2017)		
IST-Zustand	Einstellung: Interimsverfahren 2017		


				Nacht (22h-6h)		
IP: Bezeichnung	IP: x /m	IP: y/m	IP: z /m	IRW	Lr	Ü.IRW
A - Am Hechtstücken 9	626601.3	5800756.1	117.0	40.0	36.1	-3.9
B - Dornsiek 14	627017.8	5801344.0	126.2	35.0	40.4	5.4
C - geplantes WA	626736.1	5801411.9	123.4	40.0	40.8	0.8
D - Jugendzeltplatz Almke	627085.8	5801697.0	132.4	40.0	43.7	3.7
E - Mühlenberg 1	626610.0	5801703.4	129.2	45.0	42.9	-2.1
Fa - Siedlung 21	628325.7	5802860.8	128.7	45.0	42.9	-2.1
Fb - Hauptstraße 41	628296.5	5802958.8	125.1	45.0	43.3	-1.7
Fc - Siedlung 17	628375.8	5802887.4	128.2	40.0	42.5	2.5
Fd - Siedlung 11	628443.6	5802897.4	127.2	35.0	42.0	7.0
Fe - Siedlung 4	628473.1	5802942.8	125.5	35.0	41.8	6.8
G - Bahnhofstr. 17	628201.3	5803296.0	117.9	45.0	44.9	-0.1
H - Himmelberg 1	626124.8	5805535.4	109.4	40.0	33.5	-6.5
I - B-Plan Parkstraße	629318.3	5804794.6	94.8	40.0	33.5	-6.5



Firma:	planGIS GmbH	Eingabedaten IST-Zustand	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Beurteilungszeit	Beurteilungszeiträume										
T1	Werktag (6h-22h)										
T2	Sonntag (6h-22h)										
Т3	Nacht (22h-6h)										

Punkt-SQ /I	SO 9613 (2)										IS	ST-Zustand
EZQi001	Bezeichnung	Biogasan	lage		Wirkradius /	/m						99999.00
	Gruppe	Biogasan	lage / BHK	W	D0			0.00				
	Knotenzahl	1			Hohe Quelle			Nein				
	Länge /m				Emission ist				Schallleistungspeg			pegel (Lw)
	Länge /m (2D)				Emi.Variant	Em	nission	Dämmung	Zuschlag		Lw	
	Fläche /m²						dB(A)	dB	dB		dB(A)	
					Tag		85.00	-	-		85.00	
					Nacht		85.00	-	-		85.00	
					Ruhe		85.00	-	-		85.00	
	Beurteilungsvorschrift	Spitzenp	egel	Impuls-Zuschlag	Ton-Zuschla	ag	Info	Zuschlag			Extra-Z	uschlag
	TA Lärm (2017)		-	0.0		0.0		0.0		-		0.0
	Beurteilungszeitraum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A)	n-mal		Einwi	rkzeit /h	dLi /dB		Lwr/dB	i(A)
		'										
	ohne Ruhezeitzuschlag:											
		1										
	Nacht (22h-6h)	1.00	Nacht	85.0		1.00		1.00000		0.00		85.0
	Geometrie			Nr	x/m			y/m	z(abs) /m			! z(rel) /m
				Geometrie:	6268	398.73		5802502.99		48.41		8.00
EZQi003	Bezeichnung	BHKW			Wirkradius /	/m						99999.00
	Gruppe	Biogasan	lage / BHK	W	D0							0.00
	Knotenzahl	1			Hohe Quelle							Nein
	Länge /m				Emission ist				Schallleistungspege			pegel (Lw)
	Länge /m (2D)				Emi.Variant	Em	nission	Dämmung	Zuschlag		Lw	
	Fläche /m²						dB(A)	dB	dB		dB(A)	
					Tag		85.00	-	-		85.00	
					Nacht		85.00 -		-		85.00	
					Ruhe		85.00	-	-		85.00	
	Beurteilungsvorschrift	Spitzenp	egel	Impuls-Zuschlag	Ton-Zuschla	ag	Info	Zuschlag			Extra-Z	uschlag
	TA Lärm (2017)		-	0.0		0.0		0.0		-		0.0
	Beurteilungszeitraum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A)	n-mal		Einwi	rkzeit /h	dLi /dB		Lwr/dB	(A)
	ohne Ruhezeitzuschlag:											
	•	_					•		•			
	Nacht (22h-6h)	1.00	Nacht	85.0		1.00	1.00 1.00000		0.00		0 8	
	Geometrie			Nr		x/m						! z(rel) /m
			e: 626900.64 5801610.57									

Windenergie	anlage (15)												IST	-Zustand
WEAI882	Bezeichnung		VB 1 - E-	66			Wirkradi	us /m						99999.00
	Gruppe		Vorbelas	tung mit Zu	ıschlag		Lw (Tag)	/dB(A)			104			
	Knotenzahl		1				Lw (Nacht) /dB(A) Lw (Ruhe) /dB(A) D0				104 104			
	Länge /m													
	Länge /m (2D)													
	Fläche /m²						Berechn	ungsgrund	dlage		ı	SO 9613-2	2 / Interims	verfahren
							Unsicherheiten aktiviert							Nein
							Hohe Qu	elle						Ja
							Emission ist				Schallleistungspegel (Lw			
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	
	Tag	Emission	Referenz	: E-66/18	,70 (3-fach	vermesse	en)							
	Tag	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
		Referenz	: E-66/18	,70 (3-fach	vermesse	en)			•					
	Nacht	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Ruhe	Emission	Referenz	: E-66/18	,70 (3-fach	vermesse	en)							
	Ruhe	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Beurteilungsvorse	chrift	Spitzenp	egel	Impuls-Z	uschlag	Ton-Zus	chlag	InfoZus	chlag			Extra-Zus	chlag
	TA Lärm (2017)			-		0.0		0.0		0.0		-		0.0
	Beurteilungszeitra	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	.)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(A	4)
	ohne Ruhezeitzusc	hlag:												
	Nacht (22h-6h)		1.00	Nacht		104.4		1.00		1.00000		0.00		0.0

Firma:	planGIS GmbH	Eingabedaten IST-Zustand	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Windenergiea	nlage (15)												IST-2	Zustand
	Geometrie					Nr		x/m		y/m		z(abs) /m	! z	z(rel) /m
					G	eometrie:		27596.64	58	03763.70		188.11		65.00
WEAI881	Bezeichnung		VB 2 - E-				Wirkradi						99	9999.00
	Gruppe			tung mit Zu	ıschlag		Lw (Tag)							104.42
	Knotenzahl		1				Lw (Naci				104.42			
	Länge /m						Lw (Ruh	e) /dB(A)			104.			
	Länge /m (2D) Fläche /m²						Berechnungsgrundlage					ISO 0612 1	2 / Interimsve	0.00
	Flacile /III											130 9013-	2 / IIILEIIIIISVE	Nein
							Unsicherheiten aktiviert Hohe Quelle							Ja
							Emission					Scha	Illeistungspe	
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz		8000 Hz	3 ()
	Tag	Emission	Referenz		,70 (3-fach			200112		1000112		1000112		
	Tag	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
	3	Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Nacht	Emission	Referenz	: E-66/18	,70 (3-fach	vermesse	en)					1		
	Nacht	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Ruhe	Emission	Referenz	: E-66/18	,70 (3-fach	vermesse	en)							
	Ruhe	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Beurteilungsvors	chrift	Spitzenp	egel	Impuls-Z	uschlag	Ton-Zus		InfoZus				Extra-Zusc	chlag
	TA Lärm (2017)			-		0.0		0.0		0.0		-		0.0
	Beurteilungszeitra	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	A)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr /dB(A))
	ohne Ruhezeitzuso	hlag:												
	Nacht (22h-6h)		1.00	Nacht		104.4		1.00		1.00000		0.00		0.0
	Geometrie					Nr		x/m		y/m		z(abs) /m	! z	z(rel) /m
					G	eometrie:	6	27661.70	58	03563.94		188.50		65.00
WEAI879	Bezeichnung		VB 3 - E-	66			Wirkradi	us /m					99	9999.00
	Gruppe	Vorbelas	tung mit Ζι	uschlag		Lw (Tag) /dB(A)				104.42				
	Knotenzahl		1				Lw (Naci	nt) /dB(A)						104.42
	Länge /m						Lw (Ruhe) /dB(A)							104.42
	Länge /m (2D)		D0											0.00
	Fläche /m²					Berechnungsgrundlage					ISO 9613-2	2 / Interimsve		
							Unsicherheiten aktiviert				Nein .la			
							Hohe Quelle				Ja Schallleistungspegel (Lw)			
		T					Emission							gel (Lw)
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	
	Tag	Emission	Referenz		,70 (3-fach									
	Tag	Zuschlag /dB (A)	404.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
	NIl-4	Lw /dB (A)	104.4		70 (0 f1-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Nacht	Emission	Referenz		,70 (3-fach			1.4	1.4	1.1	1.1	1 1 1	1.1	
	Nacht	Zuschlag /dB (A) Lw /dB (A)	104.4	1.4	1.4	1.4 84.1	1.4 92.5	1.4 96.7	1.4 98.9	1.4 98.4	1.4 96.4	1.4 92.4	1.4 81.5	
	Ruhe	Emission	Referenz		,70 (3-fach			30.1	30.3	30.4	30.4	32.4	01.5	
	Ruhe	Zuschlag /dB (A)	TREIEIEIIZ	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
	Tuno	Lw /dB (A)	104.4	1.4	1	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Beurteilungsvors	. ,	Spitzenp	egel	Impuls-Z		Ton-Zus		InfoZus		00.1	02.1	Extra-Zuso	chlag
	TA Lärm (2017)		Оридопр	-	pu	0.0	10	0.0		0.0				0.0
	Beurteilungszeitra	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A		n-mal		Einwirkz		dLi /dB		Lwr/dB(A)	
						,							,	
	ohne Ruhezeitzuso	:hlag:												
		-3-	1								1		1	
	Nacht (22h-6h)		1.00	Nacht		104.4		1.00		1.00000		0.00		0.0
	Geometrie		1.00	Audit		Nr		x/m		y/m		z(abs) /m	1 7	z(rel) /m
					G	eometrie:	6	27475.72	58	03327.86		190.16		65.00
WEAI874	Bezeichnung		VB 4 - E-	66	0,		Wirkradi					.00.10	99	9999.00
	Gruppe			tung mit Zu	uschlag		Lw (Tag)							104.42
	Knotenzahl		1	J 20	3			nt) /dB(A)						104.42
	Länge /m		i				Lw (Ruh							104.42
	Länge /m (2D)						D0	, 0 9						0.00
	Fläche /m²							ungsgrun	dlage			ISO 9613-	2 / Interimsve	
								heiten ak						Nein
							Hohe Ou	elle						Ja
							Hohe Qu Emission					Scha	Illeistungspe	
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	Emission		500 Hz	1000 Hz	2000 Hz	Scha		
		Emission	Summe Referenz		31.5 Hz ,70 (3-fach		Emission 125 Hz	ı ist	500 Hz	1000 Hz	2000 Hz			Ja egel (Lw)

Firma:	planGIS GmbH	Eingabedaten IST-Zustand	
Bearbeiter:	W. Packmor		
Projekt:	4 21 001 Volkmarsdorf		

	ilage (15)												IST-Z	ustand
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Nacht	Emission	Referenz	E-66/18	70 (3-fach	vermesse	n)							
	Nacht	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Ruhe	Emission	Referenz	E-66/18	70 (3-fach	vermesse	n)						· · · · · ·	
	Ruhe	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Beurteilungsvorsc	hrift	Spitzenp	egel	Impuls-Z	uschlag	Ton-Zus	chlag	InfoZus	chlag		,	Extra-Zusch	hlag
	TA Lärm (2017)			-		0.0		0.0		0.0		-		0.0
	Beurteilungszeitra	um / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	N)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(A)	
			1											
	ohne Ruhezeitzusch	hlag:												
		···-g·	1						1					
	Nacht (22h-6h)		1.00	Nacht		104.4		1.00		1.00000		0.00		0.0
	Geometrie		1.00	· · · · · · · · · · · · · · · · · · ·		Nr		x/m		y/m		z(abs) /m	170	rel) /m
	Geometric				G	eometrie:	6	27158.15	58	03515.77		188.48	(.	65.00
WEAI880	Bezeichnung		VB 5 - E-	86		contente.	Wirkradi] 30	00010.77		100.40	990	999.00
WLAIGOU				ung mit Zu	schlag									104.42
	Gruppe		1	ung mit Zu	iscillag		Lw (Tag)							104.42
	Knotenzahl						Lw (Nach	, , ,						
	Länge /m		-				Lw (Ruhe	e) /aB(A)						104.42
	Länge /m (2D)						D0					00 0010 0		0.00
i	Fläche /m²							ungsgrun				SO 9613-2	2 / Interimsver	
								heiten ak	tiviert					Nein
							Hohe Qu							Ja
		T	_				Emission						lleistungspeg	el (Lw)
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	
	Tag	Emission	Referenz			vermesse								
	Tag	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Nacht	Emission	Referenz			vermesse								
	Nacht	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Ruhe	Emission	Referenz	E-66/18	•						Г	Т		
	Ruhe	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
ı		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Beurteilungsvorsc	hrift	Spitzenp	egel	Impuls-Z	uschlag	Ton-Zuse	chlag	InfoZus	chlag			Extra-Zusch	hlag
	TA Lärm (2017)			-		0.0		0.0		0.0		-		0.0
	Beurteilungszeitra	um / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	١)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(A)	
	ohne Ruhezeitzusch	hlag:												
			1											
	Nacht (22h-6h)		1.00	Nacht		104.4		1.00		1.00000		0.00		0.0
	Nacht (22h-6h) Geometrie		1.00	Nacht		104.4		1.00 x/m		1.00000 y/m		0.00 z(abs) /m	! z(i	0.0
			1.00	Nacht	G	_	6		58				! z(ı	
WEAI873	Geometrie		1.00 VB 6 - E-		G	Nr		x/m 27110.78	58	y/m		z(abs) /m		rel) /m
WEAI873			VB 6 - E-			Nr	6 Wirkradii Lw (Tag)	x/m 27110.78 us /m	58	y/m		z(abs) /m	999	rel) /m 65.00
WEAI873	Geometrie Bezeichnung		VB 6 - E-	66		Nr	Wirkradi	x/m 27110.78 us /m /dB(A)	58	y/m		z(abs) /m	999	rel) /m 65.00 999.00
WEAI873	Geometrie Bezeichnung Gruppe		VB 6 - E- Vorbelasi	66		Nr	Wirkradi Lw (Tag)	x/m 27110.78 us /m /dB(A) nt) /dB(A)	58	y/m		z(abs) /m	999	rel) /m 65.00 999.00 104.42
WEAI873	Geometrie Bezeichnung Gruppe Knotenzahl		VB 6 - E- Vorbelasi	66		Nr	Wirkradi Lw (Tag) Lw (Nach	x/m 27110.78 us /m /dB(A) nt) /dB(A)	58	y/m		z(abs) /m	999	rel) /m 65.00 999.00 104.42 104.42
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m		VB 6 - E- Vorbelast 1	66		Nr	Wirkradii Lw (Tag) Lw (Nach Lw (Ruho D0	x/m 27110.78 us /m /dB(A) nt) /dB(A)		y/m		z(abs) /m 197.97	999	65.00 999.00 104.42 104.42 0.00
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)		VB 6 - E- Vorbelast 1	66		Nr	Wirkradii Lw (Tag) Lw (Nach Lw (Ruho D0 Berechni	x/m 27110.78 us /m /dB(A) nt) /dB(A)	dlage	y/m		z(abs) /m 197.97	999	65.00 999.00 104.42 104.42 0.00
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)		VB 6 - E- Vorbelast 1	66		Nr	Wirkradii Lw (Tag) Lw (Nach Lw (Ruho D0 Berechni	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak	dlage	y/m		z(abs) /m 197.97	999	65.00 999.00 104.42 104.42 0.00
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)		VB 6 - E- Vorbelast 1	66		Nr	Wirkradii Lw (Tag) Lw (Nach Lw (Ruho D0 Berechni Unsicher	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak	dlage	y/m		z(abs) /m 197.97 SO 9613-2	999	65.00 999.00 104.42 104.42 0.00 fahren Nein
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)		VB 6 - E- Vorbelast 1	66 ung mit Zu		Nr	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emission	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak	dlage	y/m 03253.07		z(abs) /m 197.97 SO 9613-2 Schal	999	65.00 999.00 104.42 104.42 0.00 fahren Nein
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²	Emission	VB 6 - E- Vorbelast	66 uung mit Zu	schlag 31.5 Hz	Nr ecometrie:	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrun rheiten ak elle	dlage	y/m 03253.07	1	z(abs) /m 197.97 SO 9613-2 Schal	999	65.00 999.00 104.42 104.42 0.00 fahren Nein
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante		VB 6 - E- Vorbelasi 1 Summe	66 uung mit Zu 16 Hz E-66/18	31.5 Hz 70 (3-fact	Nr soometrie: 63 Hz vermesses	Wirkradii Lw (Tag) Lw (Nach Lw (Ruho D0 Berechni Unsicher Hohe Qu Emissior 125 Hz	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist	dlage tiviert 500 Hz	y/m 03253.07 1000 Hz	2000 Hz	z(abs) /m 197.97 SO 9613-2 Schal	999 2 / Interimsver	65.00 999.00 104.42 104.42 0.00 fahren Nein
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²	Zuschlag /dB (A)	VB 6 - E- Vorbelasi 1 Summe Referenz	66 uung mit Zu	schlag 31.5 Hz	Nr ecometrie:	Wirkradii Lw (Tag) Lw (Nact Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz n)	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz	dlage tiviert 500 Hz	y/m 03253.07 1000 Hz	2000 Hz	x(abs) /m 197.97 SO 9613-2 Schal 4000 Hz	998 2 / Interimsver Illeistungspeg 8000 Hz	65.00 999.00 104.42 104.42 0.00 fahren Nein
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag	Zuschlag /dB (A) Lw /dB (A)	VB 6 - E- Vorbelasi 1 Summe Referenz	16 Hz E-66/18,	31.5 Hz 70 (3-fact	Nr ecometrie: 63 Hz vermesse 1.4 84.1	Wirkradii Lw (Tag) Lw (Nach Lw (Ruh D0 Berechni Unsicher Hohe Qu Emissior 125 Hz n) 1.4 92.5	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist	dlage tiviert 500 Hz	y/m 03253.07 1000 Hz	2000 Hz	z(abs) /m 197.97 SO 9613-2 Schal	999 2 / Interimsver	65.00 999.00 104.42 104.42 0.00 fahren Nein
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag	Zuschlag /dB (A) Lw /dB (A) Emission	VB 6 - E- Vorbelasi 1 Summe Referenz	16 Hz E-66/18 1.4 - E-66/18	31.5 Hz 70 (3-fact 1.4 - 70 (3-fact	63 Hz vermesse 1.4 84.1 vermesse	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz n) 1.4 92.5	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz	dlage tiviert 500 Hz 1.4 98.9	y/m 03253.07 1000 Hz 1.4 98.4	2000 Hz 1.4 96.4	SC 9613-2 Schal 4000 Hz	998 2 / Interimsver Illeistungspeg 8000 Hz 1.4 81.5	65.00 999.00 104.42 104.42 0.00 fahren Nein
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A)	VB 6 - E- Vorbelasi 1 Summe Referenz	16 Hz E-66/18,	31.5 Hz 70 (3-fact	63 Hz vermesse 1.4 84.1 vermesse 1.4	Wirkradii Lw (Tag) Lw (Nach Lw (Ruh D0 Berechni Unsicher Hohe Qu Emissior 125 Hz n) 1.4 92.5	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 1.4	dlage tiviert 500 Hz 1.4 98.9	y/m 03253.07 1000 Hz 1.4 98.4	2000 Hz 1.4 96.4	x(abs) /m 197.97 SO 9613-2 Schall 4000 Hz 1.4 92.4	998 2 / Interimsver	65.00 999.00 104.42 104.42 0.00 ffahren Nein
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	VB 6 - E- Vorbelasi 1 Summe Referenz 104.4 Referenz	16 Hz E-66/18 1.4 - E-66/18 1.4 - 1.4 -	31.5 Hz 70 (3-fact 1.4 -70 (3-fact 1.4	63 Hz vermesse 1.4 84.1 vermesse 1.4 84.1	Wirkradii Lw (Tag) Lw (Nach D0 Berechni Unsicher Hohe Qu Emission 125 Hz n) 1.4 92.5	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz	dlage tiviert 500 Hz 1.4 98.9	y/m 03253.07 1000 Hz 1.4 98.4	2000 Hz 1.4 96.4	SC 9613-2 Schal 4000 Hz	998 2 / Interimsver Illeistungspeg 8000 Hz 1.4 81.5	65.00 999.00 104.42 104.42 0.00 ffahren Nein
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Ruhe	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission	VB 6 - E- Vorbelasi 1 Summe Referenz 104.4 Referenz	16 Hz : E-66/18 1.4 - : E-66/18	31.5 Hz 70 (3-fach - 70 (3-fach - 1.4 - 70 (3-fach - 70 (3-fach - 70 (3-fach	63 Hz vermesse 1.4 84.1 vermesse 1.4 vermesse 4.4 vermesse	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz n) 1.4 92.5	x/m 27110.78 us /m /dB(A) nt) /dB(A) a) /dB(A) a) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 1.4 96.7	dlage tiviert 500 Hz 1.4 98.9 1.4 98.9	y/m 03253.07 1000 Hz 1.4 98.4 1.4 98.4	2000 Hz 1.4 96.4 1.4 96.4	x(abs) /m 197.97 SO 9613-2 Schal 4000 Hz 1.4 92.4	998 2 / Interimsver Illeistungspeg 8000 Hz 1.4 81.5	65.00 999.00 104.42 104.42 0.00 ffahren Nein
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A)	VB 6 - E- Vorbelasi 1 Summe Referenz 104.4 Referenz	16 Hz E-66/18 1.4 - E-66/18 1.4 - 1.4 - 1.4 - 1.4 - 1.4 - 1.4	31.5 Hz 70 (3-fact -70 (3-fact -70 (3-fact -70 (3-fact -71.4	63 Hz vermesse 1.4 84.1 vermesse 1.4 1.4 vermesse 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz en) 1.4 92.5 en) 1.4 92.5 en) 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrun theiten ak elle 1 ist 250 Hz 1.4 96.7	1.4 98.9 1.4 98.9 1.4	y/m 03253.07 1000 Hz 1.4 98.4 1.4 98.4	2000 Hz 1.4 96.4 1.4 96.4 1.4 1.4	x(abs) /m 197.97 SO 9613-2 Schail 4000 Hz 1.4 92.4 1.4 92.4	998 2 / Interimsver 3 8000 Hz 4 81.5 5 1.4 6 81.5	65.00 999.00 104.42 104.42 0.00 ffahren Nein
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Ruhe	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	VB 6 - E- Vorbelasi 1 Summe Referenz 104.4 Referenz 104.4 Referenz	16 Hz E-66/18 1.4 - E-66/18 1.4 - 1.4 - 1.4 -	31.5 Hz 70 (3-fact 1.4 70 (3-fact 1.4 70 (3-fact 1.4	63 Hz vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 1.4 84.1	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz m) 1.4 92.5 m) 1.4 92.5	x/m 27110.78 us /m /dB(A) nt) /dB(A) a) /dB(A) a) /dB(A) a) /dB(A) c) /dB(A)	500 Hz 500 Hz 1.4 98.9 1.4 98.9	y/m 03253.07 1000 Hz 1.4 98.4 1.4 98.4 1.4 98.4	2000 Hz 1.4 96.4 1.4 96.4	x(abs) /m 197.97 SO 9613-2 Schal 4000 Hz 1.4 92.4	998 2 / Interimsver 3 8000 Hz 4 81.5 5 1.4 6 81.5 6 1.4 6 81.5	ret) /m e5.000 999.000 104.422 0.000 rfahren Nein Ja
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Ruhe Ruhe Beurteilungsvorsc	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	VB 6 - E- Vorbelasi 1 Summe Referenz 104.4 Referenz	16 Hz E-66/18 1.4 - E-66/18 1.4 - 1.4 - 1.4 -	31.5 Hz 70 (3-fact -70 (3-fact -70 (3-fact -70 (3-fact -71.4	63 Hz vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 1.4 84.1	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz en) 1.4 92.5 en) 1.4 92.5 en) 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 1.4 96.7 1.4 96.7 1.4 96.7	1.4 98.9 1.4 98.9 1.4	y/m 03253.07 1000 Hz 1.4 98.4 1.4 98.4 1.4 98.4	2000 Hz 1.4 96.4 1.4 96.4 1.4 1.4	x(abs) /m 197.97 SO 9613-2 Schail 4000 Hz 1.4 92.4 1.4 92.4	998 2 / Interimsver 3 8000 Hz 4 81.5 5 1.4 6 81.5	ret) /m e5.00 /m e5.0
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvorsc TA Lärm (2017)	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) hrift	VB 6 - E- Vorbelasi 1 Summe Referenz 104.4 Referenz 104.4 Referenz 104.4 Spitzenp	16 Hz E-66/18 1.4 - E-66/18 1.4 - E-66/18 1.4 - E-66/18	31.5 Hz 70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact	63 Hz vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 0.0	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz n) 1.4 92.5 n) 1.4 92.5 Ton-Zuse	x/m 27110.78 us /m /dB(A) nt) /dB(A) a) /dB(A) a) /dB(A) a) /dB(A) c) /dB(A)	1.4 98.9 1.4 98.9 1.7 98.9	1000 Hz 1.4 98.4 1.4 98.4 1.4 98.4 0.0	1.4 96.4 1.4 96.4 1.4 96.4	x(abs) /m 197.97 SO 9613-2 Schail 4000 Hz 1.4 92.4 1.4 92.4	998 2 / Interimsver 8000 Hz 1.4 81.5 1.4 81.5 1.4 81.5 Extra-Zusch	ret) /m e5.00 /m e5.0
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Ruhe Ruhe Beurteilungsvorsc	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) hrift	VB 6 - E- Vorbelasi 1 Summe Referenz 104.4 Referenz 104.4 Referenz 104.4 Spitzenp	16 Hz E-66/18 1.4 - E-66/18 1.4 - 1.4 - 1.4 -	31.5 Hz 70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact	63 Hz vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 0.0	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz m) 1.4 92.5 m) 1.4 92.5	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 1.4 96.7 1.4 96.7 1.4 96.7	500 Hz 500 Hz 1.4 98.9 1.4 98.9	1000 Hz 1.4 98.4 1.4 98.4 1.4 98.4 0.0	2000 Hz 1.4 96.4 1.4 96.4 1.4 1.4	x(abs) /m 197.97 SO 9613-2 Schail 4000 Hz 1.4 92.4 1.4 92.4	998 2 / Interimsver 3 8000 Hz 4 81.5 5 1.4 6 81.5 6 1.4 6 81.5	ret) /m e5.00 /m e5.0
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvorsc TA Lärm (2017) Beurteilungszeitra	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) thrift tum / Zeitzone	VB 6 - E- Vorbelasi 1 Summe Referenz 104.4 Referenz 104.4 Referenz 104.4 Spitzenp	16 Hz E-66/18 1.4 - E-66/18 1.4 - E-66/18 1.4 - E-66/18	31.5 Hz 70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact	63 Hz vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 0.0	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz n) 1.4 92.5 n) 1.4 92.5 Ton-Zuse	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 1.4 96.7 1.4 96.7 1.4 96.7	1.4 98.9 1.4 98.9 1.7 98.9	1000 Hz 1.4 98.4 1.4 98.4 1.4 98.4 0.0	1.4 96.4 1.4 96.4 1.4 96.4	x(abs) /m 197.97 SO 9613-2 Schail 4000 Hz 1.4 92.4 1.4 92.4	998 2 / Interimsver 8000 Hz 1.4 81.5 1.4 81.5 1.4 81.5 Extra-Zusch	ret) /m e5.000 999.000 104.422 0.000 rfahren Nein Ja
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvorsc TA Lärm (2017)	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) thrift tum / Zeitzone	VB 6 - E- Vorbelasi 1 Summe Referenz 104.4 Referenz 104.4 Referenz 104.4 Spitzenp	16 Hz E-66/18 1.4 - E-66/18 1.4 - E-66/18 1.4 - E-66/18	31.5 Hz 70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact	63 Hz vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 0.0	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz n) 1.4 92.5 n) 1.4 92.5 Ton-Zuse	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 1.4 96.7 1.4 96.7 1.4 96.7	1.4 98.9 1.4 98.9 1.7 98.9	1000 Hz 1.4 98.4 1.4 98.4 1.4 98.4 0.0	1.4 96.4 1.4 96.4 1.4 96.4	x(abs) /m 197.97 SO 9613-2 Schail 4000 Hz 1.4 92.4 1.4 92.4	998 2 / Interimsver 8000 Hz 1.4 81.5 1.4 81.5 1.4 81.5 Extra-Zusch	ret) /m 65.00999.00 104.429 104.42 0.00 rfahren Nein Ja el (Lw)
WEAI873	Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvorsc TA Lärm (2017) Beurteilungszeitra	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) thrift tum / Zeitzone	VB 6 - E- Vorbelasi 1 Summe Referenz 104.4 Referenz 104.4 Referenz 104.4 Spitzenp Dauer /h	16 Hz E-66/18 1.4 - E-66/18 1.4 - E-66/18 1.4 - E-66/18	31.5 Hz 70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact 1.4 -70 (3-fact	63 Hz vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 1.4 84.1 vermesse 0.0	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz n) 1.4 92.5 n) 1.4 92.5 Ton-Zuse	x/m 27110.78 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 1.4 96.7 1.4 96.7 1.4 96.7	1.4 98.9 1.4 98.9 1.7 98.9	1000 Hz 1.4 98.4 1.4 98.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2	1.4 96.4 1.4 96.4 1.4 96.4	x(abs) /m 197.97 SO 9613-2 Schail 4000 Hz 1.4 92.4 1.4 92.4	998 2 / Interimsver 8000 Hz 1.4 81.5 1.4 81.5 1.4 81.5 Extra-Zusch	ret) /m 65.00999.00 104.429 104.42 0.00 rfahren Nein Ja el (Lw)

Firma:	planGIS GmbH	Eingabedaten IST-Zustand	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Windenergiea	anlage (15)												IST-	Zustand
	Geometrie					Nr		x/m		y/m		z(abs) /m	!:	z(rel) /m
					Ge	eometrie:	6	26735.63	58	03099.02		199.13		65.00
WEAI878	Bezeichnung		VB 7 - E-				Wirkradi						9	9999.00
	Gruppe			tung mit Zu	ıschlag		Lw (Tag)							104.42
	Knotenzahl		1				Lw (Nacht) /dB(A)				104.42			
	Länge /m						Lw (Ruhe	e) /dB(A)			104.42			
	Länge /m (2D)						D0 Berechnungsgrundlage					100 0642 1	2 / Interiment	0.00
	Fläche /m²							heiten ak				150 90 13-2	2 / Interimsv	Neir
							Hohe Qu		livieri					Ja
							Emission					Scha	Illeistungspe	
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz		8000 Hz	90. (211
	Tag	Emission	Referenz		,70 (3-fach			200 112	000112	1000112	2000 112	4000 112	0000112	
	Tag	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Nacht	Emission	Referenz	: E-66/18	,70 (3-fach	vermesse	en)				l			
	Nacht	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Ruhe	Emission	Referenz	: E-66/18	,70 (3-fach	vermesse	en)							
	Ruhe	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Beurteilungsvors	chrift	Spitzenp	egel	Impuls-Z	uschlag	Ton-Zus		InfoZus				Extra-Zus	chlag
	TA Lärm (2017)					0.0		0.0		0.0				0.0
	Beurteilungszeitra	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	١)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(A)
	ohne Ruhezeitzuso	hlag:												
	Nacht (22h-6h)		1.00	Nacht		104.4		1.00		1.00000		0.00		0.0
	Geometrie					Nr		x/m		y/m		z(abs) /m	!:	z(rel) /m
					Ge	eometrie:	6	26815.00	58	02946.64		200.42		65.00
WEAI877	Bezeichnung	VB 8 - E-	Wirkradi	us /m		99999.00								
	Gruppe	Vorbelas	Lw (Tag) /dB(A)				104.42							
	Knotenzahl		1				Lw (Nach	t) /dB(A)						104.42
	Länge /m						Lw (Ruhe	e) /dB(A)						104.42
	Länge /m (2D)						D0							0.00
	Fläche /m²			Berechnungsgrundlage					ISO 9613-2	2 / Interimsv	erfahrer			
							Unsicherheiten aktiviert				Nein			
							Hohe Quelle				Ja Schallleistungspegel (Lw)			
		1					Emission							gel (Lw
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	
	Tag	Emission	Referenz		,70 (3-fach							_		
	Tag	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-		84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Nacht	Emission	Referenz		,70 (3-fach									
	Nacht	Zuschlag /dB (A)	101.1	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4		70 (0 ()	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Ruhe	Emission	Referenz		,70 (3-fach		n) 1.4	4.4	1.4	1.4	- 44		1.4	
	Ruhe	Zuschlag /dB (A)	104.4	1.4	1.4	1.4 84.1	92.5	96.7	98.9	98.4	1.4 96.4	1.4 92.4	81.5	
	Beurteilungsvorse	Lw /dB (A)			Impuls-Z		Ton-Zuse		InfoZus		90.4	92.4	Extra-Zus	oblog
	TA Lärm (2017)	annit.	Spitzenp	egei	IIIIpuis-Z	0.0	1011-Zust	0.0	IIIIOZus	0.0			EXIIA-ZUS	0.0
	1A Lailli (2017)				Lw /dD/A			0.0	Einwirkz		dLi /dB		Lwr/dB(A	
	Bourtoilungezoitre	um / Zoitzono	Dauge /h							GIL /II	uLI /ub		LWI /UB(A	,
	Beurteilungszeitra	aum / Zeitzone	Dauer /h	Emivar	LW /UB(F	·y	n-mal							
			Dauer /h	EmiVar	LW /UB(F	9	n-mal							
	ohne Ruhezeitzusc		Dauer /h	Emivar	LW /UB(A	9	n-mal							
	ohne Ruhezeitzusc				LW /GB(A	,	n-mal	4.00		1,00000		0.00		•
	ohne Ruhezeitzusci Nacht (22h-6h)		1.00		LW /GB(A	104.4	n-mal	1.00		1.00000		0.00		0.0
	ohne Ruhezeitzusc					104.4 Nr		x/m		y/m		z(abs) /m	!:	z(rel) /m
WEART	ohne Ruhezeitzusc Nacht (22h-6h) Geometrie		1.00	Nacht		104.4	6	x/m 27163.84						z(rel) /m 65.00
WEAI876	ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung		1.00 VB 9 - E-	Nacht	Ge	104.4 Nr	6 Wirkradi	x/m 27163.84 us /m		y/m		z(abs) /m		65.00 9999.00
WEAI876	ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung Gruppe		1.00 VB 9 - E- Vorbelas	Nacht	Ge	104.4 Nr	6 Wirkradii Lw (Tag)	x/m 27163.84 us /m /dB(A)		y/m		z(abs) /m		65.00 9999.00 104.42
WEAI876	ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl		1.00 VB 9 - E- Vorbelas	Nacht	Ge	104.4 Nr	6 Wirkradii Lw (Tag) Lw (Nach	x/m 27163.84 us /m /dB(A) nt) /dB(A)		y/m		z(abs) /m		65.00 9999.00 104.42
WEAI876	ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m		1.00 VB 9 - E- Vorbelas 1	Nacht	Ge	104.4 Nr	6 Wirkradii Lw (Tag) Lw (Nach	x/m 27163.84 us /m /dB(A) nt) /dB(A)		y/m		z(abs) /m		65.00 9999.00 104.43 104.43
WEAI876	ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)		1.00 VB 9 - E- Vorbelas 1	Nacht	Ge	104.4 Nr	6 Wirkradii Lw (Tag) Lw (Nach Lw (Ruho	x/m 27163.84 us /m /dB(A) nt) /dB(A)	58	y/m		z(abs) /m 201.72	9	65.00 9999.00 104.42 104.42 0.00
WEAI876	ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m		1.00 VB 9 - E- Vorbelas 1	Nacht	Ge	104.4 Nr	6 Wirkradii Lw (Tag) Lw (Nach Lw (Ruho D0 Berechni	x/m 27163.84 us /m /dB(A) nt) /dB(A) e) /dB(A)	58	y/m		z(abs) /m 201.72		65.00 9999.00 104.42 104.43 0.00 erfahrer
WEAI876	ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)		1.00 VB 9 - E- Vorbelas 1	Nacht	Ge	104.4 Nr	6 Wirkradii Lw (Tag) Lw (Nach Lw (Ruho D0 Berechni Unsicher	x/m 27163.84 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak	58	y/m		z(abs) /m 201.72	9	65.00 9999.00 104.42 104.42 0.00 erfahrer
WEAI876	ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)		1.00 VB 9 - E- Vorbelas 1	Nacht	Ge	104.4 Nr	6 Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu	x/m 27163.84 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak	58	y/m		z(abs) /m 201.72	9 2 / Interimsv	65.00 9999.00 104.42 104.42 0.00 erfahrer Neir
WEA1876	ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²		1.00 VB 9 - E- Vorbelas 1	Nacht 66 tung mit Zu	Gi	104.4 Nr Nr cometrie:	6 Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu	x/m 27163.84 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrun heiten ak elle	58	y/m 02933.41		z(abs) /m 201.72	9 / Interimsv	65.00 9999.00 104.42 104.42 0.00 erfahrer Neir
WEAI876	ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)		1.00 VB 9 - E- Vorbelas 1	Nacht 66 tung mit Zu	Gi	104.4 Nr cometrie:	6 Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz	x/m 27163.84 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak	58	y/m 02933.41		z(abs) /m 201.72	9 / Interimsv	65.00 9999.00 104.42 104.42 0.00 erfahrer Neir

Firma:	planGIS GmbH	Eingabedaten IST-Zustand	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Windenergiea	anlago (15)												IST-Zusta
will deliel glea	anage (13)	Lw /dB (A)	104.4	_	_	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5
	Nacht	Emission		E-66/18				00.1	00.0	00.4	00.4	02.4	01.0
	Nacht	Zuschlag /dB (A)	1 (0/0/0/0/	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
	radin	Lw /dB (A)	104.4			84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5
	Ruhe	Emission	Referenz	E-66/18	,70 (3-fach								1 0 110
	Ruhe	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5
	Beurteilungsvorse	chrift	Spitzenp	egel	Impuls-Z	uschlag	Ton-Zus	chlag	InfoZus	chlag			Extra-Zuschlag
	TA Lärm (2017)			-		0.0		0.0		0.0		-	C
	Beurteilungszeitra	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	N)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr /dB(A)
					,	,							
	ohne Ruhezeitzusc	hlag:											
			1		<u> </u>						I.		
	Nacht (22h-6h)		1.00	Nacht		104.4		1.00		1.00000		0.00	
	Geometrie					Nr		x/m		y/m		z(abs) /m	! z(rel) /
					Ge	eometrie:	6	27283.81	58	02742.88		200.47	65.0
WEAI875	Bezeichnung		VB 10 - E	-66			Wirkradi	us /m					99999.
	Gruppe		Vorbelas	ung mit Zu	schlag		Lw (Tag)	/dB(A)					104.4
	Knotenzahl		1				Lw (Naci	nt) /dB(A)					104.4
	Länge /m						Lw (Ruh	e) /dB(A)					104.4
	Länge /m (2D)						D0						0.0
	Fläche /m²						Berechn	ungsgrun	dlage			SO 9613-	2 / Interimsverfahr
							Unsiche	heiten ak	tiviert				Ne
							Hohe Qu	elle					
							Emission	ı ist				Scha	Illeistungspegel (L
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
	Tag	Emission	Referenz	E-66/18	70 (3-fach	vermesse	en)						
	Tag	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
		Lw /dB (A)	104.4	1	1	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5
	Nacht	Emission	Referenz	E-66/18	70 (3-fach	vermesse	en)						
	Nacht	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
		Lw /dB (A)	104.4	1	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5
	Ruhe	Emission	Referenz	E-66/18	,70 (3-fach	vermesse	en)						
	Ruhe	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5
	Beurteilungsvorse	chrift	Spitzenp	egel	Impuls-Z	uschlag	Ton-Zus	chlag	InfoZus	chlag			Extra-Zuschlag
	TA Lärm (2017)			-		0.0		0.0		0.0		-	С
	Beurteilungszeitra	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	N)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr /dB(A)
	ohne Ruhezeitzusc	hlag:											
	Nacht (22h-6h)		1.00	Nacht		104.4		1.00		1.00000		0.00	С
	Geometrie					Nr		x/m		y/m		z(abs) /m	! z(rel) /
					Ge	eometrie:	6	27363.14	58	02596.91		197.70	65.0
WEAI872	Bezeichnung		VB 11 - E	-40/6. 44b			Wirkradi	us /m					99999.
	Gruppe		Vorbelas	ung mit Zu	schlag		Lw (Tag)	/dB(A)					102.
	Knotenzahl		1				Lw (Naci	nt) /dB(A)					102.
	Länge /m						Lw (Ruh	e) /dB(A)					102.
	Länge /m (2D)						D0						0.0
	Fläche /m²						Berechn	ungsgrun	dlage		ı	SO 9613-	2 / Interimsverfahre
							Unsiche	rheiten ak	tiviert				Ne
							Hohe Qu	elle					
							Emission						Illeistungspegel (L
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
	Tag	Emission	Referenz	E40/6.4				_			_		
	Tag	Zuschlag /dB (A)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
		Lw /dB (A)	102.5	-	75.5	84.7	90.2	94.7	98.6	96.7	91.0	85.6	74.6
	Nacht	Emission	Referenz	E40/6.4									
	Nacht	Zuschlag /dB (A)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
		Lw /dB (A)	102.5	-	75.5	84.7	90.2	94.7	98.6	96.7	91.0	85.6	74.6
	Ruhe	Emission	Referenz	E40/6.4		r		r			r	ı	,
	Ruhe	Zuschlag /dB (A)	1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
		Lw /dB (A)	102.5	-	75.5	84.7	90.2	94.7	98.6	96.7	91.0	85.6	74.6
	Beurteilungsvorse	chrift	Spitzenp	egel	Impuls-Z	uschlag	Ton-Zus	chlag	InfoZus	chlag			Extra-Zuschlag
	TA Lärm (2017)			-		0.0		0.0		0.0		-	С
	Beurteilungszeitra	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	١)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(A)
	ohne Ruhezeitzusc	hlag:											
	Nacht (22h-6h)		1.00	Nacht		102.5		1.00		1.00000		0.00	

Firma:	planGIS GmbH	Eingabedaten IST-Zustand	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

uener grea	nlage (15)												IST-	Zustand	
	Geometrie					Nr		x/m		y/m		z(abs) /m	!:	z(rel) /m	
					Ge	eometrie:		26710.20	58	02723.42		211.37		78.00	
WEAI871	Bezeichnung		VB 12 - N				Wirkradi						9	9999.00	
i	Gruppe			tung mit Zu	ıschlag		Lw (Tag)							104.72	
	Knotenzahl		1				Lw (Nach							104.72	
	Länge /m Länge /m (2D)						Lw (Ruhe	e) /ub(A)						104.72	
	Fläche /m²							ungsgrun	dlane		ISO 9613-2 / Interimsverfahren				
	Tidono /iii							heiten ak			Nein				
							Hohe Qu							Ja	
							Emission					Schal	Illeistungspe	gel (Lw)	
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz		
	Tag	Emission	Referenz	: N29				•			•				
	Tag	Zuschlag /dB (A)		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
		Lw /dB (A)	104.7	-	-	84.4	92.8	97.0	99.2	98.7	96.7	92.7	81.8		
	Nacht	Emission	Referenz		1										
	Nacht	Zuschlag /dB (A)	404.7	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
	Pubo	Lw /dB (A)	104.7 Referenz	· N20	-	84.4	92.8	97.0	99.2	98.7	96.7	92.7	81.8		
	Ruhe Ruhe	Emission Zuschlag /dB (A)	Reierenz	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
	Tuno	Lw /dB (A)	104.7	3.0	3.0	84.4	92.8	97.0	99.2	98.7	96.7	92.7	81.8		
	Beurteilungsvorse		Spitzenp	egel	Impuls-Z		Ton-Zus		InfoZus		55.7	J	Extra-Zus	chlaq	
	TA Lärm (2017)	-		-	F 2	0.0		0.0	=: ===	0.0		-	200	0.0	
	Beurteilungszeitra	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A		n-mal		Einwirkz		dLi /dB		Lwr/dB(A		
	ohne Ruhezeitzusc	hlag:													
	Nooht (225 Ch)		1.00	Nosht		1017		4.00		1 00000		0.00			
	Nacht (22h-6h) Geometrie		1.00	Nacht	<u> </u>	104.7	-	1.00		1.00000		0.00		0.0	
	Geometrie				Ge	ometrie:	6	x/m 26805.78	50	y/m 02652.90		z(abs) /m 187.74	! :	z(rel) /m 50.00	
WF41870	Bezeichnung		VB 13 - N	127		ometrie.	Wirkradi] 30	02032.90		107.74	<u> </u>	9999.00	
WEAI870	Gruppe	VB 13 - N27 Vorbelastung mit Zuschlag				Lw (Tag)							101.02		
	Knotenzahl	1	ung mit Zu	Joonnag		, ,,	nt) /dB(A)			101.02					
	Länge /m					Lw (Ruhe				101.02					
	Länge /m (2D)						D0	, , ,			0.00				
	Fläche /m²						Berechn	ungsgrun	dlage		ISO 9613-2 / Interimsverfahren				
							Unsicher	heiten ak	tiviert		Nein				
							Hohe Quelle				Ja				
							Emission						Illeistungspe	egel (Lw)	
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz		
	Tag	Emission	Referenz		1										
i	Tag	Zuschlag /dB (A)		3.0	3.0	3.0	3.0	3.0	3.0 95.5	3.0 95.0	3.0	3.0	3.0		
					- 1	80.7			1 45.5	95.0					
	Nocht	Lw /dB (A)	101.0	· N27			89.1	93.3	30.5	00.0	93.0	89.0	78.1		
	Nacht	Lw /dB (A) Emission	101.0 Referenz												
	Nacht Nacht	Lw /dB (A) Emission Zuschlag /dB (A)	Referenz	: N27	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
	Nacht	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	Referenz	3.0	3.0										
		Lw /dB (A) Emission Zuschlag /dB (A)	Referenz	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
	Nacht Ruhe	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission	Referenz	3.0 - : N27	3.0	3.0 80.7	3.0 89.1	3.0 93.3	3.0 95.5	3.0 95.0	3.0 93.0	3.0 89.0	3.0 78.1		
	Nacht Ruhe	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	101.0 Referenz	3.0 - : N27 3.0	3.0	3.0 80.7 3.0 80.7	3.0 89.1	3.0 93.3 3.0 93.3	3.0 95.5 3.0	3.0 95.0 3.0 95.0	3.0 93.0 3.0	3.0 89.0 3.0	3.0 78.1	chlag	
	Ruhe Ruhe	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	101.0 Referenz 101.0 Spitzenp	3.0 - : N27 3.0 - egel	3.0 - 3.0 - Impuls-Z	3.0 80.7 3.0 80.7 uschlag 0.0	3.0 89.1 3.0 89.1 Ton-Zus	3.0 93.3 3.0 93.3	3.0 95.5 3.0 95.5	3.0 95.0 3.0 95.0	3.0 93.0 3.0 93.0	3.0 89.0 3.0	3.0 78.1 3.0 78.1 Extra-Zus	0.0	
	Nacht Ruhe Ruhe Beurteilungsvorse	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	101.0 Referenz 101.0 Spitzenp	3.0 - : N27 3.0 - egel	3.0	3.0 80.7 3.0 80.7 uschlag 0.0	3.0 89.1 3.0 89.1	3.0 93.3 3.0 93.3 chlag	3.0 95.5 3.0 95.5	3.0 95.0 3.0 95.0 chlag 0.0	3.0 93.0 3.0	3.0 89.0 3.0	3.0 78.1 3.0 78.1	0.0	
	Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	101.0 Referenz 101.0 Spitzenp	3.0 - : N27 3.0 - egel	3.0 - 3.0 - Impuls-Z	3.0 80.7 3.0 80.7 uschlag 0.0	3.0 89.1 3.0 89.1 Ton-Zus	3.0 93.3 3.0 93.3 chlag	3.0 95.5 3.0 95.5 InfoZus	3.0 95.0 3.0 95.0 chlag 0.0	3.0 93.0 3.0 93.0	3.0 89.0 3.0	3.0 78.1 3.0 78.1 Extra-Zus	0.0	
	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017)	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	101.0 Referenz 101.0 Spitzenp	3.0 - : N27 3.0 - egel	3.0 - 3.0 - Impuls-Z	3.0 80.7 3.0 80.7 uschlag 0.0	3.0 89.1 3.0 89.1 Ton-Zus	3.0 93.3 3.0 93.3 chlag	3.0 95.5 3.0 95.5 InfoZus	3.0 95.0 3.0 95.0 chlag 0.0	3.0 93.0 3.0 93.0	3.0 89.0 3.0	3.0 78.1 3.0 78.1 Extra-Zus	0.0	
	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	Referenz 101.0 Referenz 101.0 Spitzenp Dauer /h	3.0 - : N27 3.0 - egel - EmiVar	3.0 - 3.0 - Impuls-Z	3.0 80.7 3.0 80.7 uschlag 0.0	3.0 89.1 3.0 89.1 Ton-Zus	3.0 93.3 3.0 93.3 chlag	3.0 95.5 3.0 95.5 InfoZus	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0	3.0 89.0 3.0 89.0	3.0 78.1 3.0 78.1 Extra-Zus	0.0	
	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h)	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	101.0 Referenz 101.0 Spitzenp	3.0 - : N27 3.0 - egel - EmiVar	3.0 - 3.0 - Impuls-Z	3.0 80.7 3.0 80.7 uschlag 0.0	3.0 89.1 3.0 89.1 Ton-Zus	3.0 93.3 3.0 93.3 chlag 0.0	3.0 95.5 3.0 95.5 InfoZus	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi/dB	3.0 89.0 3.0 89.0	3.0 78.1 3.0 78.1 Extra-Zus Lwr/dB(A	0.0	
	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	Referenz 101.0 Referenz 101.0 Spitzenp Dauer /h	3.0 - : N27 3.0 - egel - EmiVar	3.0 - 3.0 - Impuls-Z Lw /dB(A	3.0 80.7 3.0 80.7 uschlag 0.0)	3.0 89.1 3.0 89.1 Ton-Zusa	3.0 93.3 3.0 93.3 chlag 0.0	3.0 95.5 3.0 95.5 InfoZus	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi/dB	3.0 89.0 3.0 89.0	3.0 78.1 3.0 78.1 Extra-Zus Lwr/dB(A	0.0) 0.0 z(rel) /m	
WEARAGE	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	Referenz 101.0 Referenz 101.0 Spitzenp Dauer /h	3.0 - : N27 - 3.0 - eggl - EmiVar	3.0 - 3.0 - Impuls-Z Lw /dB(A	3.0 80.7 3.0 80.7 uschlag 0.0	3.0 89.1 3.0 89.1 Ton-Zusa n-mal	3.0 93.3 3.0 93.3 chlag 0.0 1.00 x/m 26894.89	3.0 95.5 3.0 95.5 InfoZus	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi/dB	3.0 89.0 3.0 89.0	3.0 78.1 3.0 78.1 Extra-Zus Lwr/dB(A	0.0 0.0 0.0 z(rel) /m 40.00	
WEAI869	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	Referenz 101.0 Referenz 101.0 Spitzenp Dauer /h 1.00 VB 14 - N	3.0 - : N27 - 3.0 - eggel - EmiVar	3.0 - 3.0 - Impuls-Z Lw /dB(A	3.0 80.7 3.0 80.7 uschlag 0.0)	3.0 89.1 3.0 89.1 Ton-Zusa n-mal	3.0 93.3 3.0 93.3 chlag 0.0 1.00 x/m 26894.89 us /m	3.0 95.5 3.0 95.5 InfoZus	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi/dB	3.0 89.0 3.0 89.0	3.0 78.1 3.0 78.1 Extra-Zus Lwr/dB(A	0.0 0.0 0.0 2(rel) /m 40.00	
WEAI869	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung Gruppe	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	Referenz 101.0 Referenz 101.0 Spitzenp Dauer /h 1.00 VB 14 - N Vorbelas	3.0 - : N27 - 3.0 - eggl - EmiVar	3.0 - 3.0 - Impuls-Z Lw /dB(A	3.0 80.7 3.0 80.7 uschlag 0.0)	3.0 89.1 3.0 89.1 Ton-Zusa n-mal	3.0 93.3 3.0 93.3 chlag 0.0 1.00 x/m 26894.89 us /m /dB(A)	3.0 95.5 3.0 95.5 InfoZus	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi/dB	3.0 89.0 3.0 89.0	3.0 78.1 3.0 78.1 Extra-Zus Lwr/dB(A	0.0 0.0 z(rel) /m 40.00 9999.00	
WEAI869	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	Referenz 101.0 Referenz 101.0 Spitzenp Dauer /h 1.00 VB 14 - N Vorbelas 1	3.0 - : N27 - 3.0 - eggel - EmiVar	3.0 - 3.0 - Impuls-Z Lw /dB(A	3.0 80.7 3.0 80.7 uschlag 0.0)	3.0 89.1 3.0 89.1 Ton-Zuse n-mal	3.0 93.3 3.0 93.3 chlag 0.0 1.00 x/m 26894.89 us /m /dB(A)	3.0 95.5 3.0 95.5 InfoZus	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi/dB	3.0 89.0 3.0 89.0	3.0 78.1 3.0 78.1 Extra-Zus Lwr/dB(A	0.0 0.0 2(rel) /m 40.00 9999.00 104.72	
WEAI869	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	Referenz 101.0 Referenz 101.0 Spitzenp Dauer /h 1.00 VB 14 - N Vorbelas 1	3.0 - : N27 - 3.0 - eggel - EmiVar	3.0 - 3.0 - Impuls-Z Lw /dB(A	3.0 80.7 3.0 80.7 uschlag 0.0)	3.0 89.1 3.0 89.1 Ton-Zust n-mal 6 Wirkradii Lw (Tag) Lw (Nach	3.0 93.3 3.0 93.3 chlag 0.0 1.00 x/m 26894.89 us /m /dB(A)	3.0 95.5 3.0 95.5 InfoZus	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi/dB	3.0 89.0 3.0 89.0	3.0 78.1 3.0 78.1 Extra-Zus Lwr/dB(A	0.0 0.0 z(rel) /m 40.00 104.72 104.72 104.72	
WEAI869	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	Referenz 101.0 Referenz 101.0 Spitzenp Dauer /h 1.00 VB 14 - N Vorbelas 1	3.0 - : N27 - 3.0 - eggel - EmiVar	3.0 - 3.0 - Impuls-Z Lw /dB(A	3.0 80.7 3.0 80.7 uschlag 0.0)	3.0 89.1 3.0 89.1 Ton-Zuse n-mal 6 Wirkradii Lw (Tag) Lw (Nach	3.0 93.3 93.3 chlag 0.0 1.00 x/m 26894.89 us /m /dB(A) nt) /dB(A)	3.0 95.5 3.0 95.5 InfoZus Einwirkz	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi /dB	3.0 89.0 3.0 89.0 - - 0.00 z(abs) /m 180.79	3.0 78.1 3.0 78.1 Extra-Zus Lwr/dB(A	0.0 2(rel) /n 40.00 9999.00 104.72 104.72 0.00	
WEAI869	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	101.0 Referenz 101.0 Spitzenp Dauer /h 1.00 VB 14 - N Vorbelas 1	3.0 - : N27 - 3.0 - eggel - EmiVar	3.0 - 3.0 - Impuls-Z Lw /dB(A	3.0 80.7 3.0 80.7 uschlag 0.0)	3.0 89.1 3.0 89.1 Ton-Zuse n-mal 6 Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe	3.0 93.3 3.0 93.3 chlag 0.0 1.00 x/m 26894.89 us /m /dB(A) nt) /dB(A) e) /dB(A)	3.0 95.5 3.0 95.5 InfoZus Einwirkz	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi /dB	3.0 89.0 3.0 89.0 - - 0.00 z(abs) /m 180.79	3.0 78.1 3.0 78.1 Extra-Zus Lwr/dB(A	0.0 2(rel) /m 40.00 104.72 104.72 0.00 erfahrer	
WEAI869	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	101.0 Referenz 101.0 Spitzenp Dauer /h 1.00 VB 14 - N Vorbelas 1	3.0 - : N27 - 3.0 - eggel - EmiVar	3.0 - 3.0 - Impuls-Z Lw /dB(A	3.0 80.7 3.0 80.7 uschlag 0.0)	3.0 89.1 3.0 89.1 Ton-Zuse n-mal 6 Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher	3.0 93.3 3.0 93.3 chlag 0.0 1.00 x/m /d8(A) nt) /dB(A) e) /dB(A) ungsgrundheiten akd	3.0 95.5 3.0 95.5 InfoZus Einwirkz	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi /dB	3.0 89.0 3.0 89.0 - - 0.00 z(abs) /m 180.79	3.0 78.1 3.0 78.1 Extra-Zus Lwr/dB(A	0.0 2(rel) /m 40.00 9999.00 104.72 104.72 0.00 erfahrer	
WEA1869	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	101.0 Referenz 101.0 Spitzenp Dauer /h 1.00 VB 14 - N Vorbelas 1	3.0 - : N27 - 3.0 - eggel - EmiVar	3.0 - 3.0 - Impuls-Z Lw /dB(A	3.0 80.7 3.0 80.7 uschlag 0.0)	3.0 89.1 3.0 89.1 Ton-Zuse n-mal 6 Wirkradii Lw (Tag) Lw (Nact Lw (Ruhe D0 Berechni Unsicher	3.0 93.3 3.0 93.3 chlag 0.0 1.00 x/m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun- cheiten ak	3.0 95.5 3.0 95.5 InfoZus Einwirkz	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi /dB	3.0 89.0 3.0 89.0 - 0.00 z(abs) /m 180.79	3.0 78.1 3.0 78.1 Extra-Zus Lwr /dB(A	0.0 (rel) /m 40.00 104.72 104.72 0.00 erfahrer Jai	
WEAI869	Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Chrift aum / Zeitzone	101.0 Referenz 101.0 Spitzenp Dauer /h 1.00 VB 14 - N Vorbelas 1	3.0 - : N27 - 3.0 - eggel - EmiVar	3.0 - 3.0 - Impuls-Z	3.0 80.7 3.0 80.7 uschlag 0.0)	3.0 89.1 3.0 89.1 Ton-Zuse n-mal 6 Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher	3.0 93.3 3.0 93.3 chlag 0.0 1.00 x/m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun- cheiten ak	3.0 95.5 3.0 95.5 InfoZus Einwirkz	3.0 95.0 3.0 95.0 chlag 0.0 eit /h	3.0 93.0 3.0 93.0 dLi /dB	3.0 89.0 3.0 89.0 - 0.00 z(abs) /m 180.79	3.0 78.1 3.0 78.1 Extra-Zus Lwr /dB(A	0.0 (rel) /m 40.00 104.72 104.72 0.00 erfahrer Jai	

Firma:	planGIS GmbH	Eingabedaten IST-Zustand	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

vvinaenergiea	nlage (15)												IST-	Zustand
		Lw /dB (A)	104.7	-	-	84.4	92.8	97.0	99.2	98.7	96.7	92.7	81.8	
	Nacht	Emission	Referenz	: N29						•				
	Nacht	Zuschlag /dB (A)		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
		Lw /dB (A)	104.7	-	-	84.4	92.8	97.0	99.2	98.7	96.7	92.7	81.8	
	Ruhe	Emission	Referenz	: N29										
	Ruhe	Zuschlag /dB (A)		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
		Lw /dB (A)	104.7	-	-	84.4	92.8	97.0	99.2	98.7	96.7	92.7	81.8	
	Beurteilungsvors	chrift	Spitzenp	egel	Impuls-Z	uschlag	Ton-Zuso	hlag	InfoZus	chlag			Extra-Zus	chlag
	TA Lärm (2017)			-		0.0		0.0		0.0		-		0.0
	Beurteilungszeitr	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	.)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(A)
	ohne Ruhezeitzus	chlag:												
	Nacht (22h-6h)		1.00	Nacht		104.7		1.00		1.00000		0.00		0.0
	Geometrie					Nr		x/m		y/m		z(abs) /m	!:	z(rel) /m
					Ge	ometrie:	6	26979.48	58	02525.30		189.55		50.00
WEAI868	Bezeichnung		VB 15 - E				Wirkradi						9	9999.00
	Gruppe			tung mit Zu	schlag		Lw (Tag)							104.42
	Knotenzahl		1				Lw (Nach	t) /dB(A)						104.42
	g- /						e) /dB(A)			104.42				
	Länge /m (2D)						D0							0.00
	Fläche /m²							ungsgrun			I	SO 9613-2	2 / Interimsv	erfahren
							Unsicher	heiten akt	tiviert					Nein
							Hohe Qu	elle						Ja
							Emission	ı ist				Schal	lleistungspe	gel (Lw)
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	
	Tag	Emission	Referenz	: E-66/18	70 (3-fach	vermesse	en)							
	Tag	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	96.4	92.4	81.5	
	Nacht	Emission	Referenz	: E-66/18	70 (3-fach	vermesse	en)							
	Nacht	Zuschlag /dB (A)		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
			_								96.4	92.4	81.5	
		Lw /dB (A)	104.4	-	-	84.1	92.5	96.7	98.9	98.4	90.4			
	Ruhe	Emission	-		- ,70 (3-fach	vermesse	en)							
	Ruhe Ruhe	. ,	Referenz	- : E-66/18 1.4	- ,70 (3-fach 1.4	vermesse	en)	1.4	1.4	1.4	1.4	1.4	1.4	
		Emission	-			vermesse	en)						1.4 81.5	
		Emission Zuschlag /dB (A) Lw /dB (A)	Referenz	1.4	1.4	vermesse 1.4 84.1 uschlag	en)	1.4 96.7	1.4	1.4 98.4 chlag	1.4	1.4		
	Ruhe	Emission Zuschlag /dB (A) Lw /dB (A)	Referenz	1.4	1.4	vermesse 1.4 84.1	en) 1.4 92.5	1.4	1.4 98.9	1.4 98.4	1.4 96.4	1.4	81.5 Extra-Zus	0.0
	Ruhe Beurteilungsvors	Emission Zuschlag /dB (A) Lw /dB (A) chrift	104.4 Spitzenp	1.4 - egel	1.4	vermesse 1.4 84.1 uschlag 0.0	en) 1.4 92.5	1.4 96.7	1.4 98.9	1.4 98.4 chlag 0.0	1.4	1.4	81.5	0.0
	Ruhe Beurteilungsvors TA Lärm (2017)	Emission Zuschlag /dB (A) Lw /dB (A) chrift aum / Zeitzone	104.4 Spitzenp	1.4 - egel	1.4 - Impuls-Z	vermesse 1.4 84.1 uschlag 0.0	92.5 Ton-Zuso	1.4 96.7	1.4 98.9 InfoZus	1.4 98.4 chlag 0.0	1.4 96.4	1.4	81.5 Extra-Zus	0.0
	Ruhe Beurteilungsvors TA Lärm (2017) Beurteilungszeitr ohne Ruhezeitzuse	Emission Zuschlag /dB (A) Lw /dB (A) chrift aum / Zeitzone	Referenz 104.4 Spitzenp Dauer /h	1.4 - egel - EmiVar	1.4 - Impuls-Z	vermesse 1.4 84.1 uschlag 0.0	92.5 Ton-Zuso	1.4 96.7 chlag 0.0	1.4 98.9 InfoZus	1.4 98.4 chlag 0.0 eit /h	1.4 96.4	1.4	81.5 Extra-Zus	0.0
	Ruhe Beurteilungsvors TA Lärm (2017) Beurteilungszeitr	Emission Zuschlag /dB (A) Lw /dB (A) chrift aum / Zeitzone	104.4 Spitzenp	1.4 - egel	1.4 - Impuls-Z	1.4 84.1 uschlag 0.0	92.5 Ton-Zuso	1.4 96.7	1.4 98.9 InfoZus	1.4 98.4 chlag 0.0	1.4 96.4 dLi /dB	1.4 92.4	81.5 Extra-Zus Lwr/dB(A	0.0

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Beurteilungszeit	träume		
T1	Werktag (6h-22h)		
T2	Sonntag (6h-22h)		
Т3	Nacht (22h-6h)		

Punkt-SQ /IS											Gesam	tbelastung
EZQi001	Bezeichnung	Biogasan			Wirkradius /	/m						99999.00
	Gruppe	Biogasan	lage / BHK	W	D0							0.00
	Knotenzahl	1			Hohe Quelle)						Neir
	Länge /m				Emission is	t			Scha		allleistungspegel (Lw	
	Länge /m (2D)				Emi.Variant	te Emission		Dämmung	Zuschlag		Lw	
	Fläche /m²						dB(A)	dB	dB		dB(A)	
					Tag		85.00	-	-		85.00	
					Nacht		85.00	-	-		85.00	
					Ruhe		85.00	-	-		85.00	
	Beurteilungsvorschrift	Spitzenp	egel	Impuls-Zuschlag	Ton-Zuschla	ag	Info	Zuschlag			Extra-Zu	uschlag
	TA Lärm (2017)		-	0.0		0.0		0.0		-		0.0
	Beurteilungszeitraum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A)	n-mal		Einwi	rkzeit /h	dLi /dB		Lwr/dB	(A)
	ohne Ruhezeitzuschlag:											
	·											
	Nacht (22h-6h)	1.00	Nacht	85.0		1.00		1.00000		0.00		85.0
	Geometrie			Nr		x/m		y/m	z(al	os) /m		! z(rel) /n
				6268	398.73		5802502.99	1	148.41		8.00	
EZQi003	Bezeichnung	BHKW			Wirkradius /	/m						99999.00
	Gruppe	Biogasan	lage / BHK	W	D0							0.00
	Knotenzahl	1			Hohe Quelle)						Neir
	Länge /m				Emission is	t				Scha	Illeistungs	pegel (Lw
	Länge /m (2D)				Emi.Variant	En	nission	Dämmung	Zuschlag		Lw	
	Fläche /m²						dB(A)	dB	dB		dB(A)	
					Tag		85.00	-	-		85.00	
					Nacht		85.00	-	-		85.00	
					Ruhe		85.00	-	-		85.00	
	Beurteilungsvorschrift	Spitzenp	egel	Impuls-Zuschlag	Ton-Zuschla	ag	Info	Zuschlag			Extra-Zu	uschlag
	TA Lärm (2017)		-	0.0		0.0		0.0		-		0.0
	Beurteilungszeitraum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A)	n-mal		Einwi	rkzeit /h	dLi /dB		Lwr/dB	(A)
		<u>'</u>		•	•							
	ohne Ruhezeitzuschlag:											
		_							·			
	Nacht (22h-6h)	1.00	Nacht	85.0		1.00		1.00000		0.00		85.0
	Geometrie	+		Nr		x/m		y/m	7(al	os) /m		! z(rel) /n
				Geometrie:	6260	900.64		5801610.57	· ·	28.81		8.0

Windenergiea	anlage (6)												Gesamth	oelastung
WEAI001	Bezeichnung		WEA 1				Wirkradi	us /m					!	99999.00
	Gruppe		geplante	WEA			Lw (Tag)	/dB(A)						108.13
	Knotenzahl		1				Lw (Nach	nt) /dB(A)						108.13
	Länge /m						Lw (Ruhe	e) /dB(A)						108.13
	Länge /m (2D)						D0							0.00
	Fläche /m²						Berechn	ungsgrun	dlage		1	SO 9613-2	2 / Interims	verfahren
							Unsicher	heiten akt	iviert					Nein
							Hohe Qu	elle					Ja	
							Emission	ı ist				Scha	Illeistungsp	egel (Lw)
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	
	Tag	Emission	Referenz	: GE 5.5-	158									
	Tag	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Nacht	Emission	Referenz	: GE 5.5-	158		•							
	Nacht	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Ruhe	Emission	Referenz	: GE 5.5-	158									
	Ruhe	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Beurteilungsvorso	chrift	Spitzenp	egel	Impuls-Zu	uschlag	Ton-Zus	chlag	InfoZus	chlag			Extra-Zus	schlag
	TA Lärm (2017)			-		0.0		0.0		0.0		-		0.0
	Beurteilungszeitra	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(A	4)
	ohne Ruhezeitzusc	hlag:												
	'		•				•							
	Nacht (22h-6h)		1.00	Nacht		108.1		1.00		1.00000		0.00		0.0

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²		WEA 2 geplante	WEA	Ge	Nr cometrie:	Wirkradi		58	y/m 03592.00		282.29		z(rel) /m 161.00 99999.00	
Gruppe Knotenzahl Länge /m Länge /m (2D)		geplante	WEA	Ge	eometrie:	Wirkradi	us /m	58	03592.00		282.29	(
Gruppe Knotenzahl Länge /m Länge /m (2D)		geplante	WEA									(agaga nr	
Knotenzahl Länge /m Länge /m (2D)		1	WEA											
Länge /m Länge /m (2D)						Lw (Tag)							108.13	
Länge /m (2D)						Lw (Nach							108.13	
						Lw (Ruhe	e) /ub(A)			0.00				
							ungsgrun	dlane		ISO 9613-2 / Interimsverfahren				
T Idono /III							heiten ak			ISO 9613-2 / Interimsvertahren				
						Hohe Qu							Ja	
						Emission					Schal	llleistungspe	egel (Lw	
EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz		
Tag	Emission	Referenz	GE 5.5-	158			•			•	•			
Tag	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1		
	Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1		
Nacht	Emission	Referenz												
Nacht		100.1												
Buha					89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1		
		Keterenz			2.4	2.4	2.4	2.4	2.4	2.4	2.4	24		
Nulle		109 1												
Beurteilungsvorse										101.2	95.6		schlan	
	,,,,,,t	оридепр	-	inipuis-Z		1011-2050		### ##################################			_		0.0	
, ,	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A		n-mal	0.0	Einwirkz		dLi /dB		Lwr/dB(A		
	-	1				1				1			,	
ohne Ruhezeitzusch	hlag:													
Nacht (22h Ch)		1.00	Nacht		100.4		1.00		1 00000		0.00		0.0	
, ,		1.00	INACHE										z(rel) /n	
Geometrie				Ge		6		58					161.00	
Bezeichnung		WFA 3		00	ometre.			30	03102.00		233.00		99999.00	
_		WEA										108.13		
		1				, ,,				108.13				
Länge /m										108.13				
Länge /m (2D)						D0				0.00				
Fläche /m²						Berechn	ungsgrun	dlage		ISO 9613-2 / Interimsverfahren				
						Unsicher	heiten ak	tiviert		Nein				
						Hohe Quelle				Ja				
													egel (Lw	
EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz		
-		Referenz												
Tag						-								
Necht	` '				89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1		
	+	Referenz			2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1		
Naciii		108.1												
Ruhe		_	L		00.0	04.7	00.0	101.0	100.4	101.2	00.0	70.1		
Ruhe		1 (01010112			2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1		
	Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1		
Beurteilungsvorsc	hrift	Spitzenp	egel	Impuls-Z	uschlag	Ton-Zus	chlag	InfoZus	chlag			Extra-Zus	schlag	
TA Lärm (2017)			-		0.0		0.0		0.0		-		0.0	
Beurteilungszeitra	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(A	4)	
ohne Ruhezeitzusc	hlag:													
								1						
Nacht (22h-6h)		1.00	Nacht										0.0	
Geometrie						-						!	z(rel) /m	
Pozolah maran		\A/E A 4		Ge	eometrie:			58	∪2810.00		295.71	L	161.00	
			\\/ = ^										99999.00	
Gruppe Knotenzahl		geplante 1	VV LA			Lw (Tag)	nt) /dB(A)						108.13	
+						Lw (Ruhe							108.13	
I ange /m						D0	-, , ub(A)						0.00	
Länge /m Länge /m (2D)							ungsgrun	dlago			00 0040 0	. / 14		
Länge /m (2D)											50 9613-2	z / Interims\	verrame	
_											SO 9613-2	2 / Interims		
Länge /m (2D)						Unsicher	heiten ak				SO 9613-2	2 / Interims\	Nei	
Länge /m (2D)						Unsicher Hohe Qu	heiten ak elle						Neir Ja	
Länge /m (2D)		Summe	16 Hz	31.5 Hz	63 Hz	Unsicher	heiten ak elle	tiviert	1000 Hz	2000 Hz	Schal	llleistungspe	Neir Ja	
	Tag Tag Tag Tag Nacht Nacht Ruhe Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Nacht Nacht Nacht Nacht Nacht Ruhe Beurteilungsvorse TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusc Nacht (22h-6h) Geometrie Bezeichnung	Tag Emission Tag Zuschlag /dB (A) Lw /dB (A) Nacht Emission Nacht Zuschlag /dB (A) Lw /dB (A) Ruhe Emission Ruhe Zuschlag /dB (A) Lw /dB (A) Beurteilungsvorschrift TA Lärm (2017) Beurteilungszeitraum / Zeitzone Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Lünge /m Lünde (A) Ruhe Emission Ruhe Zuschlag /dB (A) Lw /dB (A) Beurteilungsvorschrift TA Lärm (2017) Beurteilungszeitraum / Zeitzone ohne Ruhezeitzuschlag: Nacht (22h-6h) Geometrie	Tag Emission Referenz Tag Zuschlag /dB (A) 108.1 Nacht Emission Referenz Nacht Zuschlag /dB (A) 108.1 Ruhe Emission Referenz Ruhe Zuschlag /dB (A) 108.1 Ruhe Zuschlag /dB (A) 108.1 Beurteilungsvorschrift Spitzenp TA Lärm (2017) Beurteilungszeitraum / Zeitzone Dauer /h ohne Ruhezeitzuschlag: Dauer /h Nacht (22h-6h) 1.00 Geometrie Bezeichnung WEA 3 Gruppe geplante Knotenzahl 1 Länge /m (2D) Fläche /m² Tag Emission Referenz Tag Zuschlag /dB (A) 108.1 Nacht Emission Referenz Nacht Zuschlag /dB (A) 108.1 Ruhe Emission Referenz Ruhe Zuschlag /dB (A) 108.1 <t< td=""><td>Tag Emission Referenz: GE 5.5-Tag Tag Zuschlag /dB (A) 2.1 Lw /dB (A) 108.1 66.6 Nacht Emission Referenz: GE 5.5-Nacht Lw /dB (A) 108.1 66.6 Ruhe Emission Referenz: GE 5.5-Ruhe Lw /dB (A) 108.1 66.6 Beurteilungsvorschrift Spitzenpegel TA Lärm (2017) - - Beurteilungszeitraum / Zeitzone Dauer /h EmiVar ohne Ruhezeitzuschlag: Bezeichnung WEA 3 Gruppe geplante WEA Kotenzahl 1 Länge /m Länge /m Länge /m Länge /m Länge /m Länge /m Tag Emission Referenz: GE 5.5-Tag Tag Zuschlag /dB (A) 2.1 Lw /dB (A)</td><td>Tag Emission Referenz: GE 5.5-158 Tag Zuschlag /dB (A) 2.1 2.1 Nacht Emission Referenz: GE 5.5-158 Nacht Emission Referenz: GE 5.5-158 Nacht Zuschlag /dB (A) 108.1 66.6 80.1 Ruhe Emission Referenz: GE 5.5-158 Ruhe Zuschlag /dB (A) 2.1 2.1 2.1 Lw /dB (A) 108.1 66.6 80.1 Beurteilungsvorschrift Spitzenpegel Impuls-Z TA Lärm (2017) - Beurteilungszeitraum / Zeitzone Dauer /h EmiVar Lw /dB(A Ohne Ruhezeitzuschlag: Dauer /h EmiVar Lw /dB(A Ohne Ruhezeitzuschlag: WEA 3 Geometrie Geometrie Bezeichnung WEA 3 Geometrie Ge Bezeichnung WEA 3 Geometrie Ge EmissVariante Summe 16 Hz 31.5 Hz Tag Zuschlag /dB (A) 2.1 2.1 Tag Zuschlag /dB (A)</td><td> Tag</td><td> Tag</td><td> EmissVariante</td><td> EmissVariante</td><td> Emiss-Variante Referenz GE 55-158 GB 74z 125 Hz 250 Hz 500 Hz 1000 Hz </td><td> EmissVariante Summe</td><td> Emission</td><td> EmissVariante</td></t<>	Tag Emission Referenz: GE 5.5-Tag Tag Zuschlag /dB (A) 2.1 Lw /dB (A) 108.1 66.6 Nacht Emission Referenz: GE 5.5-Nacht Lw /dB (A) 108.1 66.6 Ruhe Emission Referenz: GE 5.5-Ruhe Lw /dB (A) 108.1 66.6 Beurteilungsvorschrift Spitzenpegel TA Lärm (2017) - - Beurteilungszeitraum / Zeitzone Dauer /h EmiVar ohne Ruhezeitzuschlag: Bezeichnung WEA 3 Gruppe geplante WEA Kotenzahl 1 Länge /m Länge /m Länge /m Länge /m Länge /m Länge /m Tag Emission Referenz: GE 5.5-Tag Tag Zuschlag /dB (A) 2.1 Lw /dB (A)	Tag Emission Referenz: GE 5.5-158 Tag Zuschlag /dB (A) 2.1 2.1 Nacht Emission Referenz: GE 5.5-158 Nacht Emission Referenz: GE 5.5-158 Nacht Zuschlag /dB (A) 108.1 66.6 80.1 Ruhe Emission Referenz: GE 5.5-158 Ruhe Zuschlag /dB (A) 2.1 2.1 2.1 Lw /dB (A) 108.1 66.6 80.1 Beurteilungsvorschrift Spitzenpegel Impuls-Z TA Lärm (2017) - Beurteilungszeitraum / Zeitzone Dauer /h EmiVar Lw /dB(A Ohne Ruhezeitzuschlag: Dauer /h EmiVar Lw /dB(A Ohne Ruhezeitzuschlag: WEA 3 Geometrie Geometrie Bezeichnung WEA 3 Geometrie Ge Bezeichnung WEA 3 Geometrie Ge EmissVariante Summe 16 Hz 31.5 Hz Tag Zuschlag /dB (A) 2.1 2.1 Tag Zuschlag /dB (A)	Tag	Tag	EmissVariante	EmissVariante	Emiss-Variante Referenz GE 55-158 GB 74z 125 Hz 250 Hz 500 Hz 1000 Hz	EmissVariante Summe	Emission	EmissVariante	

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Windenergiea	nlage (6)												Gesamth	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Nacht	Emission	Referenz	GE 5.5-	158									
	Nacht	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Ruhe	Emission	Referenz	: GE 5.5-	158									
	Ruhe	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Beurteilungsvorso	hrift	Spitzenp	egel	Impuls-Z		Ton-Zus		InfoZus				Extra-Zus	
	TA Lärm (2017)			-		0.0		0.0		0.0		-		0.0
	Beurteilungszeitra	ium / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	ı)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(/	A)
	T		1											
	ohne Ruhezeitzusch	hlag:												
	T								1					
	Nacht (22h-6h)		1.00	Nacht		108.1		1.00		1.00000		0.00		0.0
	Geometrie				0.	Nr	_	x/m	- 50	y/m		z(abs) /m	!	z(rel) /m
14/F 4100F	Daniel de la compa		\\/\E\ \ E		Ge	eometrie:		27254.00	58	02827.00		295.34		161.00
WEAI005	Bezeichnung		WEA 5	\A/E A			Wirkradi							99999.00
	Gruppe Knotenzahl		geplante 1	WEA			Lw (Tag)	ht) /dB(A)						108.13
							Lw (Ruh	, , ,						108.13
	Länge /m Länge /m (2D)						D0	e) /ub(A)						0.00
	Fläche /m²							ungsgrun	dlane			SO 9613-3	2 / Interims	
	Tiache /III							rheiten ak			'	00 30 13-2	. / IIICIIIII	Nein
							Hohe Qu							Ja
							Emission					Schal	lleistungsp	
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz			J (=-1)
	Tag	Emission	Referenz							·	·	·		
	Tag	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Nacht	Emission	Referenz	: GE 5.5-	158		•					•		
	Nacht	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Ruhe	Emission	Referenz	: GE 5.5-										
	Ruhe	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Beurteilungsvorso	hrift												
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Spitzenp	egel	Impuls-Z		Ton-Zus		InfoZus				Extra-Zus	
	TA Lärm (2017)			-		0.0		0.0		0.0		-		0.0
				egel - EmiVar		0.0	Ton-Zuse		InfoZus	0.0	dLi /dB	-	Extra-Zus	0.0
	TA Lärm (2017) Beurteilungszeitra	um / Zeitzone		-		0.0				0.0	dLi /dB	-		0.0
	TA Lärm (2017)	um / Zeitzone		-		0.0				0.0	dLi /dB	-		0.0
	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusch	um / Zeitzone	Dauer /h	- EmiVar		0.0		0.0		0.0 eit /h	dLi /dB	-		0.0 A)
	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusch Nacht (22h-6h)	um / Zeitzone		-		0.0		1.00		0.0 eit /h		0.00	Lwr/dB(A	0.0 A)
	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusch	um / Zeitzone	Dauer /h	- EmiVar	Lw /dB(A	0.0) 108.1 Nr	n-mal	0.0 1.00 x/m	Einwirkz	0.0 eit /h 1.00000 y/m		z(abs) /m	Lwr/dB(A	0.0 A) 0.0 z(rel) /m
WEADOG	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie	um / Zeitzone	Dauer /h	- EmiVar	Lw /dB(A	0.0	n-mal	1.00 x/m 227321.00	Einwirkz	0.0 eit /h			Lwr/dB(/	0.0 A) 0.0 z(rel) /m 161.00
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung	um / Zeitzone	1.00 WEA 6	EmiVar	Lw /dB(A	0.0) 108.1 Nr	n-mal	1.00 x/m :27321.00 us /m	Einwirkz	0.0 eit /h 1.00000 y/m		z(abs) /m	Lwr/dB(/	0.0 A) 0.0 z(rei) /m 161.00 99999.00
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe	um / Zeitzone	1.00 WEA 6 geplante	EmiVar	Lw /dB(A	0.0) 108.1 Nr	n-mal 6 Wirkradi Lw (Tag)	1.00 x/m 227321.00 us /m /dB(A)	Einwirkz	0.0 eit /h 1.00000 y/m		z(abs) /m	Lwr/dB(/	0.0 A) 0.0 z(rel) /m 161.00 99999.00 108.13
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl	um / Zeitzone	1.00 WEA 6	EmiVar	Lw /dB(A	0.0) 108.1 Nr	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl	1.00 x/m 227321.00 us/m /dB(A)	Einwirkz	0.0 eit /h 1.00000 y/m		z(abs) /m	Lwr/dB(/	0.0 z(rel) /m 161.00 99999.00 108.13 108.13
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m	um / Zeitzone	1.00 WEA 6 geplante	EmiVar	Lw /dB(A	0.0) 108.1 Nr	n-mal 6 Wirkradi Lw (Tag)	1.00 x/m 227321.00 us/m /dB(A)	Einwirkz	0.0 eit /h 1.00000 y/m		z(abs) /m	Lwr/dB(/	0.0 A) 0.0 z(rel) /m 161.00 99999.00 108.13
WEA1006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl	um / Zeitzone	1.00 WEA 6 geplante 1	EmiVar	Lw /dB(A	0.0) 108.1 Nr	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruhe	1.00 x/m 227321.00 us/m /dB(A)	Einwirkz	0.0 eit /h 1.00000 y/m		z(abs) /m 294.02	Lwr/dB(/	0.0 2(rel) /m 161.00 99999.00 108.13 108.13 0.00
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	um / Zeitzone	1.00 WEA 6 geplante 1	EmiVar	Lw /dB(A	0.0) 108.1 Nr	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruho D0 Berechn	1.00 x/m :27321.00 us/m /dB(A) nt)/dB(A)	Einwirkz 58	0.0 eit /h 1.00000 y/m		z(abs) /m 294.02	Lwr/dB(/	0.0 2(rel) /m 161.00 99999.00 108.13 108.13 0.00
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	um / Zeitzone	1.00 WEA 6 geplante 1	EmiVar	Lw /dB(A	0.0) 108.1 Nr	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruho D0 Berechn	1.00 x/m i27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak	Einwirkz 58	0.0 eit /h 1.00000 y/m		z(abs) /m 294.02	Lwr/dB(/	0.0 2(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahren
WEA1006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	um / Zeitzone	1.00 WEA 6 geplante 1	EmiVar	Lw /dB(A	0.0) 108.1 Nr	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruhi D0 Berechn Unsichei	1.00 x/m i27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak eelle n ist	Einwirkz 58	0.0 eit /h 1.00000 y/m		z(abs) /m 294.02	Lwr/dB(/	0.0 z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahren Ja
WEA1006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	hlag:	Dauer /h 1.00 WEA 6 geplante 1 Summe	- EmiVar	Lw/dB(A	0.0) 108.1 Nr	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruhi D0 Berechn Unsichel	1.00 x/m i27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak	Einwirkz 58	0.0 eit /h 1.00000 y/m 02445.00		z(abs) /m 294.02 SO 9613-2 Schal	Lwr/dB(/	0.0 z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahren Ja
WEA1006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag	hlag: Emission	1.00 WEA 6 geplante 1	- EmiVar	Ge 31.5 Hz	108.1 Nr cometrie:	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh- D0 Berechn Unsicher Hohe Qu Emission 125 Hz	1.00 x/m 27321.00 us /m /dB(A) ht) /dB(A) e) /dB(A) ungsgrun rheiten ak eelle n ist 250 Hz	Einwirkz 58 58 dlage tiviert	0.0 eit /h 1.00000 y/m 02445.00	2000 Hz	z(abs) /m 294.02 SO 9613-2 Schal	Lwr/dB(/	0.0 z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahren Ja
WEA1006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²	hlag: Emission Zuschlag /dB (A)	Dauer /h 1.00 WEA 6 geplante 1 Summe Referenz	Nacht Heat Hard Hard Hard Hard Hard Hard Hard Hard	Ge 31.5 Hz 158 2.1	0.0) 108.1 Nr cometrie:	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh D0 Berechn Unsichel Hohe Qu Emissior 125 Hz	1.00 x/m 227321.00 us/m /dB(A) nt)/dB(A) e)/dB(A) ungsgrun rheiten ak elelle n ist 250 Hz	Einwirkz 58 dlage tiviert 500 Hz	0.0 eit /h 1.00000 y/m 02445.00 1000 Hz	2000 Hz	z(abs) /m 294.02 SO 9613-2 Schal 4000 Hz	Lwr /dB(// ! 2 / Interimso	0.0 z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahren Ja
WEA1006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag	Emission Zuschlag /dB (A) Lw /dB (A)	Dauer /h 1.00 WEA 6 geplante 1 Summe Referenz		Ge 31.5 Hz 158 2.1 80.1	108.1 Nr cometrie:	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh- D0 Berechn Unsicher Hohe Qu Emission 125 Hz	1.00 x/m 27321.00 us /m /dB(A) ht) /dB(A) e) /dB(A) ungsgrun rheiten ak eelle n ist 250 Hz	Einwirkz 58 58 dlage tiviert	0.0 eit /h 1.00000 y/m 02445.00	2000 Hz	z(abs) /m 294.02 SO 9613-2 Schal	Lwr/dB(/	0.0 z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahren Ja
WEA1006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht	Emission Zuschlag /dB (A) Lw /dB (A) Emission	Dauer /h 1.00 WEA 6 geplante 1 Summe Referenz	TemiVar Nacht 16 Hz : GE 5.5- 2.1 66.6 : GE 5.5-	31.5 Hz 158 2.1 80.1	0.0) 108.1 Nr sometrie: 63 Hz 2.1 89.3	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh- D0 Berechn Unsichel Hohe Qu Emission 125 Hz	1.00 x/m i27321.00 us /m i/dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz	dlage tiviert 500 Hz 2.1 101.8	0.0 eit /h 1.00000 y/m 02445.00 1000 Hz	2000 Hz 2.1 101.2	Schal 294.02 SCO 9613-2 Schal 4000 Hz	Lwr/dB(// ! ! ? / Interims: 8000 Hz 2.1 78.1	0.0 z(rei) /m 161.00 99999.00 108.13 108.13 0.00 verfahren Nein
WEA1006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag	Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A)	Dauer /h 1.00 WEA 6 geplante 1 Summe Referenz		31.5 Hz 158 2.1 80.1 158 2.1	0.0 0.0 108.1 Nr exametrie: 63 Hz 2.1 89.3 2.1	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh D0 Berechn Unsicher Hohe Qu Emission 125 Hz 2.1 94.7	1.00 x/m i27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elelle n ist 250 Hz 2.1 99.3	58	1.00000 y/m 02445.00 1000 Hz 2.1 103.4	2000 Hz 2.1 101.2	Schal 4000 Hz 2.1 2.1	Lwr/dB(// ! ! ? / Interims 8000 Hz 2.1 78.1	0.0 z(rei) /m 161.00 99999.00 108.13 108.13 0.00 verfahren Nein
WEA1006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht	Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) Lw /dB (A)	Dauer /h 1.00 WEA 6 geplante 1 Summe Referenz 108.1 Referenz	TemiVar Nacht Nacht WEA 16 Hz : GE 5.5- 2.1 66.6 : GE 5.5- 2.1 66.6	31.5 Hz 158 2.1 80.1 158 2.1 80.1	0.0) 108.1 Nr sometrie: 63 Hz 2.1 89.3	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh- D0 Berechn Unsichel Hohe Qu Emission 125 Hz	1.00 x/m i27321.00 us /m i/dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz	dlage tiviert 500 Hz 2.1 101.8	0.0 eit /h 1.00000 y/m 02445.00 1000 Hz	2000 Hz 2.1 101.2	Schal 294.02 SCO 9613-2 Schal 4000 Hz	Lwr/dB(// ! ! ? / Interims: 8000 Hz 2.1 78.1	0.0 z(rei) /m 161.00 99999.00 108.13 108.13 0.00 verfahren Nein
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht	Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission	Dauer /h 1.00 WEA 6 geplante 1 Summe Referenz 108.1 Referenz		31.5 Hz 158 2.1 80.1 158 2.1 80.1	0.0 108.1 Nr exametrie: 63 Hz 2.1 89.3 89.3	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh D0 Berechn Unsicher Hohe Qu Emission 125 Hz 2.1 94.7	1.00 x/m 27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak leille n ist 250 Hz 2.1 99.3	58 dlage tiviert 500 Hz 2.1 101.8	1.00000 y/m 02445.00 1000 Hz 2.1 103.4	2000 Hz 2.1 101.2	z(abs) /m 294.02 SO 9613-2 Schal 4000 Hz 2.1 93.8	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	0.0 z(rei) /m 161.00 99999.00 108.13 108.13 0.00 verfahren Nein
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht	Emission Zuschlag /dB (A)	Jauer /h 1.00 WEA 6 geplante 1 Summe Referenz 108.1 Referenz		31.5 Hz 158 2.1 80.1 158 2.1 80.1	63 Hz 2.1 89.3 2.1	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh D0 Berechn Unsicher Hohe Qu Emission 125 Hz 2.1 94.7	1.00 x/m 27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 2.1 99.3	Soo Hz	1.00000 y/m 02445.00 1000 Hz 2.1 103.4 2.1 2.1	2000 Hz 2.1 101.2 2.1 2.1 2.1	z(abs) /m 294.02 SO 9613-2 Schail 4000 Hz 2.1 93.8 2.1 93.8	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	0.0 z(rei) /m 161.00 99999.00 108.13 108.13 0.00 verfahren Nein
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe	Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	Jauer /h 1.00 WEA 6 geplante 1 Summe Referenz 108.1 Referenz 108.1		31.5 Hz 158 2.1 80.1 158 2.1 80.1 158 2.1 80.1	63 Hz 63 Hz 2.1 89.3 2.1 89.3	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh D0 Berechn Unsicher Hohe Qu Emission 125 Hz 2.1 94.7	1.00 x/m 27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 2.1 99.3	S00 Hz	1.00000 y/m 02445.00 1000 Hz 2.1 103.4 2.1 103.4	2000 Hz 2.1 101.2	z(abs) /m 294.02 SO 9613-2 Schal 4000 Hz 2.1 93.8	!! !! !! !! !! !! !! !! !! !! !! !! !!	0.0 z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahrer Jaeegel (Lw.)
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvorsc	Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	Jauer /h 1.00 WEA 6 geplante 1 Summe Referenz 108.1 Referenz		31.5 Hz 158 2.1 80.1 158 2.1 80.1	63 Hz 63 Hz 2.1 89.3 2.1 89.3 uschlag	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh D0 Berechn Unsicher Hohe Qu Emission 125 Hz 2.1 94.7	1.00 x/m 27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 2.1 99.3 2.1 99.3 chlag	Soo Hz	1.00000 y/m 02445.00 1000 Hz 2.1 103.4 2.1 103.4 chlag	2000 Hz 2.1 101.2 2.1 2.1 2.1	z(abs) /m 294.02 SO 9613-2 Schail 4000 Hz 2.1 93.8 2.1 93.8	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	0.0 c z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahrer Neir Jaegel (Lw.
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvorsc TA Lärm (2017)	Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A)	1.00 WEA 6 geplante 1 Summe Referenz 108.1 Referenz 108.1 Spitzenp		31.5 Hz 158 2.1 80.1 158 2.1 80.1 158 2.1 80.1 Impuls-Z	63 Hz 63 Hz 2.1 89.3 2.1 89.3 uschlag 0.0	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh D0 Berechn Unsichet Hohe Qu Emission 125 Hz 2.1 94.7 2.1 94.7 7on-Zuse	1.00 x/m 27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 2.1 99.3	500 Hz 2.1 101.8 2.1 101.8 InfoZus	1.00000 y/m 02445.00 1.0000 Hz 2.11 103.4 2.1 103.4 chlag 0.0	2000 Hz 2.1 101.2 2.1 101.2	z(abs) /m 294.02 SO 9613-2 Schail 4000 Hz 2.1 93.8 2.1 93.8	!! 2 / Interimss 8000 Hz 2.1 78.1 2.1 78.1 Extra-Zus	0.0 c z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahrer Neir Jaeegel (Lw.
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusch Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvorsc	Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A)	1.00 WEA 6 geplante 1 Summe Referenz 108.1 Referenz 108.1 Spitzenp		31.5 Hz 158 2.1 80.1 158 2.1 80.1 158 2.1 80.1 Impuls-Z	63 Hz 63 Hz 2.1 89.3 2.1 89.3 uschlag 0.0	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh D0 Berechn Unsicher Hohe Qu Emission 125 Hz 2.1 94.7	1.00 x/m 27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 2.1 99.3 2.1 99.3 chlag	S00 Hz	1.00000 y/m 02445.00 1.0000 Hz 2.11 103.4 2.1 103.4 chlag 0.0	2000 Hz 2.1 101.2 2.1 2.1 2.1	z(abs) /m 294.02 SO 9613-2 Schail 4000 Hz 2.1 93.8 2.1 93.8	!! !! !! !! !! !! !! !! !! !! !! !! !!	0.0 c z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahrer Neir Jaeegel (Lw.
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvorsc TA Lärm (2017) Beurteilungszeitra	Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A)	1.00 WEA 6 geplante 1 Summe Referenz 108.1 Referenz 108.1 Spitzenp		31.5 Hz 158 2.1 80.1 158 2.1 80.1 158 2.1 80.1 Impuls-Z	63 Hz 63 Hz 2.1 89.3 2.1 89.3 uschlag 0.0	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh D0 Berechn Unsichet Hohe Qu Emission 125 Hz 2.1 94.7 2.1 94.7 7on-Zuse	1.00 x/m 27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 2.1 99.3 2.1 99.3 chlag	500 Hz 2.1 101.8 2.1 101.8 InfoZus	1.00000 y/m 02445.00 1.0000 Hz 2.11 103.4 2.1 103.4 chlag 0.0	2000 Hz 2.1 101.2 2.1 101.2	z(abs) /m 294.02 SO 9613-2 Schail 4000 Hz 2.1 93.8 2.1 93.8	!! 2 / Interimss 8000 Hz 2.1 78.1 2.1 78.1 Extra-Zus	0.0 c z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahrer Neir Jaeegel (Lw.
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvorsc TA Lärm (2017)	Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A)	1.00 WEA 6 geplante 1 Summe Referenz 108.1 Referenz 108.1 Spitzenp		31.5 Hz 158 2.1 80.1 158 2.1 80.1 158 2.1 80.1 Impuls-Z	63 Hz 63 Hz 2.1 89.3 2.1 89.3 uschlag 0.0	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh D0 Berechn Unsichet Hohe Qu Emission 125 Hz 2.1 94.7 2.1 94.7 7on-Zuse	1.00 x/m 27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 2.1 99.3 2.1 99.3 chlag	500 Hz 2.1 101.8 2.1 101.8 InfoZus	1.00000 y/m 02445.00 1.0000 Hz 2.11 103.4 2.1 103.4 chlag 0.0	2000 Hz 2.1 101.2 2.1 101.2	z(abs) /m 294.02 SO 9613-2 Schail 4000 Hz 2.1 93.8 2.1 93.8	!! 2 / Interimss 8000 Hz 2.1 78.1 2.1 78.1 Extra-Zus	0.0 c z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahrer Neir Jaeegel (Lw.
WEAI006	TA Lärm (2017) Beurteilungszeitra ohne Ruhezeitzusci Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvorsc TA Lärm (2017) Beurteilungszeitra	Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A)	Dauer /h 1.00 WEA 6 geplante 1 Summe Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h		31.5 Hz 158 2.1 80.1 158 2.1 80.1 158 2.1 80.1 Impuls-Z	63 Hz 63 Hz 2.1 89.3 2.1 89.3 uschlag 0.0	n-mal 6 Wirkradi Lw (Tag) Lw (Nacl Lw (Ruh D0 Berechn Unsichet Hohe Qu Emission 125 Hz 2.1 94.7 2.1 94.7 7on-Zuse	1.00 x/m 27321.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak elle n ist 250 Hz 2.1 99.3 2.1 99.3 chlag	500 Hz 2.1 101.8 2.1 101.8 InfoZus	1.00000 y/m 02445.00 1.0000 Hz 1000 Hz 2.1 103.4 2.1 103.4 chlag 0.0	2000 Hz 2.1 101.2 2.1 101.2	z(abs) /m 294.02 SO 9613-2 Schail 4000 Hz 2.1 93.8 2.1 93.8	!! 2 / Interimss 8000 Hz 2.1 78.1 2.1 78.1 Extra-Zus	0.0 (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Windenergieanla	Windenergieanlage (6) Gesamtbelastung											
	Geometrie	Nr	x/m	y/m	z(abs) /m	! z(rel) /m						
		Geometrie:	627477.00	5803327.00	286.15	161.00						

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Beurteilungszeit	Beurteilungszeiträume										
T1	Werktag (6h-22h)										
T2	Sonntag (6h-22h)										
Т3	Nacht (22h-6h)										

Windenergiea	nlage (6)											Zusatzbe	elastung (s	challred.)
WEAI856	Bezeichnung		WEA 1				Wirkradi	us /m						99999.00
	Gruppe		geplante	WEA (scha	allred.)		Lw (Tag)	/dB(A)						108.13
	Knotenzahl		1	,	,		Lw (Nach	nt) /dB(A)						108.13
	Länge /m						Lw (Ruh							108.13
	Länge /m (2D)						D0	, , ,						0.00
	Fläche /m²						Berechn	ungsgrun	dlage		1	SO 9613-2	2 / Interims	verfahren
								rheiten ak						Nein
							Hohe Qu	elle						Ja
							Emission	n ist				Schal	lleistungsp	egel (Lw)
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	
	Tag	Emission	Referenz	: GE 5.X	-158 106dE	3						ı		
	Tag	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Nacht	Emission	Referenz	: GE 5.X	-158 106dE	3						•		
	Nacht	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Ruhe	Emission	Referenz	: GE 5.X	-158 106dE	3								
	Ruhe	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1	
	Beurteilungsvor	schrift	Spitzenp	egel	Impuls-Z	uschlag	Ton-Zus	chlag	InfoZus	chlag			Extra-Zu	schlag
	TA Lärm (2017)			-		0.0		0.0		0.0				0.0
	Beurteilungszeit	raum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	.)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(/	A)
	ohne Ruhezeitzus	chlag:												
	Nacht (22h-6h)		1.00	Nacht		108.1		1.00		1.00000		0.00		0.0
	Geometrie					Nr		x/m		y/m		z(abs) /m	!	z(rel) /m
					Ge	eometrie:	6	27204.00	58	03592.00		282.29		161.00
WEAI857	Bezeichnung		WEA 2				Wirkradi	us /m						99999.00
	Gruppe		geplante	WEA (scha	allred.)		Lw (Tag)	/dB(A)						108.13
	Knotenzahl		1				Lw (Nach	nt) /dB(A)						108.13
	Länge /m						Lw (Ruhe	e) /dB(A)						108.13
	Länge /m (2D)						D0							0.00
	Fläche /m²						Rerechn	ungsgrun	dlage			SO 9613-2	2 / Interims	verfahren
							Dereeini							
								rheiten ak						Nein
								rheiten ak						
							Unsicher	rheiten ak elle				Schal	lleistungsp	Nein Ja
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	Unsicher Hohe Qu	rheiten ak elle		1000 Hz		Schal	lleistungsp	Nein Ja
	EmissVariante	Emission	Summe Referenz		31.5 Hz -158 106dB		Unsicher Hohe Qu Emissior	rheiten ak elle n ist	tiviert	1000 Hz			lleistungsp	Nein Ja
		Emission Zuschlag /dB (A)					Unsicher Hohe Qu Emissior	rheiten ak elle n ist	tiviert	1000 Hz 2.1			lleistungsp	Nein Ja
	Tag			: GE 5.X	-158 106dE	3	Unsicher Hohe Qu Emissior 125 Hz	rheiten ak ielle n ist 250 Hz	500 Hz		2000 Hz	4000 Hz	lleistungsp 8000 Hz	Nein Ja
	Tag	Zuschlag /dB (A)	Referenz	GE 5.X	-158 106dE 2.1 80.1	2.1 89.3	Unsicher Hohe Qu Emissior 125 Hz	rheiten ak lelle n ist 250 Hz	500 Hz 2.1 101.8	2.1	2000 Hz	4000 Hz 2.1	8000 Hz 2.1 78.1	Nein Ja
	Tag Tag	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A)	108.1 Referenz	GE 5.X - 2.1 66.6 GE 5.X - 2.1	-158 106dE 2.1 80.1 -158 106dE 2.1	3 2.1 89.3 3 2.1	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7	rheiten ak relle n ist 250 Hz 2.1 99.3	500 Hz 2.1 101.8	2.1 103.4 2.1	2000 Hz 2.1 101.2	2.1 93.8 2.1	8000 Hz 2.1 78.1	Nein Ja
	Tag Tag Nacht Nacht	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	Referenz 108.1 Referenz 108.1	2.1 66.6 GE 5.X 2.1 66.6	-158 106dE 2.1 80.1 -158 106dE 2.1 80.1	3 2.1 89.3 3 2.1 89.3	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7	rheiten ak eelle n ist 250 Hz 2.1 99.3	500 Hz 2.1 101.8	2.1	2000 Hz 2.1 101.2	2.1 93.8	8000 Hz 2.1 78.1	Nein Ja
	Tag Tag Nacht Nacht Ruhe	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission	Referenz 108.1 Referenz 108.1	GE 5.X 2.1 66.6 GE 5.X 2.1 66.6 GE 5.X 2.1 66.6 GE 5.X 2.1 66.6 GE 5.X 2.3 GE	-158 106dE 2.1 80.1 -158 106dE 2.1 80.1 -158 106dE	2.1 89.3 3 2.1 89.3	Unsicher Hohe Qu Emission 125 Hz 2.1 94.7	rheiten ak relle n ist 250 Hz 2.1 99.3 2.1 99.3	500 Hz 2.1 101.8 2.1 101.8	2.1 103.4 2.1 103.4	2000 Hz 2.1 101.2 2.1 101.2	2.1 93.8 2.1 93.8	2.1 78.1 2.1 78.1	Nein Ja
	Tag Tag Nacht Nacht	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A)	108.1 Referenz 108.1 Referenz	GE 5.X 2.1 66.6 GE 5.X 2.1 66.6 GE 5.X 2.1 66.6 GE 5.X 2.1 2.1	-158 106dE 2.1 80.1 -158 106dE 2.1 80.1 -158 106dE 2.1	2.1 89.3 3 2.1 89.3 3 2.1	Unsicher Hohe Qu Emission 125 Hz 2.1 94.7 2.1 94.7	rheiten ak telle n ist 250 Hz 2.1 99.3 2.1 99.3	500 Hz 2.1 101.8 2.1 2.1 2.1	2.1 103.4 2.1 103.4 2.1	2000 Hz 2.1 101.2 2.1 101.2 2.2 2.1	2.1 93.8 2.1 93.8 2.1	2.1 78.1 2.1 78.1	Nein Ja
	Tag Tag Nacht Nacht Ruhe Ruhe	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A)	Referenz 108.1 Referenz 108.1 Referenz 108.1	GE 5.X - 2.1 66.6	2.1 80.1 -158 106dE 2.1 80.1 -158 106dE 2.1 80.1	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7	250 Hz 250 Hz 250 Hz 2.1 99.3 2.1 99.3	500 Hz 2.1 101.8 2.1 101.8 2.1 101.8	2.1 103.4 2.1 103.4 2.1 103.4	2000 Hz 2.1 101.2 2.1 101.2	2.1 93.8 2.1 93.8	8000 Hz 2.1 78.1 2.1 78.1 2.1 78.1	Nein Ja egel (Lw)
	Tag Tag Nacht Nacht Ruhe Ruhe Beurteilungsvor	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A)	108.1 Referenz 108.1 Referenz	GE 5.X - 2.1 66.6	-158 106dE 2.1 80.1 -158 106dE 2.1 80.1 -158 106dE 2.1	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag	Unsicher Hohe Qu Emission 125 Hz 2.1 94.7 2.1 94.7	250 Hz 250 Hz 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag	500 Hz 2.1 101.8 2.1 2.1 2.1	2.1 103.4 2.1 103.4 2.1 103.4 chlag	2000 Hz 2.1 101.2 2.1 101.2 2.2 2.1	2.1 93.8 2.1 93.8 2.1	2.1 78.1 2.1 78.1	Nein Ja segel (Lw)
	Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Schrift	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp	: GE 5.X - 2.1 66.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 6	2.1 80.1 -158 106dE 2.1 80.1 -158 106dE 2.1 80.1 Impuls-Z	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 7 70n-Zuse	250 Hz 250 Hz 250 Hz 2.1 99.3 2.1 99.3	2.1 101.8 2.1 101.8 2.1 101.8 101.8	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0	2000 Hz 2.1 101.2 2.1 101.2 2.1 101.2	2.1 93.8 2.1 93.8 2.1	2.1 78.1 2.1 78.1 2.1 78.1 Extra-Zu:	Nein Ja segel (Lw) schlag 0.0
	Tag Tag Nacht Nacht Ruhe Ruhe Beurteilungsvor	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Schrift	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp	GE 5.X - 2.1 66.6	2.1 80.1 -158 106dE 2.1 80.1 -158 106dE 2.1 80.1 Impuls-Z	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7	250 Hz 250 Hz 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag	500 Hz 2.1 101.8 2.1 101.8 2.1 101.8	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0	2000 Hz 2.1 101.2 2.1 101.2 2.2 2.1	2.1 93.8 2.1 93.8 2.1	8000 Hz 2.1 78.1 2.1 78.1 2.1 78.1	Nein Ja segel (Lw) schlag 0.0
	Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp	: GE 5.X - 2.1 66.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 6	2.1 80.1 -158 106dE 2.1 80.1 -158 106dE 2.1 80.1 Impuls-Z	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 7 70n-Zuse	250 Hz 250 Hz 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag	2.1 101.8 2.1 101.8 2.1 101.8 101.8	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0	2000 Hz 2.1 101.2 2.1 101.2 2.1 101.2	2.1 93.8 2.1 93.8 2.1	2.1 78.1 2.1 78.1 2.1 78.1 Extra-Zu:	Nein Ja segel (Lw) schlag 0.0
	Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp	: GE 5.X - 2.1 66.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 6	2.1 80.1 -158 106dE 2.1 80.1 -158 106dE 2.1 80.1 Impuls-Z	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 7 70n-Zuse	250 Hz 250 Hz 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag	2.1 101.8 2.1 101.8 2.1 101.8 101.8	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0	2000 Hz 2.1 101.2 2.1 101.2 2.1 101.2	2.1 93.8 2.1 93.8 2.1	2.1 78.1 2.1 78.1 2.1 78.1 Extra-Zu:	Nein Ja segel (Lw) schlag 0.0
	Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h	: GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 egel -	2.1 80.1 -158 106dE 2.1 80.1 -158 106dE 2.1 80.1 Impuls-Z	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 7 70n-Zuse	rheiten ak leelle n ist 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0	2.1 101.8 2.1 101.8 2.1 101.8 101.8	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2000 Hz 2.1 101.2 2.1 101.2 2.1 101.2	2.1 93.8 2.1 93.8 2.1 93.8	2.1 78.1 2.1 78.1 2.1 78.1 Extra-Zu:	Nein Ja segel (Lw) schlag 0.0 A)
	Tag Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit ohne Ruhezeitzus Nacht (22h-6h)	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h	: GE 5.X - 2.1 66.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 6	2.1 80.1 -158 106dE 2.1 80.1 -158 106dE 2.1 80.1 Impuls-Z	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 7 70n-Zuse	rheiten ak telle n ist 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0	2.1 101.8 2.1 101.8 2.1 101.8 101.8	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2.1 101.2 2.1 101.2 dLi /dB	2.1 93.8 2.1 93.8 2.1 93.8 -	2.1 78.1 2.1 78.1 2.1 78.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2	Nein Ja pegel (Lw) schlag 0.0 A)
	Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h	: GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 egel -	158 106db 2.1 80.1 -158 106db 2.1 80.1 -158 106db 2.1 80.1 Impuls-Z	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0)	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 7 Ton-Zust	rheiten ak relle n ist 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0	2.1 101.8 2.1 101.8 InfoZus	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2.1 101.2 2.1 101.2 dLi /dB	2.1 93.8 2.1 93.8 2.1 93.8 	2.1 78.1 2.1 78.1 2.1 78.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2	Nein Ja pegel (Lw) schlag 0.0 A) 0.0 1 z(rel) /m
WEARE	Tag Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit ohne Ruhezeitzus Nacht (22h-6h) Geometrie	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h	: GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 egel -	158 106db 2.1 80.1 -158 106db 2.1 80.1 -158 106db 2.1 80.1 Impuls-Z	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 Ton-Zust n-mal	rheiten ak relle n ist 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0 x/m 226765.00	2.1 101.8 2.1 101.8 InfoZus	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2.1 101.2 2.1 101.2 dLi /dB	2.1 93.8 2.1 93.8 2.1 93.8 -		Nein Ja pegel (Lw) schlag 0.0 A) 1 z(rel) /m 161.00
WEAI858	Tag Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit Nacht (22h-6h) Geometrie Bezeichnung	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h 1.00 WEA 3	: GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 Nacht	158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 Impuls-Z Lw /dB(A	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0)	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 7 Ton-Zuse n-mal	rheiten ak relle n ist 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0 1.00 x/m 26765.00 us /m	2.1 101.8 2.1 101.8 InfoZus	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2.1 101.2 2.1 101.2 dLi /dB	2.1 93.8 2.1 93.8 2.1 93.8 		Nein Ja pegel (Lw) schlag 0.0 A) 0.0 z(rel) /m 161.00
WEAI858	Tag Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit Nacht (22h-6h) Geometrie Bezeichnung Gruppe	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h 1.00 WEA 3 geplante	: GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 egel -	158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 Impuls-Z Lw /dB(A	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0)	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 7on-Zuse n-mal 6 Wirkradii Lw (Tag)	rheiten ak eelle n ist 250 Hz 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0 1.00 x/m 26765.00 us /m /dB(A)	2.1 101.8 2.1 101.8 InfoZus	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2.1 101.2 2.1 101.2 dLi /dB	2.1 93.8 2.1 93.8 2.1 93.8 		Nein Ja pegel (Lw) schlag 0.0 A) 0.0 z(rel) /m 161.00 99999.00 108.13
WEAI858	Tag Tag Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit ohne Ruhezeitzus Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h 1.00 WEA 3 geplante 1	: GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 Nacht	158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 Impuls-Z Lw /dB(A	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0)	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 Ton-Zusc n-mal 6 Wirkradii Lw (Tag) Lw (Nach	rheiten ak telle in ist 250 Hz 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0 1.00 x/m 26765.00 us /m /dB(A) nt) /dB(A)	2.1 101.8 2.1 101.8 InfoZus	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2.1 101.2 2.1 101.2 dLi /dB	2.1 93.8 2.1 93.8 2.1 93.8 		Nein Ja pegel (Lw) schlag 0.0 z(rel) /m 161.00 99999.00 108.13 108.13
WEAI858	Tag Tag Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit ohne Ruhezeitzus Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h 1.00 WEA 3 geplante 1	: GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 Nacht	158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 Impuls-Z Lw /dB(A	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0)	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 Ton-Zuso n-mal 6 Wirkradii Lw (Tag) Lw (Nach	rheiten ak telle in ist 250 Hz 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0 1.00 x/m 26765.00 us /m /dB(A) nt) /dB(A)	2.1 101.8 2.1 101.8 Info-Zus	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2.1 101.2 2.1 101.2 dLi /dB	2.1 93.8 2.1 93.8 2.1 93.8 		Nein Ja pegel (Lw) schlag 0.0 z(rel) /m 161.00 99999.00 108.13 108.13
WEAI858	Tag Tag Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit ohne Ruhezeitzus Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h 1.00 WEA 3 geplante 1	: GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 Nacht	158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 Impuls-Z Lw /dB(A	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0)	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 Ton-Zusc n-mal 6 Wirkradit Lw (Tag) Lw (Nach Lw (Ruhe D0	rheiten ak relle n ist 250 Hz 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0 1.00 x/m r26765.00 us /m r/dB(A) nt) /dB(A)	2.1 101.8 2.1 101.8 2.1 101.8 10	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2000 Hz 2.1 101.2 2.1 101.2 2.1 101.2 dLi /dB	2.1 93.8 2.1 93.8 2.1 93.8 - 0.00 z(abs) /m 293.80		Nein Ja pegel (Lw) schlag 0.0 z(rel) /m 161.00 99999.00 108.13 108.13 0.00
WEAI858	Tag Tag Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit ohne Ruhezeitzus Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	Referenz 108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h 1.00 WEA 3 geplante 1	: GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 Nacht	158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 Impuls-Z Lw /dB(A	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0)	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 Ton-Zusc n-mal 6 Wirkradit Lw (Tag) Lw (Nach Lw (Ruhc D0 Berechni	rheiten ak eelle n ist 250 Hz 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0 1.00 x/m i26765.00 us /m i/dB(A) nt) /dB(A) ungsgrun	2.1 101.8 2.1 101.8	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2000 Hz 2.1 101.2 2.1 101.2 2.1 101.2 dLi /dB	2.1 93.8 2.1 93.8 2.1 93.8 - 0.00 z(abs) /m 293.80		Nein Ja pegel (Lw) schlag 0.0 z(rel) /m 161.00 99999.00 108.13 108.13 0.00 verfahren
WEAI858	Tag Tag Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit ohne Ruhezeitzus Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h 1.00 WEA 3 geplante 1	: GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 Nacht	158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 Impuls-Z Lw /dB(A	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0)	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 Ton-Zusc n-mal Wirkradit Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher	rheiten ak relle n ist 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0 1.00 x/m /dB(A) nt) /dB(A) e) /dB(A) ungsgrun rheiten ak	2.1 101.8 2.1 101.8	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2000 Hz 2.1 101.2 2.1 101.2 2.1 101.2 dLi /dB	2.1 93.8 2.1 93.8 2.1 93.8 - 0.00 z(abs) /m 293.80		Nein Ja pegel (Lw) peg
WEAI858	Tag Tag Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvor TA Lärm (2017) Beurteilungszeit ohne Ruhezeitzus Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Lw /dB (A) schrift raum / Zeitzone	108.1 Referenz 108.1 Referenz 108.1 Spitzenp Dauer /h 1.00 WEA 3 geplante 1	: GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 66.6 : GE 5.X 2.1 Nacht	158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 80.1 -158 106dt 2.1 Impuls-Z Lw /dB(A	3 2.1 89.3 3 2.1 89.3 3 2.1 89.3 uschlag 0.0)	Unsicher Hohe Qu Emissior 125 Hz 2.1 94.7 2.1 94.7 Ton-Zusc n-mal 6 Wirkradit Lw (Tag) Lw (Nach Lw (Ruhc D0 Berechni	rheiten ak eelle n ist 250 Hz 2.1 99.3 2.1 99.3 2.1 99.3 chlag 0.0 1.00 x/m /dB(A) nt) /dB(A) ungsgrun rheiten ak eelle	2.1 101.8 2.1 101.8	2.1 103.4 2.1 103.4 2.1 103.4 chlag 0.0 eit /h	2000 Hz 2.1 101.2 2.1 101.2 2.1 101.2 dLi /dB	2.1 93.8 2.1 93.8 2.1 93.8 2.1 93.8 2.1 93.8 50.00 z(abs) /m 293.80		Nein Ja pegel (Lw) schlag 0.0 1z(rel) /m 161.00 99999.00 108.13 108.13 108.13 0.00 verfahren Nein Ja

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

	lage (6)											Zusatzb	elastung (schallred.)
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz		8000 Hz
	Tag	Emission	Referenz		-158 106dE								
	Tag	Zuschlag /dB (A)	1 101010112	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
	9	Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1
	Nacht	Emission	Referenz		-158 106di		0	00.0	.00		.02	00.0	70.1
	Nacht	Zuschlag /dB (A)	TROIGIGIE	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
	IVACIII	Lw /dB (A)	108.1	66.6	80.1	89.3	94.7	99.3	101.8	103.4	101.2	93.8	78.1
	Ruhe	Emission	Referenz		-158 106dI		34.1	99.5	101.0	103.4	101.2	93.0	70.1
	+		Referenz	2.1	2.1	2.1	2.4	2.1	2.1	2.1	2.1	2.1	2.1
	Ruhe	Zuschlag /dB (A)	100.1		80.1	89.3	2.1 94.7	99.3	101.8	103.4		93.8	78.1
	5	Lw /dB (A)	108.1	66.6							101.2	93.6	
	Beurteilungsvorso	enritt	Spitzenp	egei	Impuls-Z		Ton-Zuso		InfoZus				Extra-Zuschlag
	TA Lärm (2017)					0.0		0.0		0.0		-	0.0
	Beurteilungszeitra	ium / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	()	n-mal		Einwirkz	eit /h	dLi /dB		Lwr /dB(A)
	ohne Ruhezeitzusc	hlag:											
	Nacht (22h-6h)		1.00	Nacht		108.1		1.00		1.00000		0.00	0.0
	Geometrie					Nr		x/m		y/m	;	z(abs) /m	! z(rel) /m
					Ge	eometrie:	6	26827.00	58	02810.00		295.71	161.00
WEAI859	Bezeichnung		WEA 4				Wirkradi	us /m	•				99999.00
	Gruppe		geplante	WEA (scha	allred.)		Lw (Tag)	/dB(A)					105.11
	Knotenzahl		1	,			Lw (Nach						105.11
	Länge /m						Lw (Ruhe						105.11
	Länge /m (2D)						D0	, , ,					0.00
	Fläche /m²						-	ungsgrun	dlage		1	SO 9613-1	2 / Interimsverfahrer
	Tidone /iii							rheiten akt	-			00 0010 2	Neir
							Hohe Qu						Ja
							Emission					Schol	Illeistungspegel (Lw
	EmissVariante		C	46 11-	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz		
		Fraissian	Summe	16 Hz			125 HZ	250 HZ	300 HZ	1000 HZ	2000 HZ	4000 HZ	8000 HZ
	Tag	Emission	Referenz		-158 103dl		0.4	0.4	0.4	0.4	0.4	0.4	0.4
	Tag	Zuschlag /dB (A)	105.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
		Lw /dB (A)	105.1	63.4	76.9	86.1	92.3	97.3	99.4	99.9	97.2	90.5	75.9
	Nacht	Emission	Referenz	GE 5,X									
	Nacht	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
		Lw /dB (A)	105.1	63.4	76.9	86.1	92.3	97.3	99.4	99.9	97.2	90.5	75.9
	Ruhe	Emission	Referenz		-158 103dl								
	Ruhe	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
		Lw /dB (A)	105.1	63.4	76.9	86.1	92.3	97.3	99.4	99.9	97.2	90.5	75.9
	Beurteilungsvorso	hrift	Spitzenp	egel	Impuls-Z		Ton-Zusc		InfoZus				Extra-Zuschlag
	TA Lärm (2017)			-		0.0		0.0		0.0		-	0.0
	Beurteilungszeitra	um / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	()	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(A)
	ohne Ruhezeitzusc	hlag:											
	ohne Ruhezeitzusc	hlag:											
		hlag:	1.00	Nacht		105.1		1.00		1.00000		0.00	0.0
	Nacht (22h-6h) Geometrie	hlag:	1.00	Nacht		105.1		1.00 x/m			;		
	Nacht (22h-6h)	hlag:	1.00	Nacht	Ge		6	x/m	58	y/m	;	0.00 z(abs) /m 295.34	! z(rel) /m
WEAI860	Nacht (22h-6h) Geometrie	hlag:	1.00 WEA 5	Nacht	Ge	Nr		x/m 27254.00	58		:	z(abs) /m	! z(rel) /m 161.00
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung	hlag:	WEA 5			Nr	Wirkradi	x/m 27254.00 us /m	58	y/m	;	z(abs) /m	! z(rel) /m 161.00 99999.00
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe	hlag:	WEA 5	Nacht WEA (scha		Nr	Wirkradii Lw (Tag)	x/m 27254.00 us /m /dB(A)	58	y/m	:	z(abs) /m	! z(rel) /m 161.00 99999.00 105.11
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl	hlag:	WEA 5 geplante			Nr	Wirkradii Lw (Tag) Lw (Nach	x/m 27254.00 us /m /dB(A) nt) /dB(A)	58	y/m	:	z(abs) /m	! z(rel) /m 161.00 99999.00 105.11
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m	hlag:	WEA 5			Nr	Wirkradio Lw (Tag) Lw (Nach Lw (Ruhe	x/m 27254.00 us /m /dB(A) nt) /dB(A)	58	y/m	:	z(abs) /m	! z(rel) /m 161.00 99999.00 105.11 105.11
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	hlag:	WEA 5 geplante 1			Nr	Wirkradio Lw (Tag) Lw (Nach Lw (Ruhe D0	x/m 27254.00 us /m /dB(A) nt) /dB(A)		y/m		z(abs) /m 295.34	! z(rel) /m 161.00 99999.00 105.11 105.11 0.00
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m	hlag:	WEA 5 geplante 1			Nr	Wirkradio Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechno	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A)	dlage	y/m		z(abs) /m 295.34	! z(rel) /m 161.00 99999.00 105.11 105.11 0.00 2 / Interimsverfahrer
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	hlag:	WEA 5 geplante 1			Nr	Wirkradiu Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechnu Unsicher	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrund rheiten akt	dlage	y/m		z(abs) /m 295.34	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	hlag:	WEA 5 geplante 1			Nr	Wirkradie Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechne Unsicher Hohe Qu	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrund rheiten akt	dlage	y/m		z(abs) /m 295.34 SO 9613-2	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²	hlag:	WEA 5 geplante 1	WEA (scha	allred.)	Nr eometrie:	Wirkradin Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechnu Unsicher Hohe Qu Emissior	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrund rheiten akt elle	dlage	y/m 02827.00	- 1	z(abs) /m 295.34 SO 9613-2 Schal	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²		WEA 5 geplante 1 Summe	WEA (scha	allred.)	Nr ecometrie:	Wirkradie Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechne Unsicher Hohe Qu	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrund rheiten akt	dlage	y/m	- 1	z(abs) /m 295.34 SO 9613-2 Schal	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag	Emission	WEA 5 geplante 1	WEA (scha	31.5 Hz	Nr cometrie: 63 Hz	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrund rheiten akt elle n ist	dlage tiviert 500 Hz	y/m 02827.00	2000 Hz	z(abs) /m 295.34 SO 9613-2 Schal 4000 Hz	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja Illeistungspegel (Lw)
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²	Emission Zuschlag /dB (A)	WEA 5 geplante 1 Summe Referenz	### 16 Hz GE 5,X-2.1	31.5 Hz -158 103dk 2.1	Nr cometrie: 63 Hz 3	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrund rheiten akt elle n ist 250 Hz	dlage tiviert 500 Hz	y/m 02827.00 	2000 Hz	z(abs) /m 295.34 SO 9613-2 Schal 4000 Hz	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja Illeistungspegel (Lw) 8000 Hz
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag	Emission Zuschlag /dB (A) Lw /dB (A)	WEA 5 geplante 1 Summe Referenz	16 Hz : GE 5,X 2.1 63.4	31.5 Hz -158 103di 2.1 76.9	63 Hz 3 2.1 86.1	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrund rheiten akt elle n ist	dlage tiviert 500 Hz	y/m 02827.00	2000 Hz	z(abs) /m 295.34 SO 9613-2 Schal 4000 Hz	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja Illeistungspegel (Lw)
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht	Emission Zuschlag /dB (A) Lw /dB (A) Emission	WEA 5 geplante 1 Summe Referenz	16 Hz GE 5,X 63.4 GE 5,X	31.5 Hz -158 103di 2.1 76.9 -158 103di	63 Hz 3 2.1 86.1	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz 2.1 92.3	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrund rheiten akt elle n ist 250 Hz	500 Hz	y/m 02827.00 1000 Hz 2.1 99.9	2000 Hz 2.1 97.2	z(abs) /m 295.34 SO 9613-2 Schal 4000 Hz 2.1 90.5	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja Illieistungspegel (Lw) 8000 Hz 2.1 75.9
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag	Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A)	WEA 5 geplante 1 Summe Referenz	16 Hz : GE 5,X 2.1 63.4 : GE 5,X 2.1	31.5 Hz .158 103di 2.1 76.9 .158 103di 2.1	63 Hz 3 2.1 86.1 3 2.1	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz 2.1 92.3	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrund rheiten akt elle n ist 250 Hz 2.1	500 Hz 2.1 99.4	y/m 02827.00 1000 Hz 2.1 99.9	2000 Hz 2.1 97.2	2(abs) /m 295.34 SO 9613-2 Schall 4000 Hz 2.1 90.5	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja Illeistungspegel (Lw) 8000 Hz 2.1 75.9
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht	Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	WEA 5 geplante 1 Summe Referenz 105.1 Referenz	16 Hz : GE 5,X : GE 5,X 2.1 63.4 : GE 5,X 2.1 63.4	31.5 Hz -158 103di -2.1 -76.9 -158 103di -2.1 -76.9	63 Hz 3 2.1 86.1 86.1	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz 2.1 92.3	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrund rheiten akt elle n ist 250 Hz	500 Hz	y/m 02827.00 1000 Hz 2.1 99.9	2000 Hz 2.1 97.2	z(abs) /m 295.34 SO 9613-2 Schal 4000 Hz 2.1 90.5	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja Illieistungspegel (Lw) 8000 Hz 2.1 75.9
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Ruhe	Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission	WEA 5 geplante 1 Summe Referenz 105.1 Referenz	16 Hz : GE 5,X : GE 5,X : G3.4 : G8.5,X : G8.5,X	31.5 Hz -158 103di -2.1 -76.9 -158 103di -2.1 -76.9	63 Hz 3 2.1 86.1 3 2.1 86.1	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz 2.1 92.3	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrunn-heiten akt elle n ist 250 Hz 2.1 97.3	500 Hz 2.1 99.4	y/m 02827.00 1000 Hz 2.1 99.9	2000 Hz 2.1 97.2 2.1 97.2	2(abs) /m 295.34 SO 9613-2 Schall 4000 Hz 2.1 90.5 2.1 90.5	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja Illeistungspegel (Lw) 8000 Hz 2.1 75.9
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht	Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A)	WEA 5 geplante 1 Summe Referenz 105.1 Referenz	### 16 Hz 16 Hz 16 GE 5,X 2.1 63.4 GE 5,X 2.1 63.4	31.5 Hz -158 103di 2.1 76.9 -158 103di 2.1 76.9 -158 103di 2.1	63 Hz 3 2.1 86.1 3 2.1 2.1 2.1	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz 2.1 92.3 2.1	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) ungsgrunn rheiten akt elle n ist 250 Hz 2.1 97.3	500 Hz 2.1 99.4 2.1 99.4	y/m 02827.00 1000 Hz 2.1 99.9 2.1	2000 Hz 2.1 97.2 2.1 97.2 2.1	2(abs) /m 295.34 SO 9613-2 Schal 4000 Hz 2.1 90.5 2.1 90.5	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja Illieistungspegel (Lw) 8000 Hz 2.1 75.9 2.1 75.9
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe	Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	WEA 5 geplante 1 Summe Referenz 105.1 Referenz 105.1	### 16 Hz 16 Hz 16 GE 5,X 2.1 63.4 GE 5,X 2.1 63.4 GE 5,X 2.1 63.4	31.5 Hz .158 103di 2.1 76.9 .158 103di 2.1 76.9 .158 103di 2.1 76.9	63 Hz 3 2.1 86.1 3 2.1 86.1 3	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz 2.1 92.3	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrunn rheiten akt elle n ist 250 Hz 2.1 97.3	500 Hz 2.1 99.4 2.1 99.4	y/m 02827.00 1000 Hz 2.1 99.9 2.1 99.9	2000 Hz 2.1 97.2 2.1 97.2	2(abs) /m 295.34 SO 9613-2 Schall 4000 Hz 2.1 90.5 2.1 90.5	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja Illieistungspegel (Lw) 8000 Hz 2.1 75.9 2.1 75.9
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe Ruhe Beurteilungsvorsc	Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A) Emission Zuschlag /dB (A) Lw /dB (A)	WEA 5 geplante 1 Summe Referenz 105.1 Referenz	### 16 Hz 16 Hz 16 GE 5,X 2.1 63.4 GE 5,X 2.1 63.4 GE 5,X 2.1 63.4	31.5 Hz -158 103di 2.1 76.9 -158 103di 2.1 76.9 -158 103di 2.1	63 Hz 3 2.1 86.1 3 2.1 86.1 3 uschlag	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz 2.1 92.3 2.1	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrund theiten akt elle n ist 250 Hz 2.1 97.3 2.1 97.3 chlag	500 Hz 2.1 99.4 2.1 99.4	y/m 02827.00 1000 Hz 2.1 99.9 2.1 99.9 chlag	2000 Hz 2.1 97.2 2.1 97.2 2.1	2(abs) /m 295.34 SO 9613-2 Schal 4000 Hz 2.1 90.5 2.1 90.5	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja Illeistungspegel (Lw) 8000 Hz 2.1 75.9 2.1 75.9 2.1 75.9 Extra-Zuschlag
WEAI860	Nacht (22h-6h) Geometrie Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² EmissVariante Tag Tag Nacht Nacht Nacht Ruhe	Emission Zuschlag /dB (A)	WEA 5 geplante 1 Summe Referenz 105.1 Referenz 105.1 Spitzenp	### 16 Hz 16 Hz 16 GE 5,X 2.1 63.4 GE 5,X 2.1 63.4 GE 5,X 2.1 63.4	31.5 Hz -158 103di 2.1 76.9 -158 103di 2.1 76.9 -158 103di 2.1 76.9 Impuls-Z	63 Hz 3 2.1 86.1 3 2.1 86.1 3 0.0	Wirkradii Lw (Tag) Lw (Nach Lw (Ruhe D0 Berechni Unsicher Hohe Qu Emissior 125 Hz 2.1 92.3	x/m 27254.00 us /m /dB(A) nt) /dB(A) e) /dB(A) e) /dB(A) ungsgrunn rheiten akt elle n ist 250 Hz 2.1 97.3	500 Hz 2.1 99.4 2.1 99.4	y/m 02827.00 1000 Hz 2.1 99.9 2.1 99.9 chlag 0.0	2000 Hz 2.1 97.2 2.1 97.2 2.1	2(abs) /m 295.34 SO 9613-2 Schal 4000 Hz 2.1 90.5 2.1 90.5	! z(rel) /m 161.00 99999.00 105.11 105.11 105.11 0.00 2 / Interimsverfahrer Neir Ja Illieistungspegel (Lw) 8000 Hz 2.1 75.9 2.1 75.9

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4 21 001 Volkmarsdorf		

Windenergie	anlage (6)											Zusatzb	elastung (sc	hallred.)
	ohne Ruhezeitzuso	chlag:												
			•											
	Nacht (22h-6h)		1.00	Nacht		105.1		1.00		1.00000		0.00		0.0
	Geometrie					Nr		x/m		y/m		z(abs) /m	! 2	z(rel) /m
					Ge	eometrie:	627321.00 5802445.00			294.02		161.00		
WEAI861	Bezeichnung		WEA 6				Wirkradi	us /m					9	9999.00
	Gruppe		geplante	WEA (sch	allred.)		Lw (Tag)	/dB(A)						104.12
	Knotenzahl		1				Lw (Nach	t) /dB(A)						104.12
	Länge /m						Lw (Ruhe	e) /dB(A)						104.12
	Länge /m (2D)						D0							0.00
	Fläche /m²						Berechni	ungsgrun	dlage			ISO 9613-2	2 / Interimsv	erfahren
							Unsicher	heiten ak	tiviert					Nein
						Hohe Qu	elle						Ja	
						Emission	ı ist				Scha	Illeistungspe	gel (Lw)	
	EmissVariante		Summe	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	
	Tag	Emission	Referenz	GE 5,X	-158 102dl	3								
	Tag	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	104.1	62.6	76.1	85.3	91.7	96.6	98.4	98.7	96.1	89.7	75.2	
	Nacht	Emission	Referenz	GE 5,X	-158 102dE									
	Nacht	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	104.1	62.6	76.1	85.3	91.7	96.6	98.4	98.7	96.1	89.7	75.2	
	Ruhe	Emission	Referenz		-158 102dE									
	Ruhe	Zuschlag /dB (A)		2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
		Lw /dB (A)	104.1	62.6	76.1	85.3	91.7	96.6	98.4	98.7	96.1	89.7	75.2	
	Beurteilungsvors	chrift	Spitzenp	egel	Impuls-Z		Ton-Zusc		InfoZus				Extra-Zus	
	TA Lärm (2017)			-		0.0		0.0		0.0		-		0.0
	Beurteilungszeitra	aum / Zeitzone	Dauer /h	EmiVar	Lw /dB(A	i)	n-mal		Einwirkz	eit /h	dLi /dB		Lwr/dB(A)
	ohne Ruhezeitzuso	-blag:												
	offile Ruffezeltzust	лпау.												
	Nacht (22h-6h)		1.00	Nacht		104.1		1.00		1.00000		0.00		0.0
	Geometrie				•	Nr		x/m		y/m		z(abs) /m	! 2	z(rel) /m
					Ge	eometrie:	6	27477.00	58	03327.00		286.15		161.00

Firma:	planGIS GmbH	Vorbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Immissionsberechnung Beurteilung nach TA Lärm (2017)													
Vorbelastu	ıng	Einstellu	ng: Interir	erimsverfahren 2017					Nacht (22h-6h)				
IPKT IPKT: Bezeichnung IPKT: x /m IPKT: y /m IPKT: z /m											I =/IF	J) (4D(A)	
	IPKT: Bezeichnung		IF.	7K1: X/III					IP	K1. Z/III		LI(II	P) /dB(A)
IPkt018	A - Am Hechtstücken 9			626601			5800756			117			12.3
	•												
ISO 9613-	2	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahou	s - Abar -	Cmet					
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
EZQi001	Biogasanlage	85.0 3.0 1772.3 76.0 3.4 4.6						0.0	0.0	0.0	0.0		4.0
EZQi003	BHKW	85.0	3.0	905.45	70.1	1.7	4.5	0.0	0.0	0.0	0.0		11.6

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt017	B - Dornsiek 14	627018	5801344	126	23.3

ISO 9613-2	2	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
EZQi001	Biogasanlage	85.0	3.0	1165.3	72.3	2.2	4.6	0.0	0.0	0.0	0.0		8.9
EZQi003	BHKW	85.0	3.0	291.14	60.3	0.6	4.0	0.0	0.0	0.0	0.0		23.1

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt025	C - geplantes WA	626736	5801412	123	24.6

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
EZQi001	Biogasanlage	85.0	3.0	1103.4	71.9	2.1	4.6	0.0	0.0	0.0	0.0		9.5
EZQi003	BHKW	85.0	3.0	258.04	59.2	0.5	3.8	0.0	0.0	0.0	0.0		24.5

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt020	D - Jugendzeltplatz Almke	627086	5801697	132	26.9

ISO 9613-2	2	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
EZQi001	Biogasanlage	85.0	3.0	827.53	69.4	1.6	4.4	0.0	0.0	0.0	0.0		12.6
EZQi003	BHKW	85.0	3.0	204.41	57.2	0.4	3.7	0.0	0.0	0.0	0.0		26.7

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt019	E - Mühlenberg 1	626610	5801703	129	23.1

ISO 9613-2	!	LfT = Lw	fT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	w Dc Abstand Adiv Aatm Agr Afol Ahous								Cmet		LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
EZQi001	Biogasanlage	85.0	3.0	850.32	69.6	1.6	4.5	0.0	0.0	0.0	0.0		12.3
EZQi003	BHKW	85.0	3.0	305.09	60.7	0.6	4.0	0.0	0.0	0.0	0.0		22.8

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt022	Fa - Siedlung 21	628326	5802861	129	7.9

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
EZQi001	Biogasanlage	85.0	3.0	1471.3	74.4	2.8	4.6	0.0	0.0	0.0	0.0		6.2
EZQi003	BHKW	85.0	3.0	1895.7	76.6	3.6	4.8	0.0	0.0	0.0	0.0		3.0

Firma:	planGIS GmbH			Vor	belastung	3						
Bearbeiter:												
Projekt:	4_21_001_Volkmarsdorf											
ISO 9613-2)	IfT = I w	+ Dc - Ac	liv - Δatm	- Δar - Δf	fol - Ahous	L Ahar -	Cmet				
Element	Bezeichnung	Lw		Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
Liement	Bezeichhang	/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
IPKT	IPKT: Bezeichnung		IP	KT: x /m		IP	KT: y/m		IP	KT: z /m		Lr(IP) /dB(A)
IPkt028	Fb - Hauptstraße 41			628297		-	5802959			125		7.8
ISO 9613-2	2	LfT = Lw	+ Dc - Ac	div - Aatm	- Aar - Af	fol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw		Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
	g	/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1470.4	74.3	2.8	4.6	0.0	0.0	0.0	0.0	6.2
EZQi003	BHKW	85.0	3.0	1940.7	76.8	3.7	4.8	0.0	0.0	0.0	0.0	2.7
IPKT	IPKT: Bezeichnung		ID	KT: x /m		ID	KT: y/m		ID	KT: z /m		Lr(IP) /dB(A)
IPkt027	Fc - Siedlung 17			628376			5802887			128		7.5
-	J 3											
ISO 9613-2		_				fol - Ahous						
Element	Bezeichnung	Lw		Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001 EZQi003	Biogasanlage BHKW	85.0 85.0	3.0	1526.4 1951.0	74.7 76.8	2.9 3.8	4.6	0.0	0.0	0.0	0.0	5.8
EZQIUUS	DHKW	65.0	3.0	1951.0	70.0	3.0	4.0	0.0	0.0	0.0	0.0	2.1
IPKT	IPKT: Bezeichnung		IP	KT: x /m		IP	KT: y/m		IP	KT: z /m		Lr(IP) /dB(A)
IPkt029	Fd - Siedlung 11			628444			5802897			127		7.1
		1										
ISO 9613-2						fol - Ahous			41		0 1	
Element	Bezeichnung	LW	/dB	Abstand	Adiv /dB	Aatm /dB	Agr /dB	Afol /dB	Ahous /dB	Abar /dB	Cmet /dB	LfT /dB
EZQi001	Biogasanlage	/dB(A) 85.0	3.0	/m 1594.5	75.1	3.1	4.6	0.0	0.0	0.0	0.0	5.3
EZQi001	BHKW	85.0	3.0	2009.1	77.1	3.9	4.8	0.0	0.0	0.0	0.0	2.3
	I											
IPKT	IPKT: Bezeichnung		IP	KT: x /m			KT: y/m		IP	KT: z/m		Lr(IP) /dB(A)
IPkt026	Fe - Siedlung 4			628473			5802943			125		6.7
ISO 9613-2	2	LfT = Lw	+ Dc - Ac	div - Aatm	- Agr - Af	fol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw		Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1634.8	75.3	3.1	4.6	0.0	0.0	0.0	0.0	5.0
EZQi003	BHKW	85.0	3.0	2060.9	77.3	4.0	4.8	0.0	0.0	0.0	0.0	2.0
IPKT	IPKT: Bezeichnung		IP	KT: x /m		IP	KT: y/m		IP	KT: z /m		Lr(IP) /dB(A)
IPkt021	G - Bahnhofstr. 17			628201			5803296			118		7.2
ISO 9613-2	2	LfT = Lw				fol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw		Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
E70:004	D: .	/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1525.3	74.7	2.9	4.6	0.0	0.0	0.0	0.0	5.8
EZQi003	BHKW	85.0	3.0	2129.0	77.6	4.1	4.8	0.0	0.0	0.0	0.0	1.6
IPKT	IPKT: Bezeichnung		IP	KT: x /m		IP	KT: y/m		IP	KT: z /m		Lr(IP) /dB(A)
IPkt023	H - Himmelberg 1			626125			5805535			109		-2.1
100.05:5		1.~ :					• •	<u> </u>				
ISO 9613-2						fol - Ahous			Abaus	A bar	Cmat	LET
Element	Bezeichnung	/dB(A)	/dB	Abstand /m	Adiv /dB	Aatm /dB	Agr /dB	Afol /dB	Ahous /dB	Abar /dB	Cmet /dB	LfT /dB
EZQi001	Biogasanlage	85.0	3.0	3129.9	80.9	6.0	4.7	0.0	0.0	0.0	0.0	-3.6
EZQi003	BHKW	85.0	3.0	4000.9	83.0	7.7	4.8	0.0	0.0	0.0	0.0	-7.5
	1											

Vorbelastung

Firma:

planGIS GmbH

Firma:	planGIS GmbH	Vorbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT	
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB	
IPKT	IPKT: Bezeichnung		IPKT: x /m			IPKT: y /m			IPKT: z /m			z /m Lr(IP) /dB(A		
IPkt024	I - B-Plan Parkstraße		629318			5804795			95			5 -2.8		

ISO 9613-2	2	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet									
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	3333.0	81.5	6.4	4.7	0.0	0.0	0.0	0.0	-4.6
EZQi003	BHKW	85.0	3.0	3998.0	83.0	7.7	4.8	0.0	0.0	0.0	0.0	-7.5

Firma:	planGIS GmbH	Zusatzbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Immissionsberechnung	Beurteilung nach TA Lärm (2017)					
Zusatzbelastung	Einstellung: Interimsverfahren 2017	Nacht (22h-6h)				

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt018	A - Am Hechtstücken 9	626601	5800756	117	35.1

ISO 9613-2		LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	2903.9	80.3	0.3	-3.0	0.0	0.0	2.5	0.0		24.0
WEAI002	WEA 2	108.1	0.0	2437.8	78.7	0.2	-3.0	0.0	0.0	0.0	0.0		26.3
WEAI003	WEA 3	108.1	0.0	2074.0	77.3	0.2	-3.0	0.0	0.0	0.0	0.0		28.3
WEAI004	WEA 4	108.1	0.0	2178.6	77.8	0.2	-3.0	0.0	0.0	0.0	0.0		27.7
WEAI005	WEA 5	108.1	0.0	1844.4	76.3	0.2	-3.0	0.0	0.0	0.0	0.0		29.8
WEAI006	WEA 6	108.1	0.0	2721.2	79.7	0.3	-3.0	0.0	0.0	1.4	0.0		24.9

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt017	B - Dornsiek 14	627018	5801344	126	39.5

ISO 9613-2	2	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	2261.1	78.1	0.2	-3.0	0.0	0.0	1.1	0.0		27.2
WEAI002	WEA 2	108.1	0.0	1862.8	76.4	0.2	-3.0	0.0	0.0	2.2	0.0		29.6
WEAI003	WEA 3	108.1	0.0	1488.0	74.5	0.2	-3.0	0.0	0.0	1.7	0.0		32.3
WEAI004	WEA 4	108.1	0.0	1511.2	74.6	0.2	-3.0	0.0	0.0	1.4	0.0		32.2
WEAI005	WEA 5	108.1	0.0	1154.2	72.2	0.1	-3.0	0.0	0.0	1.2	0.0		35.3
WEAI006	WEA 6	108.1	0.0	2041.7	77.2	0.2	-3.0	0.0	0.0	1.1	0.0		28.5

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt025	C - geplantes WA	626736	5801412	123	39.5

ISO 9613-2)	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	2235.4	78.0	0.2	-3.0	0.0	0.0	1.2	0.0		27.4
WEAI002	WEA 2	108.1	0.0	1778.5	76.0	0.2	-3.0	0.0	0.0	1.0	0.0		30.2
WEAI003	WEA 3	108.1	0.0	1411.6	74.0	0.1	-3.0	0.0	0.0	0.8	0.0		33.0
WEAI004	WEA 4	108.1	0.0	1516.7	74.6	0.2	-3.0	0.0	0.0	0.9	0.0		32.1
WEAI005	WEA 5	108.1	0.0	1199.4	72.6	0.1	-3.0	0.0	0.0	0.6	0.0		34.8
WEAI006	WEA 6	108.1	0.0	2059.9	77.3	0.2	-3.0	0.0	0.0	1.1	0.0		28.4

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt020	D - Jugendzeltplatz Almke	627086	5801697	132	42.8

ISO 9613-2	2	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	1904.5	76.6	0.2	-3.0	0.0	0.0	1.3	0.0		29.4
WEAI002	WEA 2	108.1	0.0	1527.8	74.7	0.1	-3.0	0.0	0.0	0.0	0.0		32.0
WEAI003	WEA 3	108.1	0.0	1154.3	72.2	0.1	-3.0	0.0	0.0	0.0	0.0		35.3
WEAI004	WEA 4	108.1	0.0	1154.0	72.2	0.1	-3.0	0.0	0.0	0.0	0.0		35.3
WEAI005	WEA 5	108.1	0.0	800.54	69.1	0.1	-3.0	0.0	0.0	0.0	0.0		39.3
WEAI006	WEA 6	108.1	0.0	1683.3	75.5	0.2	-3.0	0.0	0.0	0.6	0.0		30.9

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt019	E - Mühlenberg 1	626610	5801703	129	41.4

Firma:	planGIS GmbH	Zusatzbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2)	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	1985.7	77.0	0.2	-3.0	0.0	0.0	1.1	0.0		28.9
WEAI002	WEA 2	108.1	0.0	1495.8	74.5	0.2	-3.0	0.0	0.0	0.9	0.0		32.3
WEAI003	WEA 3	108.1	0.0	1139.9	72.1	0.1	-3.0	0.0	0.0	0.8	0.0		35.4
WEAI004	WEA 4	108.1	0.0	1305.7	73.3	0.2	-3.0	0.0	0.0	1.2	0.0		33.9
WEAI005	WEA 5	108.1	0.0	1040.5	71.3	0.1	-3.0	0.0	0.0	0.0	0.0		36.5
WEAI006	WEA 6	108.1	0.0	1847.3	76.3	0.2	-3.0	0.0	0.0	1.0	0.0		29.8

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt022	Fa - Siedlung 21	628326	5802861	129	42.6

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	1347.7	73.6	0.1	-3.0	0.0	0.0	0.0	0.0		33.5
WEAI002	WEA 2	108.1	0.0	1601.9	75.1	0.1	-3.0	0.0	0.0	0.0	0.0		31.5
WEAI003	WEA 3	108.1	0.0	1508.8	74.6	0.1	-3.0	0.0	0.0	0.0	0.0		32.2
WEAI004	WEA 4	108.1	0.0	1085.1	71.7	0.1	-3.0	0.0	0.0	0.0	0.0		36.0
WEAI005	WEA 5	108.1	0.0	1099.8	71.8	0.1	-3.0	0.0	0.0	0.0	0.0		35.8
WEAI006	WEA 6	108.1	0.0	981.00	70.8	0.1	-3.0	0.0	0.0	0.0	0.0		37.1

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt028	Fb - Hauptstraße 41	628297	5802959	125	43.0

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	1272.5	73.1	0.1	-3.0	0.0	0.0	0.0	0.0		34.2
WEAI002	WEA 2	108.1	0.0	1556.9	74.8	0.1	-3.0	0.0	0.0	0.0	0.0		31.8
WEAI003	WEA 3	108.1	0.0	1486.9	74.4	0.1	-3.0	0.0	0.0	0.0	0.0		32.4
WEAI004	WEA 4	108.1	0.0	1064.5	71.5	0.1	-3.0	0.0	0.0	0.0	0.0		36.2
WEAI005	WEA 5	108.1	0.0	1115.4	71.9	0.1	-3.0	0.0	0.0	0.6	0.0		35.7
WEAI006	WEA 6	108.1	0.0	912.74	70.2	0.1	-3.0	0.0	0.0	0.0	0.0		37.9

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt027	Fc - Siedlung 17	628376	5802887	128	42.2

ISO 9613-2	2	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	1376.0	73.8	0.1	-3.0	0.0	0.0	0.0	0.0		33.3
WEAI002	WEA 2	108.1	0.0	1645.8	75.3	0.1	-3.0	0.0	0.0	0.0	0.0		31.2
WEAI003	WEA 3	108.1	0.0	1559.7	74.9	0.1	-3.0	0.0	0.0	0.0	0.0		31.8
WEAI004	WEA 4	108.1	0.0	1135.8	72.1	0.1	-3.0	0.0	0.0	0.0	0.0		35.5
WEAI005	WEA 5	108.1	0.0	1155.8	72.3	0.1	-3.0	0.0	0.0	1.2	0.0		35.3
WEAI006	WEA 6	108.1	0.0	1012.9	71.1	0.1	-3.0	0.0	0.0	0.0	0.0		36.8

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt029	Fd - Siedlung 11	628444	5802897	127	41.6

ISO 9613-2	ISO 9613-2		LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	1429.3	74.1	0.1	-3.0	0.0	0.0	0.0	0.0		32.8
WEAI002	WEA 2	108.1	0.0	1710.7	75.7	0.1	-3.0	0.0	0.0	0.0	0.0		30.7
WEAI003	WEA 3	108.1	0.0	1627.7	75.2	0.2	-3.0	0.0	0.0	0.9	0.0		31.3
WEAI004	WEA 4	108.1	0.0	1203.5	72.6	0.1	-3.0	0.0	0.0	0.6	0.0		34.8
WEAI005	WEA 5	108.1	0.0	1221.7	72.7	0.1	-3.0	0.0	0.0	0.8	0.0		34.6

Firma:	planGIS GmbH	Zusatzbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT	
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI006	WEA 6	108.1	0.0	1069.6	71.6	0.1	-3.0	0.0	0.0	0.0	0.0		36.1

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt026	Fe - Siedlung 4	628473	5802943	125	41.4

ISO 9613-2)	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	1434.1	74.1	0.1	-3.0	0.0	0.0	0.0	0.0	32.8
WEAI002	WEA 2	108.1	0.0	1733.0	75.8	0.1	-3.0	0.0	0.0	0.0	0.0	30.5
WEAI003	WEA 3	108.1	0.0	1660.2	75.4	0.2	-3.0	0.0	0.0	1.5	0.0	31.0
WEAI004	WEA 4	108.1	0.0	1236.3	72.8	0.1	-3.0	0.0	0.0	0.0	0.0	34.5
WEAI005	WEA 5	108.1	0.0	1266.3	73.1	0.2	-3.0	0.0	0.0	1.4	0.0	34.2
WEAI006	WEA 6	108.1	0.0	1079.7	71.7	0.1	-3.0	0.0	0.0	0.0	0.0	36.0

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt021	G - Bahnhofstr. 17	628201	5803296	118	44.0

ISO 9613-2		LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	1053.2	71.5	0.1	-3.0	0.0	0.0	0.1	0.0	36.3
WEAI002	WEA 2	108.1	0.0	1451.5	74.2	0.1	-3.0	0.0	0.0	0.0	0.0	32.6
WEAI003	WEA 3	108.1	0.0	1468.5	74.3	0.1	-3.0	0.0	0.0	0.0	0.0	32.5
WEAI004	WEA 4	108.1	0.0	1071.8	71.6	0.1	-3.0	0.0	0.0	0.0	0.0	36.1
WEAI005	WEA 5	108.1	0.0	1237.0	72.8	0.1	-3.0	0.0	0.0	0.0	0.0	34.5
WEAI006	WEA 6	108.1	0.0	744.23	68.4	0.1	-3.0	0.0	0.0	0.0	0.0	40.1

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt023	H - Himmelberg 1	626125	5805535	109	33.0

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	2229.7	78.0	0.2	-3.0	0.0	0.0	1.2	0.0		27.4
WEAI002	WEA 2	108.1	0.0	2445.9	78.8	0.2	-3.0	0.0	0.0	1.2	0.0		26.3
WEAI003	WEA 3	108.1	0.0	2820.6	80.0	0.3	-3.0	0.0	0.0	1.3	0.0		24.4
WEAI004	WEA 4	108.1	0.0	2940.3	80.4	0.3	-3.0	0.0	0.0	1.3	0.0		23.9
WEAI005	WEA 5	108.1	0.0	3319.0	81.4	0.3	-3.0	0.0	0.0	1.3	0.0		22.3
WEAI006	WEA 6	108.1	0.0	2595.6	79.3	0.3	-3.0	0.0	0.0	1.2	0.0		25.5

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt024	I - B-Plan Parkstraße	629318	5804795	95	32.5

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	2439.6	78.7	0.2	-3.0	0.0	0.0	0.0	0.0		26.3
WEAI002	WEA 2	108.1	0.0	3026.4	80.6	0.2	-3.0	0.0	0.0	0.0	0.0		23.5
WEAI003	WEA 3	108.1	0.0	3191.5	81.1	0.2	-3.0	0.0	0.0	0.0	0.0		22.8
WEAI004	WEA 4	108.1	0.0	2858.8	80.1	0.2	-3.0	0.0	0.0	0.0	0.0		24.2
WEAI005	WEA 5	108.1	0.0	3090.2	80.8	0.2	-3.0	0.0	0.0	0.0	0.0		23.2
WEAI006	WEA 6	108.1	0.0	2362.4	78.5	0.2	-3.0	0.0	0.0	0.0	0.0		26.7

Firma:	planGIS GmbH	Gesamtbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Immissionsberechnung	Beurteilung nach TA Lärm (2017)	
Gesamtbelastung	Einstellung: Interimsverfahren 2017	Nacht (22h-6h)

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt018	A - Am Hechtstücken 9	626601	5800756	117	35.1

ISO 9613-2	2	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
EZQi001	Biogasanlage	85.0	3.0	1772.3	76.0	3.4	4.6	0.0	0.0	0.0	0.0		4.0
EZQi003	BHKW	85.0	3.0	905.45	70.1	1.7	4.5	0.0	0.0	0.0	0.0		11.6

ISO 9613-2	2	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	2903.9	80.3	0.3	-3.0	0.0	0.0	2.5	0.0	24.0
WEAI002	WEA 2	108.1	0.0	2437.8	78.7	0.2	-3.0	0.0	0.0	0.0	0.0	26.3
WEAI003	WEA 3	108.1	0.0	2074.0	77.3	0.2	-3.0	0.0	0.0	0.0	0.0	28.3
WEAI004	WEA 4	108.1	0.0	2178.6	77.8	0.2	-3.0	0.0	0.0	0.0	0.0	27.7
WEAI005	WEA 5	108.1	0.0	1844.4	76.3	0.2	-3.0	0.0	0.0	0.0	0.0	29.8
WEAI006	WEA 6	108.1	0.0	2721.2	79.7	0.3	-3.0	0.0	0.0	1.4	0.0	24.9

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt017	B - Dornsiek 14	627018	5801344	126	39.6

ISO 9613-2	2	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1165.3	72.3	2.2	4.6	0.0	0.0	0.0	0.0	8.9
EZQi003	BHKW	85.0	3.0	291.14	60.3	0.6	4.0	0.0	0.0	0.0	0.0	23.1

ISO 9613-2	2	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	2261.1	78.1	0.2	-3.0	0.0	0.0	1.1	0.0	27.2
WEAI002	WEA 2	108.1	0.0	1862.8	76.4	0.2	-3.0	0.0	0.0	2.2	0.0	29.6
WEAI003	WEA 3	108.1	0.0	1488.0	74.5	0.2	-3.0	0.0	0.0	1.7	0.0	32.3
WEAI004	WEA 4	108.1	0.0	1511.2	74.6	0.2	-3.0	0.0	0.0	1.4	0.0	32.2
WEAI005	WEA 5	108.1	0.0	1154.2	72.2	0.1	-3.0	0.0	0.0	1.2	0.0	35.3
WEAI006	WEA 6	108.1	0.0	2041.7	77.2	0.2	-3.0	0.0	0.0	1.1	0.0	28.5

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt025	C - geplantes WA	626736	5801412	123	39.7

ISO 9613-2		LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1103.4	71.9	2.1	4.6	0.0	0.0	0.0	0.0	9.5
EZQi003	BHKW	85.0	3.0	258.04	59.2	0.5	3.8	0.0	0.0	0.0	0.0	24.5

ISO 9613-2	!	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	2235.4	78.0	0.2	-3.0	0.0	0.0	1.2	0.0	27.4
WEAI002	WEA 2	108.1	0.0	1778.5	76.0	0.2	-3.0	0.0	0.0	1.0	0.0	30.2
WEAI003	WEA 3	108.1	0.0	1411.6	74.0	0.1	-3.0	0.0	0.0	0.8	0.0	33.0
WEAI004	WEA 4	108.1	0.0	1516.7	74.6	0.2	-3.0	0.0	0.0	0.9	0.0	32.1
WEAI005	WEA 5	108.1	0.0	1199.4	72.6	0.1	-3.0	0.0	0.0	0.6	0.0	34.8
WEAI006	WEA 6	108.1	0.0	2059.9	77.3	0.2	-3.0	0.0	0.0	1.1	0.0	28.4

Firma:	planGIS GmbH	Gesamtbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2	2	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	- Abar -	Cmet					
Element	Bezeichnung	Lw	Lw Dc Abstand Adiv Aatm Agr Afol Ahous Abar Cmet									LfT	
		/dB	/dB /dB /m /dB /dB /dB /dB /dB /dB								/dB		

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt020	D - Jugendzeltplatz Almke	627086	5801697	132	42.9

ISO 9613-2	2	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	827.53	69.4	1.6	4.4	0.0	0.0	0.0	0.0	12.6
EZQi003	BHKW	85.0	3.0	204.41	57.2	0.4	3.7	0.0	0.0	0.0	0.0	26.7

ISO 9613-2	2	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	1904.5	76.6	0.2	-3.0	0.0	0.0	1.3	0.0	29.4
WEAI002	WEA 2	108.1	0.0	1527.8	74.7	0.1	-3.0	0.0	0.0	0.0	0.0	32.0
WEAI003	WEA 3	108.1	0.0	1154.3	72.2	0.1	-3.0	0.0	0.0	0.0	0.0	35.3
WEAI004	WEA 4	108.1	0.0	1154.0	72.2	0.1	-3.0	0.0	0.0	0.0	0.0	35.3
WEAI005	WEA 5	108.1	0.0	800.54	69.1	0.1	-3.0	0.0	0.0	0.0	0.0	39.3
WEAI006	WEA 6	108.1	0.0	1683.3	75.5	0.2	-3.0	0.0	0.0	0.6	0.0	30.9

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt019	E - Mühlenberg 1	626610	5801703	129	41.4

ISO 9613-2	!	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	850.32	69.6	1.6	4.5	0.0	0.0	0.0	0.0	12.3
EZQi003	BHKW	85.0	3.0	305.09	60.7	0.6	4.0	0.0	0.0	0.0	0.0	22.8

ISO 9613-2	!	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	1985.7	77.0	0.2	-3.0	0.0	0.0	1.1	0.0	28.9
WEAI002	WEA 2	108.1	0.0	1495.8	74.5	0.2	-3.0	0.0	0.0	0.9	0.0	32.3
WEAI003	WEA 3	108.1	0.0	1139.9	72.1	0.1	-3.0	0.0	0.0	8.0	0.0	35.4
WEAI004	WEA 4	108.1	0.0	1305.7	73.3	0.2	-3.0	0.0	0.0	1.2	0.0	33.9
WEAI005	WEA 5	108.1	0.0	1040.5	71.3	0.1	-3.0	0.0	0.0	0.0	0.0	36.5
WEAI006	WEA 6	108.1	0.0	1847.3	76.3	0.2	-3.0	0.0	0.0	1.0	0.0	29.8

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt022	Fa - Siedlung 21	628326	5802861	129	42.6

ISO 9613-2		LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1471.3	74.4	2.8	4.6	0.0	0.0	0.0	0.0	6.2
EZQi003	BHKW	85.0	3.0	1895.7	76.6	3.6	4.8	0.0	0.0	0.0	0.0	3.0

ISO 9613-2		LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	1347.7	73.6	0.1	-3.0	0.0	0.0	0.0	0.0	33.5
WEAI002	WEA 2	108.1	0.0	1601.9	75.1	0.1	-3.0	0.0	0.0	0.0	0.0	31.5
WEAI003	WEA 3	108.1	0.0	1508.8	74.6	0.1	-3.0	0.0	0.0	0.0	0.0	32.2
WEAI004	WEA 4	108.1	0.0	1085.1	71.7	0.1	-3.0	0.0	0.0	0.0	0.0	36.0
WEAI005	WEA 5	108.1	0.0	1099.8	71.8	0.1	-3.0	0.0	0.0	0.0	0.0	35.8
WEAI006	WEA 6	108.1	0.0	981.00	70.8	0.1	-3.0	0.0	0.0	0.0	0.0	37.1

Firma:	planGIS GmbH	Gesamtbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2	2	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	- Abar -	Cmet					
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB /dB /dB			/dB	/dB	/dB	/dB		/dB
IPKT	IPKT: Bezeichnung		IF	KT: x /m	IPKT: y /m				IP	KT: z/m		Lr(II	P) /dB(A)
IPkt028	Fb - Hauptstraße 41			628297		5802959				125			43.0

ISO 9613-2	2	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1470.4	74.3	2.8	4.6	0.0	0.0	0.0	0.0	6.2
EZQi003	BHKW	85.0	3.0	1940.7	76.8	3.7	4.8	0.0	0.0	0.0	0.0	2.7

ISO 9613-2)	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	1272.5	73.1	0.1	-3.0	0.0	0.0	0.0	0.0	34.2
WEAI002	WEA 2	108.1	0.0	1556.9	74.8	0.1	-3.0	0.0	0.0	0.0	0.0	31.8
WEAI003	WEA 3	108.1	0.0	1486.9	74.4	0.1	-3.0	0.0	0.0	0.0	0.0	32.4
WEAI004	WEA 4	108.1	0.0	1064.5	71.5	0.1	-3.0	0.0	0.0	0.0	0.0	36.2
WEAI005	WEA 5	108.1	0.0	1115.4	71.9	0.1	-3.0	0.0	0.0	0.6	0.0	35.7
WEAI006	WEA 6	108.1	0.0	912.74	70.2	0.1	-3.0	0.0	0.0	0.0	0.0	37.9

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt027	Fc - Siedlung 17	628376	5802887	128	42.2

ISO 9613-2)	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1526.4	74.7	2.9	4.6	0.0	0.0	0.0	0.0	5.8
EZQi003	BHKW	85.0	3.0	1951.0	76.8	3.8	4.8	0.0	0.0	0.0	0.0	2.7

ISO 9613-2		LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	1376.0	73.8	0.1	-3.0	0.0	0.0	0.0	0.0	33.3
WEAI002	WEA 2	108.1	0.0	1645.8	75.3	0.1	-3.0	0.0	0.0	0.0	0.0	31.2
WEAI003	WEA 3	108.1	0.0	1559.7	74.9	0.1	-3.0	0.0	0.0	0.0	0.0	31.8
WEAI004	WEA 4	108.1	0.0	1135.8	72.1	0.1	-3.0	0.0	0.0	0.0	0.0	35.5
WEAI005	WEA 5	108.1	0.0	1155.8	72.3	0.1	-3.0	0.0	0.0	1.2	0.0	35.3
WEAI006	WEA 6	108.1	0.0	1012.9	71.1	0.1	-3.0	0.0	0.0	0.0	0.0	36.8

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt029	Fd - Siedlung 11	628444	5802897	127	41.6

ISO 9613-2		LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1594.5	75.1	3.1	4.6	0.0	0.0	0.0	0.0	5.3
EZQi003	BHKW	85.0	3.0	2009.1	77.1	3.9	4.8	0.0	0.0	0.0	0.0	2.3

ISO 9613-2)	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	1429.3	74.1	0.1	-3.0	0.0	0.0	0.0	0.0	32.8
WEAI002	WEA 2	108.1	0.0	1710.7	75.7	0.1	-3.0	0.0	0.0	0.0	0.0	30.7
WEAI003	WEA 3	108.1	0.0	1627.7	75.2	0.2	-3.0	0.0	0.0	0.9	0.0	31.3
WEAI004	WEA 4	108.1	0.0	1203.5	72.6	0.1	-3.0	0.0	0.0	0.6	0.0	34.8
WEAI005	WEA 5	108.1	0.0	1221.7	72.7	0.1	-3.0	0.0	0.0	0.8	0.0	34.6
WEAI006	WEA 6	108.1	0.0	1069.6	71.6	0.1	-3.0	0.0	0.0	0.0	0.0	36.1

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)

Firma:	planGIS GmbH	Gesamtbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2	2	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet					
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
IPkt026	Fe - Siedlung 4		628473				5802943 125 41					41.4	

ISO 9613-2	2	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1634.8	75.3	3.1	4.6	0.0	0.0	0.0	0.0	5.0
EZQi003	BHKW	85.0	3.0	2060.9	77.3	4.0	4.8	0.0	0.0	0.0	0.0	2.0

ISO 9613-2)	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	1434.1	74.1	0.1	-3.0	0.0	0.0	0.0	0.0	32.8
WEAI002	WEA 2	108.1	0.0	1733.0	75.8	0.1	-3.0	0.0	0.0	0.0	0.0	30.5
WEAI003	WEA 3	108.1	0.0	1660.2	75.4	0.2	-3.0	0.0	0.0	1.5	0.0	31.0
WEAI004	WEA 4	108.1	0.0	1236.3	72.8	0.1	-3.0	0.0	0.0	0.0	0.0	34.5
WEAI005	WEA 5	108.1	0.0	1266.3	73.1	0.2	-3.0	0.0	0.0	1.4	0.0	34.2
WEAI006	WEA 6	108.1	0.0	1079.7	71.7	0.1	-3.0	0.0	0.0	0.0	0.0	36.0

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt021	G - Bahnhofstr. 17	628201	5803296	118	44.0

ISO 9613-2		LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1525.3	74.7	2.9	4.6	0.0	0.0	0.0	0.0	5.8
EZQi003	BHKW	85.0	3.0	2129.0	77.6	4.1	4.8	0.0	0.0	0.0	0.0	1.6

ISO 9613-2	!	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	WEA 1	108.1	0.0	1053.2	71.5	0.1	-3.0	0.0	0.0	0.1	0.0	36.3
WEAI002	WEA 2	108.1	0.0	1451.5	74.2	0.1	-3.0	0.0	0.0	0.0	0.0	32.6
WEAI003	WEA 3	108.1	0.0	1468.5	74.3	0.1	-3.0	0.0	0.0	0.0	0.0	32.5
WEAI004	WEA 4	108.1	0.0	1071.8	71.6	0.1	-3.0	0.0	0.0	0.0	0.0	36.1
WEAI005	WEA 5	108.1	0.0	1237.0	72.8	0.1	-3.0	0.0	0.0	0.0	0.0	34.5
WEAI006	WEA 6	108.1	0.0	744.23	68.4	0.1	-3.0	0.0	0.0	0.0	0.0	40.1

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt023	H - Himmelberg 1	626125	5805535	109	33.0

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
EZQi001	Biogasanlage	85.0	3.0	3129.9	80.9	6.0	4.7	0.0	0.0	0.0	0.0		-3.6
EZQi003	BHKW	85.0	3.0	4000.9	83.0	7.7	4.8	0.0	0.0	0.0	0.0		-7.5

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	2229.7	78.0	0.2	-3.0	0.0	0.0	1.2	0.0		27.4
WEAI002	WEA 2	108.1	0.0	2445.9	78.8	0.2	-3.0	0.0	0.0	1.2	0.0		26.3
WEAI003	WEA 3	108.1	0.0	2820.6	80.0	0.3	-3.0	0.0	0.0	1.3	0.0		24.4
WEAI004	WEA 4	108.1	0.0	2940.3	80.4	0.3	-3.0	0.0	0.0	1.3	0.0		23.9
WEAI005	WEA 5	108.1	0.0	3319.0	81.4	0.3	-3.0	0.0	0.0	1.3	0.0		22.3
WEAI006	WEA 6	108.1	0.0	2595.6	79.3	0.3	-3.0	0.0	0.0	1.2	0.0		25.5

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt024	I - B-Plan Parkstraße	629318	5804795	95	32.5

Firma:	planGIS GmbH	Gesamtbelastung	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element Bezeichnung		Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
EZQi001	Biogasanlage	85.0	3.0	3333.0	81.5	6.4	4.7	0.0	0.0	0.0	0.0		-4.6
EZQi003	BHKW	85.0	3.0	3998.0	83.0	7.7	4.8	0.0	0.0	0.0	0.0		-7.5

ISO 9613-2	2	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI001	WEA 1	108.1	0.0	2439.6	78.7	0.2	-3.0	0.0	0.0	0.0	0.0		26.3
WEAI002	WEA 2	108.1	0.0	3026.4	80.6	0.2	-3.0	0.0	0.0	0.0	0.0		23.5
WEAI003	WEA 3	108.1	0.0	3191.5	81.1	0.2	-3.0	0.0	0.0	0.0	0.0		22.8
WEAI004	WEA 4	108.1	0.0	2858.8	80.1	0.2	-3.0	0.0	0.0	0.0	0.0		24.2
WEAI005	WEA 5	108.1	0.0	3090.2	80.8	0.2	-3.0	0.0	0.0	0.0	0.0		23.2
WEAI006	WEA 6	108.1	0.0	2362.4	78.5	0.2	-3.0	0.0	0.0	0.0	0.0		26.7

Firma:	planGIS GmbH	Zusatzbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Immissionsberechnung	Beurteilung nach TA Lärm (2017)	
Zusatzbelastung (schallred.)	Einstellung: Interimsverfahren 2017	Nacht (22h-6h)

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt018	A - Am Hechtstücken 9	626601	5800756	117	33.7

ISO 9613-2	ISO 9613-2		LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI856	WEA 1	108.1	0.0	2903.9	80.3	0.3	-3.0	0.0	0.0	2.5	0.0		24.0
WEAI857	WEA 2	108.1	0.0	2437.8	78.7	0.2	-3.0	0.0	0.0	0.0	0.0		26.3
WEAI858	WEA 3	108.1	0.0	2074.0	77.3	0.2	-3.0	0.0	0.0	0.0	0.0		28.3
WEAI859	WEA 4	105.1	0.0	2178.6	77.8	0.2	-3.0	0.0	0.0	0.0	0.0		25.2
WEAI860	WEA 5	105.1	0.0	1844.4	76.3	0.2	-3.0	0.0	0.0	0.0	0.0		27.2
WEAI861	WEA 6	104.1	0.0	2721.2	79.7	0.3	-3.0	0.0	0.0	1.4	0.0		21.6

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt017	B - Dornsiek 14	627018	5801344	126	37.9

ISO 9613-2	!	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI856	WEA 1	108.1	0.0	2261.1	78.1	0.2	-3.0	0.0	0.0	1.1	0.0		27.2
WEAI857	WEA 2	108.1	0.0	1862.8	76.4	0.2	-3.0	0.0	0.0	2.2	0.0		29.6
WEAI858	WEA 3	108.1	0.0	1488.0	74.5	0.2	-3.0	0.0	0.0	1.7	0.0		32.3
WEAI859	WEA 4	105.1	0.0	1511.2	74.6	0.2	-3.0	0.0	0.0	1.4	0.0		29.6
WEAI860	WEA 5	105.1	0.0	1154.2	72.2	0.1	-3.0	0.0	0.0	1.1	0.0		32.6
WEAI861	WEA 6	104.1	0.0	2041.7	77.2	0.2	-3.0	0.0	0.0	1.1	0.0		25.1

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt025	C - geplantes WA	626736	5801412	123	38.1

ISO 9613-2)	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	2235.4	78.0	0.2	-3.0	0.0	0.0	1.2	0.0	27.4
WEAI857	WEA 2	108.1	0.0	1778.5	76.0	0.2	-3.0	0.0	0.0	1.0	0.0	30.2
WEAI858	WEA 3	108.1	0.0	1411.6	74.0	0.1	-3.0	0.0	0.0	0.8	0.0	33.0
WEAI859	WEA 4	105.1	0.0	1516.7	74.6	0.2	-3.0	0.0	0.0	0.9	0.0	29.5
WEAI860	WEA 5	105.1	0.0	1199.4	72.6	0.1	-3.0	0.0	0.0	0.6	0.0	32.2
WEAI861	WEA 6	104.1	0.0	2059.9	77.3	0.2	-3.0	0.0	0.0	1.1	0.0	25.0

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt020	D - Jugendzeltplatz Almke	627086	5801697	132	41.1

ISO 9613-2	2	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet									
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	1904.5	76.6	0.2	-3.0	0.0	0.0	1.3	0.0	29.4
WEAI857	WEA 2	108.1	0.0	1527.8	74.7	0.1	-3.0	0.0	0.0	0.0	0.0	32.0
WEAI858	WEA 3	108.1	0.0	1154.3	72.2	0.1	-3.0	0.0	0.0	0.0	0.0	35.3
WEAI859	WEA 4	105.1	0.0	1154.0	72.2	0.1	-3.0	0.0	0.0	0.0	0.0	32.6
WEAI860	WEA 5	105.1	0.0	800.54	69.1	0.1	-3.0	0.0	0.0	0.0	0.0	36.6
WEAI861	WEA 6	104.1	0.0	1683.3	75.5	0.2	-3.0	0.0	0.0	0.6	0.0	27.4

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt019	E - Mühlenberg 1	626610	5801703	129	40.0

Firma:	planGIS GmbH	Zusatzbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet									
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	1985.7	77.0	0.2	-3.0	0.0	0.0	1.1	0.0	28.9
WEAI857	WEA 2	108.1	0.0	1495.8	74.5	0.2	-3.0	0.0	0.0	0.9	0.0	32.3
WEAI858	WEA 3	108.1	0.0	1139.9	72.1	0.1	-3.0	0.0	0.0	0.8	0.0	35.4
WEAI859	WEA 4	105.1	0.0	1305.7	73.3	0.2	-3.0	0.0	0.0	1.2	0.0	31.2
WEAI860	WEA 5	105.1	0.0	1040.5	71.3	0.1	-3.0	0.0	0.0	0.0	0.0	33.8
WEAI861	WEA 6	104.1	0.0	1847.3	76.3	0.2	-3.0	0.0	0.0	1.0	0.0	26.3

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt022	Fa - Siedlung 21	628326	5802861	129	40.7

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet									
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	1347.7	73.6	0.1	-3.0	0.0	0.0	0.0	0.0	33.5
WEAI857	WEA 2	108.1	0.0	1601.9	75.1	0.1	-3.0	0.0	0.0	0.0	0.0	31.5
WEAI858	WEA 3	108.1	0.0	1508.8	74.6	0.1	-3.0	0.0	0.0	0.0	0.0	32.2
WEAI859	WEA 4	105.1	0.0	1085.1	71.7	0.1	-3.0	0.0	0.0	0.0	0.0	33.3
WEAI860	WEA 5	105.1	0.0	1099.8	71.8	0.1	-3.0	0.0	0.0	0.0	0.0	33.2
WEAI861	WEA 6	104.1	0.0	981.00	70.8	0.1	-3.0	0.0	0.0	0.0	0.0	33.5

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt028	Fb - Hauptstraße 41	628297	5802959	125	41.1

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI856	WEA 1	108.1	0.0	1272.5	73.1	0.1	-3.0	0.0	0.0	0.0	0.0		34.2
WEAI857	WEA 2	108.1	0.0	1556.9	74.8	0.1	-3.0	0.0	0.0	0.0	0.0		31.8
WEAI858	WEA 3	108.1	0.0	1486.9	74.4	0.1	-3.0	0.0	0.0	0.0	0.0		32.4
WEAI859	WEA 4	105.1	0.0	1064.5	71.5	0.1	-3.0	0.0	0.0	0.0	0.0		33.5
WEAI860	WEA 5	105.1	0.0	1115.4	71.9	0.1	-3.0	0.0	0.0	0.6	0.0		33.0
WEAI861	WEA 6	104.1	0.0	912.74	70.2	0.1	-3.0	0.0	0.0	0.0	0.0		34.3

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt027	Fc - Siedlung 17	628376	5802887	128	40.3

ISO 9613-2	!	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT	
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB	
WEAI856	WEA 1	108.1	0.0	1376.0	73.8	0.1	-3.0	0.0	0.0	0.0	0.0		33.3	
WEAI857	WEA 2	108.1	0.0	1645.8	75.3	0.1	-3.0	0.0	0.0	0.0	0.0		31.2	
WEAI858	WEA 3	108.1	0.0	1559.7	74.9	0.1	-3.0	0.0	0.0	0.0	0.0		31.8	
WEAI859	WEA 4	105.1	0.0	1135.8	72.1	0.1	-3.0	0.0	0.0	0.0	0.0		32.8	
WEAI860	WEA 5	105.1	0.0	1155.8	72.3	0.1	-3.0	0.0	0.0	1.2	0.0		32.6	
WEAI861	WEA 6	104.1	0.0	1012.9	71.1	0.1	-3.0	0.0	0.0	0.0	0.0		33.1	

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt029	Fd - Siedlung 11	628444	5802897	127	39.7

ISO 9613-2	2	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI856	WEA 1	108.1	0.0	1429.3	74.1	0.1	-3.0	0.0	0.0	0.0	0.0		32.8
WEAI857	WEA 2	108.1	0.0	1710.7	75.7	0.1	-3.0	0.0	0.0	0.0	0.0		30.7
WEAI858	WEA 3	108.1	0.0	1627.7	75.2	0.2	-3.0	0.0	0.0	0.9	0.0		31.3
WEAI859	WEA 4	105.1	0.0	1203.5	72.6	0.1	-3.0	0.0	0.0	0.6	0.0		32.2
WEAI860	WEA 5	105.1	0.0	1221.7	72.7	0.1	-3.0	0.0	0.0	0.8	0.0		32.0

Firma:	planGIS GmbH	Zusatzbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2	!	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI861	WEA 6	104.1	0.0	1069.6	71.6	0.1	-3.0	0.0	0.0	0.0	0.0	32.5

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt026	Fe - Siedlung 4	628473	5802943	125	39.6

ISO 9613-2	2	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI856	WEA 1	108.1	0.0	1434.1	74.1	0.1	-3.0	0.0	0.0	0.0	0.0		32.8
WEAI857	WEA 2	108.1	0.0	1733.0	75.8	0.1	-3.0	0.0	0.0	0.0	0.0		30.5
WEAI858	WEA 3	108.1	0.0	1660.2	75.4	0.2	-3.0	0.0	0.0	1.5	0.0		31.0
WEAI859	WEA 4	105.1	0.0	1236.3	72.8	0.1	-3.0	0.0	0.0	0.0	0.0		31.8
WEAI860	WEA 5	105.1	0.0	1266.3	73.1	0.2	-3.0	0.0	0.0	1.4	0.0		31.6
WEAI861	WEA 6	104.1	0.0	1079.7	71.7	0.1	-3.0	0.0	0.0	0.0	0.0		32.4

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt021	G - Bahnhofstr. 17	628201	5803296	118	42.0

ISO 9613-2		LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI856	WEA 1	108.1	0.0	1053.2	71.5	0.1	-3.0	0.0	0.0	0.1	0.0		36.3
WEAI857	WEA 2	108.1	0.0	1451.5	74.2	0.1	-3.0	0.0	0.0	0.0	0.0		32.6
WEAI858	WEA 3	108.1	0.0	1468.5	74.3	0.1	-3.0	0.0	0.0	0.0	0.0		32.5
WEAI859	WEA 4	105.1	0.0	1071.8	71.6	0.1	-3.0	0.0	0.0	0.0	0.0		33.4
WEAI860	WEA 5	105.1	0.0	1237.0	72.8	0.1	-3.0	0.0	0.0	0.0	0.0		31.8
WEAI861	WEA 6	104.1	0.0	744.23	68.4	0.1	-3.0	0.0	0.0	0.0	0.0		36.4

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt023	H - Himmelberg 1	626125	5805535	109	32.2

ISO 9613-2		LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI856	WEA 1	108.1	0.0	2229.7	78.0	0.2	-3.0	0.0	0.0	1.2	0.0		27.4
WEAI857	WEA 2	108.1	0.0	2445.9	78.8	0.2	-3.0	0.0	0.0	1.2	0.0		26.3
WEAI858	WEA 3	108.1	0.0	2820.6	80.0	0.3	-3.0	0.0	0.0	1.3	0.0		24.4
WEAI859	WEA 4	105.1	0.0	2940.3	80.4	0.3	-3.0	0.0	0.0	1.3	0.0		21.4
WEAI860	WEA 5	105.1	0.0	3319.0	81.4	0.3	-3.0	0.0	0.0	1.3	0.0		19.8
WEAI861	WEA 6	104.1	0.0	2595.6	79.3	0.3	-3.0	0.0	0.0	1.2	0.0		22.2

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt024	I - B-Plan Parkstraße	629318	5804795	95	31.2

ISO 9613-2		LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT	
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB	
WEAI856	WEA 1	108.1	0.0	2439.6	78.7	0.2	-3.0	0.0	0.0	0.0	0.0		26.3	
WEAI857	WEA 2	108.1	0.0	3026.4	80.6	0.2	-3.0	0.0	0.0	0.0	0.0		23.5	
WEAI858	WEA 3	108.1	0.0	3191.5	81.1	0.2	-3.0	0.0	0.0	0.0	0.0		22.8	
WEAI859	WEA 4	105.1	0.0	2858.8	80.1	0.2	-3.0	0.0	0.0	0.0	0.0		21.8	
WEAI860	WEA 5	105.1	0.0	3090.2	80.8	0.2	-3.0	0.0	0.0	0.0	0.0		20.8	
WEAI861	WEA 6	104.1	0.0	2362.4	78.5	0.2	-3.0	0.0	0.0	0.0	0.0		23.3	

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

Immissionsberechnung	Beurteilung nach TA Lärm (2017)	
Gesamtbelastung (schallred.)	Einstellung: Interimsverfahren 2017	Nacht (22h-6h)

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt018	A - Am Hechtstücken 9	626601	5800756	117	33.8

ISO 9613-2 LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet							Cmet					
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1772.3	76.0	3.4	4.6	0.0	0.0	0.0	0.0	4.0
EZQi003	BHKW	85.0	3.0	905.45	70.1	1.7	4.5	0.0	0.0	0.0	0.0	11.6

ISO 9613-2	2	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT	
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB	
WEAI856	WEA 1	108.1	0.0	2903.9	80.3	0.3	-3.0	0.0	0.0	2.5	0.0		24.0	
WEAI857	WEA 2	108.1	0.0	2437.8	78.7	0.2	-3.0	0.0	0.0	0.0	0.0		26.3	
WEAI858	WEA 3	108.1	0.0	2074.0	77.3	0.2	-3.0	0.0	0.0	0.0	0.0		28.3	
WEAI859	WEA 4	105.1	0.0	2178.6	77.8	0.2	-3.0	0.0	0.0	0.0	0.0		25.2	
WEAI860	WEA 5	105.1	0.0	1844.4	76.3	0.2	-3.0	0.0	0.0	0.0	0.0		27.2	
WEAI861	WEA 6	104.1	0.0	2721.2	79.7	0.3	-3.0	0.0	0.0	1.4	0.0		21.6	

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt017	B - Dornsiek 14	627018	5801344	126	38.1

ISO 9613-2	!	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1165.3	72.3	2.2	4.6	0.0	0.0	0.0	0.0	8.9
EZQi003	BHKW	85.0	3.0	291.14	60.3	0.6	4.0	0.0	0.0	0.0	0.0	23.1

ISO 9613-2	2	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI856	WEA 1	108.1	0.0	2261.1	78.1	0.2	-3.0	0.0	0.0	1.1	0.0		27.2
WEAI857	WEA 2	108.1	0.0	1862.8	76.4	0.2	-3.0	0.0	0.0	2.2	0.0		29.6
WEAI858	WEA 3	108.1	0.0	1488.0	74.5	0.2	-3.0	0.0	0.0	1.7	0.0		32.3
WEAI859	WEA 4	105.1	0.0	1511.2	74.6	0.2	-3.0	0.0	0.0	1.4	0.0		29.6
WEAI860	WEA 5	105.1	0.0	1154.2	72.2	0.1	-3.0	0.0	0.0	1.1	0.0		32.6
WEAI861	WEA 6	104.1	0.0	2041.7	77.2	0.2	-3.0	0.0	0.0	1.1	0.0		25.1

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt025	C - geplantes WA	626736	5801412	123	38.3

ISO 9613-2		LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1103.4	71.9	2.1	4.6	0.0	0.0	0.0	0.0	9.5
EZQi003	BHKW	85.0	3.0	258.04	59.2	0.5	3.8	0.0	0.0	0.0	0.0	24.5

ISO 9613-2	!	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	2235.4	78.0	0.2	-3.0	0.0	0.0	1.2	0.0	27.4
WEAI857	WEA 2	108.1	0.0	1778.5	76.0	0.2	-3.0	0.0	0.0	1.0	0.0	30.2
WEAI858	WEA 3	108.1	0.0	1411.6	74.0	0.1	-3.0	0.0	0.0	0.8	0.0	33.0
WEAI859	WEA 4	105.1	0.0	1516.7	74.6	0.2	-3.0	0.0	0.0	0.9	0.0	29.5
WEAI860	WEA 5	105.1	0.0	1199.4	72.6	0.1	-3.0	0.0	0.0	0.6	0.0	32.2
WEAI861	WEA 6	104.1	0.0	2059.9	77.3	0.2	-3.0	0.0	0.0	1.1	0.0	25.0

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2	2	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet					
Element	Bezeichnung	Lw	Lw Dc Abstand Adiv Aatm Agr Afol Ahous Abar Cmet								LfT		
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB

П	PKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
П	Pkt020	D - Jugendzeltplatz Almke	627086	5801697	132	41.2

ISO 9613-2)	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	827.53	69.4	1.6	4.4	0.0	0.0	0.0	0.0	12.6
EZQi003	BHKW	85.0	3.0	204.41	57.2	0.4	3.7	0.0	0.0	0.0	0.0	26.7

ISO 9613-2	2	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	1904.5	76.6	0.2	-3.0	0.0	0.0	1.3	0.0	29.4
WEAI857	WEA 2	108.1	0.0	1527.8	74.7	0.1	-3.0	0.0	0.0	0.0	0.0	32.0
WEAI858	WEA 3	108.1	0.0	1154.3	72.2	0.1	-3.0	0.0	0.0	0.0	0.0	35.3
WEAI859	WEA 4	105.1	0.0	1154.0	72.2	0.1	-3.0	0.0	0.0	0.0	0.0	32.6
WEAI860	WEA 5	105.1	0.0	800.54	69.1	0.1	-3.0	0.0	0.0	0.0	0.0	36.6
WEAI861	WEA 6	104.1	0.0	1683.3	75.5	0.2	-3.0	0.0	0.0	0.6	0.0	27.4

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt019	E - Mühlenberg 1	626610	5801703	129	40.1

ISO 9613-2)	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	850.32	69.6	1.6	4.5	0.0	0.0	0.0	0.0	12.3
EZQi003	BHKW	85.0	3.0	305.09	60.7	0.6	4.0	0.0	0.0	0.0	0.0	22.8

ISO 9613-2		LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	1985.7	77.0	0.2	-3.0	0.0	0.0	1.1	0.0	28.9
WEAI857	WEA 2	108.1	0.0	1495.8	74.5	0.2	-3.0	0.0	0.0	0.9	0.0	32.3
WEAI858	WEA 3	108.1	0.0	1139.9	72.1	0.1	-3.0	0.0	0.0	0.8	0.0	35.4
WEAI859	WEA 4	105.1	0.0	1305.7	73.3	0.2	-3.0	0.0	0.0	1.2	0.0	31.2
WEAI860	WEA 5	105.1	0.0	1040.5	71.3	0.1	-3.0	0.0	0.0	0.0	0.0	33.8
WEAI861	WEA 6	104.1	0.0	1847.3	76.3	0.2	-3.0	0.0	0.0	1.0	0.0	26.3

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt022	Fa - Siedlung 21	628326	5802861	129	40.7

ISO 9613-2		LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1471.3	74.4	2.8	4.6	0.0	0.0	0.0	0.0	6.2
EZQi003	BHKW	85.0	3.0	1895.7	76.6	3.6	4.8	0.0	0.0	0.0	0.0	3.0

ISO 9613-2	2	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	1347.7	73.6	0.1	-3.0	0.0	0.0	0.0	0.0	33.5
WEAI857	WEA 2	108.1	0.0	1601.9	75.1	0.1	-3.0	0.0	0.0	0.0	0.0	31.5
WEAI858	WEA 3	108.1	0.0	1508.8	74.6	0.1	-3.0	0.0	0.0	0.0	0.0	32.2
WEAI859	WEA 4	105.1	0.0	1085.1	71.7	0.1	-3.0	0.0	0.0	0.0	0.0	33.3
WEAI860	WEA 5	105.1	0.0	1099.8	71.8	0.1	-3.0	0.0	0.0	0.0	0.0	33.2
WEAI861	WEA 6	104.1	0.0	981.00	70.8	0.1	-3.0	0.0	0.0	0.0	0.0	33.5

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2)	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet					
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
IPKT	IPKT: Bezeichnung		IF	KT: x /m		IP	KT: y/m		IP	KT: z/m		Lr(II	P) /dB(A)
IPkt028	Fb - Hauptstraße 41		628297				5802959			125			41.1

ISO 9613-2)	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1470.4	74.3	2.8	4.6	0.0	0.0	0.0	0.0	6.2
EZQi003	BHKW	85.0	3.0	1940.7	76.8	3.7	4.8	0.0	0.0	0.0	0.0	2.7

ISO 9613-2)	LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	1272.5	73.1	0.1	-3.0	0.0	0.0	0.0	0.0	34.2
WEAI857	WEA 2	108.1	0.0	1556.9	74.8	0.1	-3.0	0.0	0.0	0.0	0.0	31.8
WEAI858	WEA 3	108.1	0.0	1486.9	74.4	0.1	-3.0	0.0	0.0	0.0	0.0	32.4
WEAI859	WEA 4	105.1	0.0	1064.5	71.5	0.1	-3.0	0.0	0.0	0.0	0.0	33.5
WEAI860	WEA 5	105.1	0.0	1115.4	71.9	0.1	-3.0	0.0	0.0	0.6	0.0	33.0
WEAI861	WEA 6	104.1	0.0	912.74	70.2	0.1	-3.0	0.0	0.0	0.0	0.0	34.3

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt027	Fc - Siedlung 17	628376	5802887	128	40.3

ISO 9613-2		LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1526.4	74.7	2.9	4.6	0.0	0.0	0.0	0.0	5.8
EZQi003	BHKW	85.0	3.0	1951.0	76.8	3.8	4.8	0.0	0.0	0.0	0.0	2.7

ISO 9613-2		LfT = Lw	+ Dc - A	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	1376.0	73.8	0.1	-3.0	0.0	0.0	0.0	0.0	33.3
WEAI857	WEA 2	108.1	0.0	1645.8	75.3	0.1	-3.0	0.0	0.0	0.0	0.0	31.2
WEAI858	WEA 3	108.1	0.0	1559.7	74.9	0.1	-3.0	0.0	0.0	0.0	0.0	31.8
WEAI859	WEA 4	105.1	0.0	1135.8	72.1	0.1	-3.0	0.0	0.0	0.0	0.0	32.8
WEAI860	WEA 5	105.1	0.0	1155.8	72.3	0.1	-3.0	0.0	0.0	1.2	0.0	32.6
WEAI861	WEA 6	104.1	0.0	1012.9	71.1	0.1	-3.0	0.0	0.0	0.0	0.0	33.1

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt029	Fd - Siedlung 11	628444	5802897	127	39.8

ISO 9613-2		LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Afe	ol - Ahous	- Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1594.5	75.1	3.1	4.6	0.0	0.0	0.0	0.0	5.3
EZQi003	BHKW	85.0	3.0	2009.1	77.1	3.9	4.8	0.0	0.0	0.0	0.0	2.3

ISO 9613-2)	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	1429.3	74.1	0.1	-3.0	0.0	0.0	0.0	0.0	32.8
WEAI857	WEA 2	108.1	0.0	1710.7	75.7	0.1	-3.0	0.0	0.0	0.0	0.0	30.7
WEAI858	WEA 3	108.1	0.0	1627.7	75.2	0.2	-3.0	0.0	0.0	0.9	0.0	31.3
WEAI859	WEA 4	105.1	0.0	1203.5	72.6	0.1	-3.0	0.0	0.0	0.6	0.0	32.2
WEAI860	WEA 5	105.1	0.0	1221.7	72.7	0.1	-3.0	0.0	0.0	0.8	0.0	32.0
WEAI861	WEA 6	104.1	0.0	1069.6	71.6	0.1	-3.0	0.0	0.0	0.0	0.0	32.5

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2	2	LfT = Lw	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
IPkt026	Fe - Siedlung 4			628473			5802943			125			39.6

ISO 9613-2)	LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1634.8	75.3	3.1	4.6	0.0	0.0	0.0	0.0	5.0
EZQi003	BHKW	85.0	3.0	2060.9	77.3	4.0	4.8	0.0	0.0	0.0	0.0	2.0

ISO 9613-2)	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI856	WEA 1	108.1	0.0	1434.1	74.1	0.1	-3.0	0.0	0.0	0.0	0.0	32.8
WEAI857	WEA 2	108.1	0.0	1733.0	75.8	0.1	-3.0	0.0	0.0	0.0	0.0	30.5
WEAI858	WEA 3	108.1	0.0	1660.2	75.4	0.2	-3.0	0.0	0.0	1.5	0.0	31.0
WEAI859	WEA 4	105.1	0.0	1236.3	72.8	0.1	-3.0	0.0	0.0	0.0	0.0	31.8
WEAI860	WEA 5	105.1	0.0	1266.3	73.1	0.2	-3.0	0.0	0.0	1.4	0.0	31.6
WEAI861	WEA 6	104.1	0.0	1079.7	71.7	0.1	-3.0	0.0	0.0	0.0	0.0	32.4

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt021	G - Bahnhofstr. 17	628201	5803296	118	42.0

ISO 9613-2		LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	1525.3	74.7	2.9	4.6	0.0	0.0	0.0	0.0	5.8
EZQi003	BHKW	85.0	3.0	2129.0	77.6	4.1	4.8	0.0	0.0	0.0	0.0	1.6

ISO 9613-2	!	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI856	WEA 1	108.1	0.0	1053.2	71.5	0.1	-3.0	0.0	0.0	0.1	0.0		36.3
WEAI857	WEA 2	108.1	0.0	1451.5	74.2	0.1	-3.0	0.0	0.0	0.0	0.0		32.6
WEAI858	WEA 3	108.1	0.0	1468.5	74.3	0.1	-3.0	0.0	0.0	0.0	0.0		32.5
WEAI859	WEA 4	105.1	0.0	1071.8	71.6	0.1	-3.0	0.0	0.0	0.0	0.0		33.4
WEAI860	WEA 5	105.1	0.0	1237.0	72.8	0.1	-3.0	0.0	0.0	0.0	0.0		31.8
WEAI861	WEA 6	104.1	0.0	744.23	68.4	0.1	-3.0	0.0	0.0	0.0	0.0		36.4

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt023	H - Himmelberg 1	626125	5805535	109	32.2

ISO 9613-2		LfT = Lw	+ Dc - Ad	div - Aatm	- Agr - Af	ol - Ahous	s - Abar -	Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
EZQi001	Biogasanlage	85.0	3.0	3129.9	80.9	6.0	4.7	0.0	0.0	0.0	0.0	-3.6
EZQi003	BHKW	85.0	3.0	4000.9	83.0	7.7	4.8	0.0	0.0	0.0	0.0	-7.5

ISO 9613-2)	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI856	WEA 1	108.1	0.0	2229.7	78.0	0.2	-3.0	0.0	0.0	1.2	0.0		27.4
WEAI857	WEA 2	108.1	0.0	2445.9	78.8	0.2	-3.0	0.0	0.0	1.2	0.0		26.3
WEAI858	WEA 3	108.1	0.0	2820.6	80.0	0.3	-3.0	0.0	0.0	1.3	0.0		24.4
WEAI859	WEA 4	105.1	0.0	2940.3	80.4	0.3	-3.0	0.0	0.0	1.3	0.0		21.4
WEAI860	WEA 5	105.1	0.0	3319.0	81.4	0.3	-3.0	0.0	0.0	1.3	0.0		19.8
WEAI861	WEA 6	104.1	0.0	2595.6	79.3	0.3	-3.0	0.0	0.0	1.2	0.0		22.2

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	Lr(IP) /dB(A)
IPkt024	I - B-Plan Parkstraße	629318	5804795	95	31.2

Firma:	planGIS GmbH	Gesamtbelastung (red.)	
Bearbeiter:	W. Packmor		
Projekt:	4_21_001_Volkmarsdorf		

ISO 9613-2	!	LfT = Lw	_fT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB

ISO 9613-2		LfT = Lw	_fT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet										
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
EZQi001	Biogasanlage	85.0	3.0	3333.0	81.5	6.4	4.7	0.0	0.0	0.0	0.0		-4.6
EZQi003	BHKW	85.0	3.0	3998.0	83.0	7.7	4.8	0.0	0.0	0.0	0.0		-7.5

ISO 9613-2)	LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous - Abar - Cmet											
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet		LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB		/dB
WEAI856	WEA 1	108.1	0.0	2439.6	78.7	0.2	-3.0	0.0	0.0	0.0	0.0		26.3
WEAI857	WEA 2	108.1	0.0	3026.4	80.6	0.2	-3.0	0.0	0.0	0.0	0.0		23.5
WEAI858	WEA 3	108.1	0.0	3191.5	81.1	0.2	-3.0	0.0	0.0	0.0	0.0		22.8
WEAI859	WEA 4	105.1	0.0	2858.8	80.1	0.2	-3.0	0.0	0.0	0.0	0.0		21.8
WEAI860	WEA 5	105.1	0.0	3090.2	80.8	0.2	-3.0	0.0	0.0	0.0	0.0		20.8
WEAI861	WEA 6	104.1	0.0	2362.4	78.5	0.2	-3.0	0.0	0.0	0.0	0.0		23.3

Technische Dokumentation Windenergieanlagen 4.x/5.x-158 - 50 Hz

Schallleistung Normalbetrieb und Schallreduzierter Betrieb gemäß FGW

Inkl. Terz- und Oktavbandspektren NO 104/106 und NRO 100-105

Geräuschreduzierende Blatthinterkanten (Serrations):

Enthalten

Rev. 02 - DE

2020-09-14

Zum Öffnen eventueller Anhänge bitte auf das Büroklammer-Symbol 🤗) klicken. Es wird bei Adobe Acrobat normalerweise links angezeigt.

- Originaldokument -

GE Renewable Energy

Visit us at www.gerenewableenergy.com

Urheber- und Verwertungsrechte

Dieses Dokument ist vertraulich zu behandeln. Es darf nur befugten Personen zugänglich gemacht werden. Eine Überlassung an Dritte darf nur mit ausdrücklicher, schriftlicher Zustimmung der General Electric Company erfolgen.

Alle Unterlagen sind im Sinne des Urheberrechtgesetzes geschützt. Die Weitergabe sowie die Vervielfältigung von Unterlagen, auch auszugsweise, sowie eine Verwertung und Mitteilung ihres Inhaltes sind nicht gestattet, es sei denn, dass eine ausdrückliche, vorherige und schriftliche Zustimmung der General Electric Company erteilt wurde. Zuwiderhandlungen sind strafbar und verpflichten zu Schadenersatz. Alle Rechte zur Ausübung von gewerblichen Schutzrechten behalten wir uns vor.

© 2020 General Electric Company. Alle Rechte vorbehalten.

GE und das GE-Monogramm sind Warenzeichen und Dienstleistungsmarken der General Electric Company.

Andere, in diesem Dokument genannte Unternehmens- oder Produktnamen sind ggf. Warenzeichen bzw. eingetragene Warenzeichen ihrer jeweiligen Unternehmen.

Inhaltsverzeichnis

1	Einf	führung	
	1.1	führungAllgemein	
	1.2	Wind Farm Noise Management (verfügbar als Option)	(
2		nfigurationsübersicht	
3	Sch	allleistungspegel als Funktion der Windgeschwindigkeit	
4		tav- und Terz-Spektren	
	4.1	5.x-158 – 106.0 dB immissionsrelevanter Schallleistungspegel	
	4.2	5.x-158 – 105.0 dB Immissionsrelevanter Schallleistungspegel	
	4.3	4.x/5.x-158 – 104.0 dB Immissionsrelevanter Schallleistungspegel	12
	4.4	4.x/5.x-158 – 103.0 dB Immissionsrelevanter Schallleistungspegel	14
	4.5	4.x/5.x-158 – 102.0 dB Immissionsrelevanter Schallleistungspegel	16
	4.6	4.x/5.x-158 – 101.0 dB Immissionsrelevanter Schallleistungspegel	18
	4.7	4.x/5.x-158 – 100.0 dB Immissionsrelevanter Schallleistungspegel	20
5	Uns	sicherheitsangaben	22
6	Ton	nalität	22
7	Terr	minologie nach IEC 61400-11 und IEC/TS 61400-14	22
8	Refe	erenzdokumente	23
	Anhan	ng I - Windgeschwindigkeit in 10 m Höhe für alle Nabenhöhen	23

1 Einführung

1.1 Allgemein

Dieses Dokument beschreibt die Schallleistung der Windenergie anlagen 4.5/4.8/5.3 und 5.5-158 für den Normal- und schallreduzierten Betrieb und fasst den berechneten Schallleistungspegel L_{WA,k}, die berechneten Oktav- und Terz-Spektren, die Unsicherheitsangaben im Zusammenhang mit dem immissionsrelevanten Schallleistungspegel sowie die Tonalität zusammen.

- Originaldokument -

Alle angegebenen Schallleistungspegel sind A-bewertet.

GE überprüft Spezifikationen kontinuierlich durch Messungen, einschließlich der von unabhängigen Instituten durchgeführten Messungen.

Mit Hilfe der Anlagensteuerung kann die Anlage ohne manuellen Eingriff in den schallreduzierten Betrieb "NRO" (Noise-Reduced Operation) schalten. Dabei handelt es sich um keinen zwingend vorgeschriebenen Betriebspunkt, sondern um einen Bereich unter dem "normalen" Nennbetrieb, der über Parameter definiert werden kann.

Die WEA kann über ihre Steuerung auf schallreduzierten Betrieb umgestellt werden, was normalerweise je nach Tageszeit erfolgt, d. h. die Anlage wird nachts schallreduziert und tagsüber im Normalbetrieb gefahren.

Das emittierte Geräusch wird überwiegend durch das aerodynamische Breitbandrauschen der Rotorblätter in direkter Abhängigkeit von der Umfangs- oder Rotorspitzengeschwindigkeit bestimmt.

Der Schallleistungspegel kann durch eine Reduzierung und Begrenzung der Rotordrehzahl, mit der auch eine Abnahme der Blattspitzengeschwindigkeit einher geht, gesenkt werden. Die Nennleistungsabgabe der WEA reduziert sich entsprechend. Hierzu werden ggf. auch Änderungen des bestehenden Blattregelungskonzepts erforderlich. Die NRO-Betriebsarten nutzen diese beiden Verfahren, um unter Einhaltung der Schallleistungsvorgaben eine optimale Energieausbeute zu erzielen.

Im oberen Windgeschwindigkeitsbereich ist aufgrund der Leistungsreduzierung von einer gewissen Minderung des Energieertrags der WEA auszugehen, die sich jedoch zugunsten ihres Schallleistungspegels auswirkt.

Die Parametereinstellungen der Steuerung bestimmen, welche maximale Geräuschemission die Anlage im Betrieb haben darf.

Da die WEA-Steuerung die Betriebsdaten ständig auf dem Anlagenrechner überwacht, besteht zu jeder Zeit die Möglichkeit, die Übereinstimmung zwischen Ist- und Soll-Betriebsart zu belegen. Dies kann zum Nachweis der Einhaltung eventueller Auflagen von Überwachungsbehörden nützlich sein.

Der schallreduzierte Betrieb (NRO) wird über eine plombierte Schaltuhr zeitgesteuert aktiviert. Die wichtigsten Daten sind:

P_Act 10 Minuten Mittelwert der elektrischen Wirkleistung

N_Rot 10 Minuten Mittelwert der Rotordrehzahl.

1.2 Wind Farm Noise Management (verfügbar als Option)

In Gebieten mit Schallschutzbestimmungen ist es häufig erforderlich, den Betrieb der Windenergieanlage (WEA) an die Bestimmungen der Fernfeldbedingungen anzupassen. Daher bietet GE ein abgestimmtes Wind Farm Noise Management System an, welches größere Flexibilität und höhere Energieerträge bietet, als das bei herkömmlichen WEA-Steuerungen der Fall ist. Diese fortgeschrittene Methode ermöglicht eine kontinuierliche Anpassung des Windpark-Betriebs an umweltbedingte Variablen, die die Schallemission des Windparks beeinflussen. Diese Variablen sind im Wesentlichen Windgeschwindigkeit und Windrichtung.

Das Wind Farm Noise Management Paket enthält folgenden Service und folgende Hardware:

- Schallausbreitungsrechnungen und Optimierung des Windparkbetriebes
- Optimale WEA-Sollwerte für den gesamten Windpark als Funktion von Windgeschwindigkeit und Windsektor
- Installation und Inbetriebnahme der Wind Farm Noise Management Software.

2 Konfigurationsübersicht

Die folgende Tabelle bietet eine Übersicht der verfügbaren Kombinationen von immissionsrelevanten Schallleistungspegeln $L_{WA,k}$ und Anlagennennleistung.

Zu jeder Betriebsweise gehört ein immissionsrelevanter Schallleistungspegel, ein Rotordrehzahlsollwerte und in einigen Fällen mehrere verfügbare Nennleistungen. So wird beispielsweise der Normalbetrieb von 106 dB erreicht bei 9.7 Umdrehungen pro Minute und einer Nennleistung von 5300 kW oder 5500 kW. Für die Anlage mit 120.9 m Nabenhöhe sind die Betriebsarten NRO 104 und 105 dB nicht verfügbar.

Betriebsbe-	Rotordrehzahl	ı	Nennleistung [kW]								
zeichnung [dB]	sollwerte[rpm]	120.9m Nabenhöhe	150.0m Nabenhöhe	161.0m Nabenhöhe							
NO 106.0	9.70	5300, 5500	5300, 5500	5300, 5500							
NRO 105.0	9.35	N/A	5300	5300							
NO/NRO 104.0	9.00	N/A	4500, 4800, 5100	4500, 4800, 5100							
NRO 103.0	8.54	4500, 4800	4500, 4800	4500, 4800							
NRO 102.0	8.20	4500, 4650	4500, 4650	4500, 4650							
NRO 101.0	7.66	4340	4340	4340							
NRO 100.0	7,22	4090	4090	4090							

Tabelle 1: Übersicht der verfügbaren Kombinationen von immissionsrelevanten Schallleistungspegeln Lwak und Anlagennennleistung.

3 Schallleistungspegel als Funktion der Windgeschwindigkeit

Die folgende Tabelle zeigt die berechneten Soll-Schallleistungspegel in Abhängigkeit der Windgeschwindigkeit in Nabenhöhe.

Windge- schwindigkeit in Nabenhöhe [m/s]	NO 106.0 dB Mode	NRO 105.0 dB Mode	NO/NRO 104.0 dB Mode	NRO 103.0 dB Mode	NRO 1020 dB Mode	NRO 1010 dB Mode	NRO 100.0 dB Mode
4	93.8	93.8	93.8	93.8	93.8	93.8	93.8
5	94.5	94.5	94.5	94.5	94.5	94.5	94.5
6	97.6	97.6	97.6	97.6	97.6	97.6	97.6
7	101.0	101.0	101.0	101.0	101.0	101.0	100.0
8	103.9	103.7	103.5	103.0	102.0	101.0	100.0
9	106.0	105.0	104.0	103.0	102.0	101.0	100.0
10	106.0	105.0	104.0	103.0	102.0	101.0	100.0
11	106.0	105.0	104.0	103.0	102.0	101.0	100.0
12	106.0	105.0	104.0	103.0	102.0	101.0	100.0
13	106.0	105.0	104.0	103.0	102.0	101.0	100.0
14	106.0	105.0	104.0	103.0	102.0	101.0	100.0
15	106.0	105.0	104.0	103.0	102.0	101.0	100.0

Tabelle 2: Soll-Schallleistungspegel

Die entsprechende Windgeschwindigkeit in 10 m Höhe ist von der Nabenhöhe abhängig. Sie kann für eine vorhandene Oberflächenrauheit mit einem logarithmischen Windprofil berechnet werden:

$$V_{10m \ height} = V_{hub} \frac{\ln \left(\frac{10m}{z_0}\right)}{\ln \left(\frac{hub \ height}{z_0}\right)}$$

Ein typischer Wert für Binnenland-Oberflächenrauigkeit (z₀) ist je nach Geländetyp 0,05 m.

4 Oktav- und Terz-Spektren

Die Tabellen in diesem Abschnitt enthalten die Oktav-Spektren und Terz-Spektren für die verschiedenen Betriebsarten.

Die dazugehörigen Windgeschwindigkeiten in 10 m Höhe für alle verfügbaren Nabenhöhen finden sich in Anhang I.

^{*} Vereinfacht nach IEC 61400-11: 2006, Gleichung 7

4.1 5.x-158 - 106.0 dB immissions relevanter Schallleistungspegel

Die Oktav- und Terz-Spektren in diesem Abschnitt sind anwendbar für die angegebenen Nennleistungen, Rotordrehzahlsollwerte und Nabenhöhen.

Nabenhöhe [m]	Rotordrehzahlsollwerte [rpm]	Nennleistung [kW]
120.9	9.70	5300, 5500
150.0	9.70	5300, 5500
161.0	9.70	5300, 5500

	A-bewertete Oktav-Spektren [dB]													
Windgeschwin Nabenhöhe [m		4	5	6	7	8	9	10	11	12	13	14	15	
	16	53.9	54.0	56.3	59.4	62.0	64.5	64.5	64.5	64.5	64.5	64.5	64.5	
	32	67.4	67.3	69.6	72.8	75.5	78.0	78.0	78.0	78.0	78.0	78.0	78.0	
	63	76.3	77.1	79.2	82.0	84.6	87.2	87.2	87.2	87.2	87.2	87.2	87.2	
	125	83.0	85.0	87.1	89.0	91.0	92.6	92.6	92.6	92.6	92.6	92.6	92.6	
Frequenz	250	86.8	88.7	91.8	94.1	96.1	97.2	97.2	97.2	97.2	97.2	97.2	97.2	
[Hz]	500	87.2	87.7	91.7	95.5	98.3	99.7	99.7	99.7	99.7	99.7	99.7	99.7	
	1000	87.6	87.0	90.6	95.1	98.7	101.3	101.3	101.3	101.3	101.3	101.3	101.3	
	2000	86.4	86.4	88.7	92.4	95.9	99.1	99.1	99.1	99.1	99.1	99.1	99.1	
	4000	80.9	82.2	84.0	86.6	89.1	91.7	91.7	91.7	91.7	91.7	91.7	91.7	
	8000	65.1	67.2	69.6	72.4	74.6	76.0	76.0	76.0	76.0	76.0	76.0	76.0	
Gesamtschallle [dB]	eistungspegel	93.8	94.5	97.6	101.0	103.9	106.0	106.0	106.0	106.0	106.0	106.0	106.0	

Tabelle 3: 5.x-158 – 106.0 dB Oktav-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

A-bewertete Terz-Spektren [dB]													
Windgeschwi Nabenhöhe [ı		4	5	6	7	8	9	10	11	12	13	14	15
	12.5	40.6	40.9	43.2	46.3	48.9	51.5	51.5	51.5	51.5	51.5	51.5	51.5
	16	47.3	47.4	49.7	52.8	55.4	57.9	57.9	57.9	57.9	57.9	57.9	57.9
	20	52.6	52.6	54.9	58.0	60.6	63.1	63.1	63.1	63.1	63.1	63.1	63.1
	25	57.3	57.3	59.6	62.7	65.3	67.8	67.8	67.8	67.8	67.8	67.8	67.8
	32	61.5	61.6	63.9	67.0	69.6	72.2	72.2	72.2	72.2	72.2	72.2	72.2
	40	65.4	65.4	67.7	70.9	73.6	76.1	76.1	76.1	76.1	76.1	76.1	76.1
	50	68.4	68.5	70.8	74.0	76.7	79.4	79.4	79.4	79.4	79.4	79.4	79.4
	63	71.2	71.8	73.9	76.9	79.6	82.2	82.2	82.2	82.2	82.2	82.2	82.2
	80	73.6	74.7	76.7	79.3	81.8	84.4	84.4	84.4	84.4	84.4	84.4	84.4
	100	75.8	77.4	79.3	81.6	83.8	86.1	86.1	86.1	86.1	86.1	86.1	86.1
	125	78.1	80.2	82.2	84.1	86.0	87.7	87.7	87.7	87.7	87.7	87.7	87.7
	160	79.8	82.0	84.3	86.0	87.9	89.2	89.2	89.2	89.2	89.2	89.2	89.2
	200	81.1	83.3	85.9	87.9	89.7	90.8	90.8	90.8	90.8	90.8	90.8	90.8
	250	82.1	84.0	87.1	89.4	91.3	92.3	92.3	92.3	92.3	92.3	92.3	92.3
Frequenz	315	82.7	84.2	87.8	90.5	92.6	93.6	93.6	93.6	93.6	93.6	93.6	93.6
[Hz]	400	82.4	83.3	87.3	90.6	92.9	94.1	94.1	94.1	94.1	94.1	94.1	94.1
	500	82.5	83.0	87.0	90.9	93.6	94.9	94.9	94.9	94.9	94.9	94.9	94.9
	630	82.4	82.6	86.5	90.8	93.9	95.5	95.5	95.5	95.5	95.5	95.5	95.5
	800	82.4	82.1	86.1	90.4	93.9	96.0	96.0	96.0	96.0	96.0	96.0	96.0
	1000	82.7	82.1	85.7	90.2	93.9	96.5	96.5	96.5	96.5	96.5	96.5	96.5
	1250	83.3	82.5	85.8	90.4	94.0	97.0	97.0	97.0	97.0	97.0	97.0	97.0
	1600	82.4	82.0	84.6	88.9	92.5	95.7	95.7	95.7	95.7	95.7	95.7	95.7
	2000	81.7	81.8	83.9	87.6	91.1	94.3	94.3	94.3	94.3	94.3	94.3	94.3
	2500	80.5	81.0	82.9	86.0	89.2	92.3	92.3	92.3	92.3	92.3	92.3	92.3
	3150	78.6	79.7	81.5	84.1	86.9	89.7	89.7	89.7	89.7	89.7	89.7	89.7
	4000	75.6	77.0	78.9	81.5	83.7	85.9	85.9	85.9	85.9	85.9	85.9	85.9
	5000	71.5	73.2	75.3	77.9	80.0	81.8	81.8	81.8	81.8	81.8	81.8	81.8
	6300	64.8	66.8	69.2	71.9	74.1	75.5	75.5	75.5	75.5	75.5	75.5	75.5
	8000	54.2	56.6	59.3	62.2	64.6	65.9	65.9	65.9	65.9	65.9	65.9	65.9
	10000	40.1	42.5	45.7	49.1	51.8	53.3	53.3	53.3	53.3	53.3	53.3	53.3
Gesamtschall [dB]	leistungspegel	93.8	94.5	97.6	101.0	103.9	106.0	106.0	106.0	106.0	106.0	106.0	106.

Tabelle 4: 5.x-158 - 106.0 dB Terz-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

4.2 5.x-158 - 105.0 dB Immissionsrelevanter Schallleistungspegel

Die Oktav- und Terz-Spektren in diesem Abschnitt sind anwendbar für die angegebenen Nennleistungen, Rotordrehzahlsollwerte und Nabenhöhen.

Diese Betriebsart ist für die Nabenhöhe von 120.9 m nicht verfügbar.

Nabenhöhe [m]	Rotordrehzahlsollwerte [rpm]	Nennleistung [kW]
120.9	N/A	N/A
150.0	9.35	5300
161.0	9.35	5300

	A-bewertete Oktav-Spektren [dB]													
Windgeschwir Nabenhöhe [n	•	4	5	6	7	8	9	10	11	12	13	14	15	
	16	53.9	54.0	56.3	59.4	61.7	63.5	63.5	63.5	63.5	63.5	63.5	63.5	
	32	67.4	67.3	69.6	72.8	75.3	76.9	76.9	76.9	76.9	76.9	76.9	76.9	
	63	76.3	77.1	79.2	82.0	84.4	86.2	86.2	86.2	86.2	86.2	86.2	86.2	
	125	83.0	85.0	87.1	89.0	90.8	91.9	91.9	91.9	91.9	91.9	91.9	91.9	
Frequenz	250	86.8	88.7	91.8	94.1	95.9	96.6	96.6	96.6	96.6	96.6	96.6	96.6	
[Hz]	500	87.2	87.7	91.7	95.5	98.0	98.9	98.9	98.9	98.9	98.9	98.9	98.9	
	1000	87.6	87.0	90.6	95.1	98.5	100.1	100.1	100.1	100.1	100.1	100.1	100.1	
	2000	86.4	86.4	88.7	92.4	95.7	97.7	97.7	97.7	97.7	97.7	97.7	97.7	
	4000	80.9	82.2	84.0	86.6	88.9	90.4	90.4	90.4	90.4	90.4	90.4	90.4	
8000		65.1	67.2	69.6	72.4	74.4	75.2	75.2	75.2	75.2	75.2	75.2	75.2	
Gesamtschalli [dB]	eistungspegel	93.8	94.5	97.6	101.0	103.7	105.0	105.0	105.0	105.0	105.0	105.0	105.0	

Tabelle 5: 5.x-158 - 105.0 dB Oktav-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

A-bewertete Terz-Spektren [dB]													
Windgeschwir Nabenhöhe [n		4	5	6	7	8	9	10	11	12	13	14	15
	12.5	40.6	40.9	43.2	46.3	48.7	50.5	50.5	50.5	50.5	50.5	50.5	50.5
	16	47.3	47.4	49.7	52.8	55.2	56.9	56.9	56.9	56.9	56.9	56.9	56.9
	20	52.6	52.6	54.9	58.0	60.4	62.1	62.1	62.1	62.1	62.1	62.1	62.1
	25	57.3	57.3	59.6	62.7	65.1	66.8	66.8	66.8	66.8	66.8	66.8	66.8
	32	61.5	61.6	63.9	67.0	69.4	71.1	71.1	71.1	71.1	71.1	71.1	71.1
	40	65.4	65.4	67.7	70.9	73.4	75.0	75.0	75.0	75.0	75.0	75.0	75.0
	50	68.4	68.5	70.8	74.0	76.5	78.3	78.3	78.3	78.3	78.3	78.3	78.3
	63	71.2	71.8	73.9	76.9	79.3	81.2	81.2	81.2	81.2	81.2	81.2	81.2
	80	73.6	74.7	76.7	79.3	81.6	83.4	83.4	83.4	83.4	83.4	83.4	83.4
	100	75.8	77.4	79.3	81.6	83.6	85.2	85.2	85.2	85.2	85.2	85.2	85.2
	125	78.1	80.2	82.2	84.1	85.8	87.0	87.0	87.0	87.0	87.0	87.0	87.0
	160	79.8	82.0	84.3	86.0	87.7	88.6	88.6	88.6	88.6	88.6	88.6	88.6
	200	81.1	83.3	85.9	87.9	89.5	90.2	90.2	90.2	90.2	90.2	90.2	90.2
	250	82.1	84.0	87.1	89.4	91.1	91.7	91.7	91.7	91.7	91.7	91.7	91.7
Frequenz	315	82.7	84.2	87.8	90.5	92.4	93.0	93.0	93.0	93.0	93.0	93.0	93.0
[Hz]	400	82.4	83.3	87.3	90.6	92.7	93.4	93.4	93.4	93.4	93.4	93.4	93.4
	500	82.5	83.0	87.0	90.9	93.4	94.2	94.2	94.2	94.2	94.2	94.2	94.2
	630	82.4	82.6	86.5	90.8	93.7	94.7	94.7	94.7	94.7	94.7	94.7	94.7
	800	82.4	82.1	86.1	90.4	93.7	95.0	95.0	95.0	95.0	95.0	95.0	95.0
	1000	82.7	82.1	85.7	90.2	93.7	95.3	95.3	95.3	95.3	95.3	95.3	95.3
	1250	83.3	82.5	85.8	90.4	93.8	95.7	95.7	95.7	95.7	95.7	95.7	95.7
	1600	82.4	82.0	84.6	88.9	92.3	94.3	94.3	94.3	94.3	94.3	94.3	94.3
	2000	81.7	81.8	83.9	87.6	90.9	93.0	93.0	93.0	93.0	93.0	93.0	93.0
	2500	80.5	81.0	82.9	86.0	88.9	90.9	90.9	90.9	90.9	90.9	90.9	90.9
	3150	78.6	79.7	81.5	84.1	86.6	88.3	88.3	88.3	88.3	88.3	88.3	88.3
	4000	75.6	77.0	78.9	81.5	83.5	84.8	84.8	84.8	84.8	84.8	84.8	84.8
	5000	71.5	73.2	75.3	77.9	79.8	80.8	80.8	80.8	80.8	80.8	80.8	80.8
	6300	64.8	66.8	69.2	71.9	73.9	74.7	74.7	74.7	74.7	74.7	74.7	74.7
	8000	54.2	56.6	59.3	62.2	64.4	65.2	65.2	65.2	65.2	65.2	65.2	65.2
	10000	40.1	42.5	45.7	49.1	51.5	52.6	52.6	52.6	52.6	52.6	52.6	52.6
Gesamtschall [dB]	eistungspegel	93.8	94.5	97.6	101.0	103.7	105.0	105.0	105.0	105.0	105.0	105.0	105.0

Tabelle 6: 5.x-158 - 105.0 dB Terz-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

4.3 4.x/5.x-158 – 104.0 dB Immissionsrelevanter Schallleistungspegel

Die Oktav- und Terz-Spektren in diesem Abschnitt sind anwendbar für die angegebenen Nennleistungen, Rotordrehzahlsollwerte und Nabenhöhen.

Diese Betriebsart ist für die Nabenhöhe von 120.9 m nicht verfügbar.

Nabenhöhe [m]	Rotordrehzahlsollwerte [rpm]	Nennleistung [kW]
120.9	N/A	N/A
150.0	9.00	4500, 4800, 5100
161.0	9.00	4500, 4800, 5100

	A-bewertete Oktav-Spektren [dB]												
Windgeschwin Nabenhöhe [m	•	4	5	6	7	8	9	10	11	12	13	14	15
	16	53.9	54.0	56.3	59.4	61.5	62.4	62.4	62.4	62.4	62.4	62.4	62.4
	32	67.4	67.3	69.6	72.8	75.1	75.9	75.9	75.9	75.9	75.9	75.9	75.9
	63	76.3	77.1	79.2	82.0	84.2	85.3	85.3	85.3	85.3	85.3	85.3	85.3
	125	83.0	85.0	87.1	89.0	90.6	91.3	91.3	91.3	91.3	91.3	91.3	91.3
Frequenz	250	86.8	88.7	91.8	94.1	95.7	96.0	96.0	96.0	96.0	96.0	96.0	96.0
[Hz]	500	87.2	87.7	91.7	95.5	97.8	98.2	98.2	98.2	98.2	98.2	98.2	98.2
	1000	87.6	87.0	90.6	95.1	98.3	98.9	98.9	98.9	98.9	98.9	98.9	98.9
	2000	86.4	86.4	88.7	92.4	95.4	96.2	96.2	96.2	96.2	96.2	96.2	96.2
	4000	80.9	82.2	84.0	86.6	88.7	89.3	89.3	89.3	89.3	89.3	89.3	89.3
8000 65.1		65.1	67.2	69.6	72.4	74.2	74.5	74.5	74.5	74.5	74.5	74.5	74.5
Gesamtschallleistungspegel [dB]		93.8	94.5	97.6	101.0	103.5	104.0	104.0	104.0	104.0	104.0	104.0	104.0

Tabelle 7: 4.x/5.x-158 - 104.0 dB Oktav-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

	A-bewertete Terz-Spektren [dB]													
Windgeschw Nabenhöhe [4	5	6	7	8	9	10	11	12	13	14	15	
	12.5	40.6	40.9	43.2	46.3	48.5	49.4	49.4	49.4	49.4	49.4	49.4	49.4	
	16	47.3	47.4	49.7	52.8	54.9	55.8	55.8	55.8	55.8	55.8	55.8	55.8	
	20	52.6	52.6	54.9	58.0	60.2	61.0	61.0	61.0	61.0	61.0	61.0	61.0	
	25	57.3	57.3	59.6	62.7	64.9	65.7	65.7	65.7	65.7	65.7	65.7	65.7	
	32	61.5	61.6	63.9	67.0	69.2	70.0	70.0	70.0	70.0	70.0	70.0	70.0	
	40	65.4	65.4	67.7	70.9	73.2	74.0	74.0	74.0	74.0	74.0	74.0	74.0	
	50	68.4	68.5	70.8	74.0	76.3	77.3	77.3	77.3	77.3	77.3	77.3	77.3	
	63	71.2	71.8	73.9	76.9	79.1	80.3	80.3	80.3	80.3	80.3	80.3	80.3	
	80	73.6	74.7	76.7	79.3	81.4	82.5	82.5	82.5	82.5	82.5	82.5	82.5	
	100	75.8	77.4	79.3	81.6	83.4	84.4	84.4	84.4	84.4	84.4	84.4	84.4	
	125	78.1	80.2	82.2	84.1	85.6	86.4	86.4	86.4	86.4	86.4	86.4	86.4	
	160	79.8	82.0	84.3	86.0	87.5	88.1	88.1	88.1	88.1	88.1	88.1	88.1	
	200	81.1	83.3	85.9	87.9	89.3	89.7	89.7	89.7	89.7	89.7	89.7	89.7	
	250	82.1	84.0	87.1	89.4	90.9	91.2	91.2	91.2	91.2	91.2	91.2	91.2	
Frequenz	315	82.7	84.2	87.8	90.5	92.2	92.5	92.5	92.5	92.5	92.5	92.5	92.5	
[Hz]	400	82.4	83.3	87.3	90.6	92.5	92.8	92.8	92.8	92.8	92.8	92.8	92.8	
	500	82.5	83.0	87.0	90.9	93.2	93.5	93.5	93.5	93.5	93.5	93.5	93.5	
	630	82.4	82.6	86.5	90.8	93.5	93.9	93.9	93.9	93.9	93.9	93.9	93.9	
	800	82.4	82.1	86.1	90.4	93.5	94.0	94.0	94.0	94.0	94.0	94.0	94.0	
	1000	82.7	82.1	85.7	90.2	93.4	94.1	94.1	94.1	94.1	94.1	94.1	94.1	
	1250	83.3	82.5	85.8	90.4	93.5	94.3	94.3	94.3	94.3	94.3	94.3	94.3	
	1600	82.4	82.0	84.6	88.9	92.0	92.8	92.8	92.8	92.8	92.8	92.8	92.8	
	2000	81.7	81.8	83.9	87.6	90.6	91.4	91.4	91.4	91.4	91.4	91.4	91.4	
	2500	80.5	81.0	82.9	86.0	88.7	89.5	89.5	89.5	89.5	89.5	89.5	89.5	
	3150	78.6	79.7	81.5	84.1	86.4	87.1	87.1	87.1	87.1	87.1	87.1	87.1	
	4000	75.6	77.0	78.9	81.5	83.3	83.8	83.8	83.8	83.8	83.8	83.8	83.8	
	5000	71.5	73.2	75.3	77.9	79.6	79.9	79.9	79.9	79.9	79.9	79.9	79.9	
	6300	64.8	66.8	69.2	71.9	73.7	74.0	74.0	74.0	74.0	74.0	74.0	74.0	
	8000	54.2	56.6	59.3	62.2	64.2	64.5	64.5	64.5	64.5	64.5	64.5	64.5	
	10000	40.1	42.5	45.7	49.1	51.3	51.8	51.8	51.8	51.8	51.8	51.8	51.8	
Gesamtschal pegel [dB]	lleistungs-	93.8	94.5	97.6	101.0	103.5	104.0	104.0	104.0	104.0	104.0	104.0	104.0	

Tabelle 8: 4.x/5.x-158 - 104.0 dB Terz-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

4.4 4.x/5.x-158 - 103.0 dB Immissionsrelevanter Schallleistungspegel

Die Oktav- und Terz-Spektren in diesem Abschnitt sind anwendbar für die angegebenen Nennleistungen, Rotordrehzahlsollwerte und Nabenhöhen.

Nabenhöhe [m]	Rotordrehzahlsollwerte [rpm]	Nennleistung [kW]
120.9	8.54	4500, 4800
150.0	8.54	4500, 4800
161.0	8.54	4500, 4800

				A-b	ewerte	te Okta	v-Spekt	ren [dB]					
Windgeschw in Nabenhöh		4	5	6	7	8	9	10	11	12	13	14	15
	16	53.9	54.0	56.3	59.4	61.3	61.3	61.3	61.3	61.3	61.3	61.3	61.3
	32	67.4	67.3	69.6	72.8	74.8	74.8	74.8	74.8	74.8	74.8	74.8	74.8
	63	76.3	77.1	79.2	82.0	84.0	84.0	84.0	84.0	84.0	84.0	84.0	84.0
	125	83.0	85.0	87.1	89.0	90.2	90.2	90.2	90.2	90.2	90.2	90.2	90.2
Frequenz	250	86.8	88.7	91.8	94.1	95.2	95.2	95.2	95.2	95.2	95.2	95.2	95.2
[Hz]	500	87.2	87.7	91.7	95.5	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3
	1000	87.6	87.0	90.6	95.1	97.8	97.8	97.8	97.8	97.8	97.8	97.8	97.8
	2000	86.4	86.4	88.7	92.4	95.1	95.1	95.1	95.1	95.1	95.1	95.1	95.1
	4000	80.9	82.2	84.0	86.6	88.4	88.4	88.4	88.4	88.4	88.4	88.4	88.4
	8000	65.1	67.2	69.6	72.4	73.8	73.8	73.8	73.8	73.8	73.8	73.8	73.8
Gesamtschallleistungs- pegel [dB]		93.8	94.5	97.6	101.0	103.0	103.0	103.0	103.0	103.0	103.0	103.0	103.0

Tabelle 9: 4.x/5.x-158 - 103.0 dB Oktav-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

	A-bewertete Terz-Spektren [dB]													
Windgeschw Nabenhöhe [4	5	6	7	8	9	10	11	12	13	14	15	
	12.5	40.6	40.9	43.2	46.3	48.3	48.3	48.3	48.3	48.3	48.3	48.3	48.3	
	16	47.3	47.4	49.7	52.8	54.7	54.7	54.7	54.7	54.7	54.7	54.7	54.7	
	20	52.6	52.6	54.9	58.0	59.9	59.9	59.9	59.9	59.9	59.9	59.9	59.9	
	25	57.3	57.3	59.6	62.7	64.6	64.6	64.6	64.6	64.6	64.6	64.6	64.6	
	32	61.5	61.6	63.9	67.0	68.9	68.9	68.9	68.9	68.9	68.9	68.9	68.9	
	40	65.4	65.4	67.7	70.9	72.9	72.9	72.9	72.9	72.9	72.9	72.9	72.9	
	50	68.4	68.5	70.8	74.0	76.1	76.1	76.1	76.1	76.1	76.1	76.1	76.1	
	63	71.2	71.8	73.9	76.9	78.9	78.9	78.9	78.9	78.9	78.9	78.9	78.9	
	80	73.6	74.7	76.7	79.3	81.2	81.2	81.2	81.2	81.2	81.2	81.2	81.2	
	100	75.8	77.4	79.3	81.6	83.1	83.1	83.1	83.1	83.1	83.1	83.1	83.1	
	125	78.1	80.2	82.2	84.1	85.3	85.3	85.3	85.3	85.3	85.3	85.3	85.3	
	160	79.8	82.0	84.3	86.0	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	
	200	81.1	83.3	85.9	87.9	88.9	88.9	88.9	88.9	88.9	88.9	88.9	88.9	
	250	82.1	84.0	87.1	89.4	90.4	90.4	90.4	90.4	90.4	90.4	90.4	90.4	
Frequenz	315	82.7	84.2	87.8	90.5	91.7	91.7	91.7	91.7	91.7	91.7	91.7	91.7	
[Hz]	400	82.4	83.3	87.3	90.6	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9	
	500	82.5	83.0	87.0	90.9	92.6	92.6	92.6	92.6	92.6	92.6	92.6	92.6	
	630	82.4	82.6	86.5	90.8	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	
	800	82.4	82.1	86.1	90.4	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	
	1000	82.7	82.1	85.7	90.2	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	
	1250	83.3	82.5	85.8	90.4	93.1	93.1	93.1	93.1	93.1	93.1	93.1	93.1	
	1600	82.4	82.0	84.6	88.9	91.7	91.7	91.7	91.7	91.7	91.7	91.7	91.7	
	2000	81.7	81.8	83.9	87.6	90.3	90.3	90.3	90.3	90.3	90.3	90.3	90.3	
	2500	80.5	81.0	82.9	86.0	88.4	88.4	88.4	88.4	88.4	88.4	88.4	88.4	
	3150	78.6	79.7	81.5	84.1	86.1	86.1	86.1	86.1	86.1	86.1	86.1	86.1	
	4000	75.6	77.0	78.9	81.5	83.0	83.0	83.0	83.0	83.0	83.0	83.0	83.0	
	5000	71.5	73.2	75.3	77.9	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	
	6300	64.8	66.8	69.2	71.9	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	
	8000	54.2	56.6	59.3	62.2	63.8	63.8	63.8	63.8	63.8	63.8	63.8	63.8	
	10000	40.1	42.5	45.7	49.1	50.9	50.9	50.9	50.9	50.9	50.9	50.9	50.9	
Gesamtschal pegel [dB]	Gesamtschallleistungs-		94.5	97.6	101.0	103.0	103.0	103.0	103.0	103.0	103.0	103.0	103.0	

Tabelle 10: 4.x/5.x-158 - 103.0 dB Terz-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

4.5 4.x/5.x-158 - 102.0 dB Immissionsrelevanter Schallleistungspegel

Die Oktav- und Terz-Spektren in diesem Abschnitt sind anwendbar für die angegebenen Nennleistungen, Rotordrehzahlsollwerte und Nabenhöhen.

Nabenhöhe [m]	Rotordrehzahlsollwerte [rpm]	Nennleistung [kW]
120.9	8.20	4500, 4650
150.0	8.20	4500, 4650
161.0	8.20	4500, 4650

	A-bewertete Oktav-Spektren [dB]												
Windgeschwin Nabenhöhe [m	•	4	5	6	7	8	9	10	11	12	13	14	15
	16	53.9	54.0	56.3	59.4	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5
	32	67.4	67.3	69.6	72.8	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0
	63	76.3	77.1	79.2	82.0	83.2	83.2	83.2	83.2	83.2	83.2	83.2	83.2
	125	83.0	85.0	87.1	89.0	89.6	89.6	89.6	89.6	89.6	89.6	89.6	89.6
Frequenz	250	86.8	88.7	91.8	94.1	94.5	94.5	94.5	94.5	94.5	94.5	94.5	94.5
[Hz]	500	87.2	87.7	91.7	95.5	96.3	96.3	96.3	96.3	96.3	96.3	96.3	96.3
	1000	87.6	87.0	90.6	95.1	96.6	96.6	96.6	96.6	96.6	96.6	96.6	96.6
	2000	86.4	86.4	88.7	92.4	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0
	4000	80.9	82.2	84.0	86.6	87.6	87.6	87.6	87.6	87.6	87.6	87.6	87.6
8000		65.1	67.2	69.6	72.4	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1
Gesamtschallle [dB]	Gesamtschallleistungspegel [dB]		94.5	97.6	101.0	102.0	102.0	102.0	102.0	102.0	102.0	102.0	102.0

Tabelle 11: 4.x/5.x-158 – 102.0 dB Oktav-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

				A-bev	vertete	Terz-S _l	oektren	[dB]					
Windgeschwir Nabenhöhe [n		4	5	6	7	8	9	10	11	12	13	14	15
	12.5	40.6	40.9	43.2	46.3	47.5	47.5	47.5	47.5	47.5	47.5	47.5	47.5
	16	47.3	47.4	49.7	52.8	53.9	53.9	53.9	53.9	53.9	53.9	53.9	53.9
	20	52.6	52.6	54.9	58.0	59.1	59.1	59.1	59.1	59.1	59.1	59.1	59.1
	25	57.3	57.3	59.6	62.7	63.8	63.8	63.8	63.8	63.8	63.8	63.8	63.8
	32	61.5	61.6	63.9	67.0	68.1	68.1	68.1	68.1	68.1	68.1	68.1	68.1
	40	65.4	65.4	67.7	70.9	72.1	72.1	72.1	72.1	72.1	72.1	72.1	72.1
	50	68.4	68.5	70.8	74.0	75.3	75.3	75.3	75.3	75.3	75.3	75.3	75.3
	63	71.2	71.8	73.9	76.9	78.2	78.2	78.2	78.2	78.2	78.2	78.2	78.2
	80	73.6	74.7	76.7	79.3	80.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5
	100	75.8	77.4	79.3	81.6	82.5	82.5	82.5	82.5	82.5	82.5	82.5	82.5
	125	78.1	80.2	82.2	84.1	84.7	84.7	84.7	84.7	84.7	84.7	84.7	84.7
	160	79.8	82.0	84.3	86.0	86.5	86.5	86.5	86.5	86.5	86.5	86.5	86.5
	200	81.1	83.3	85.9	87.9	88.2	88.2	88.2	88.2	88.2	88.2	88.2	88.2
	250	82.1	84.0	87.1	89.4	89.7	89.7	89.7	89.7	89.7	89.7	89.7	89.7
Frequenz	315	82.7	84.2	87.8	90.5	90.9	90.9	90.9	90.9	90.9	90.9	90.9	90.9
[Hz]	400	82.4	83.3	87.3	90.6	91.1	91.1	91.1	91.1	91.1	91.1	91.1	91.1
	500	82.5	83.0	87.0	90.9	91.6	91.6	91.6	91.6	91.6	91.6	91.6	91.6
	630	82.4	82.6	86.5	90.8	91.8	91.8	91.8	91.8	91.8	91.8	91.8	91.8
	800	82.4	82.1	86.1	90.4	91.8	91.8	91.8	91.8	91.8	91.8	91.8	91.8
	1000	82.7	82.1	85.7	90.2	91.7	91.7	91.7	91.7	91.7	91.7	91.7	91.7
	1250	83.3	82.5	85.8	90.4	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9
	1600	82.4	82.0	84.6	88.9	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5
	2000	81.7	81.8	83.9	87.6	89.2	89.2	89.2	89.2	89.2	89.2	89.2	89.2
	2500	80.5	81.0	82.9	86.0	87.4	87.4	87.4	87.4	87.4	87.4	87.4	87.4
	3150	78.6	79.7	81.5	84.1	85.2	85.2	85.2	85.2	85.2	85.2	85.2	85.2
	4000	75.6	77.0	78.9	81.5	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2
	5000	71.5	73.2	75.3	77.9	78.6	78.6	78.6	78.6	78.6	78.6	78.6	78.6
	6300	64.8	66.8	69.2	71.9	72.6	72.6	72.6	72.6	72.6	72.6	72.6	72.6
	8000	54.2	56.6	59.3	62.2	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0
	10000	40.1	42.5	45.7	49.1	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Gesamtschalli [dB]	Gesamtschallleistungspegel			97.6	101.0	102.0	102.0	102.0	102.0	102.0	102.0	102.0	102.0

Tabelle 12: 4x/5.x-158 - 102.0 dB Terz-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

4.6 4.x/5.x-158 - 101.0 dB Immissionsrelevanter Schallleistungspegel

Die Oktav- und Terz-Spektren in diesem Abschnitt sind anwendbar für die angegebenen Nennleistungen, Rotordrehzahlsollwerte und Nabenhöhen.

Nabenhöhe [m]	Rotordrehzahlsollwerte [rpm]	Nennleistung [kW]
120.9	7.66	4340
150.0	7.66	4340
161.0	7.66	4340

	A-bewertete Oktav-Spektren [dB]												
Windgeschwin Nabenhöhe [m	•	4	5	6	7	8	9	10	11	12	13	14	15
	16	53.9	54.0	56.3	59.6	59.6	59.6	59.6	59.6	59.6	59.6	59.6	59.6
	32	67.4	67.3	69.6	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1
	63	76.3	77.1	79.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2
	125	83.0	85.0	87.1	89.0	89.0	89.0	89.0	89.0	89.0	89.0	89.0	89.0
Frequenz	250	86.8	88.7	91.8	93.9	93.9	93.9	93.9	93.9	93.9	93.9	93.9	93.9
[Hz]	500	87.2	87.7	91.7	95.4	95.4	95.4	95.4	95.4	95.4	95.4	95.4	95.4
	1000	87.6	87.0	90.6	95.2	95.2	95.2	95.2	95.2	95.2	95.2	95.2	95.2
	2000	86.4	86.4	88.7	92.7	92.7	92.7	92.7	92.7	92.7	92.7	92.7	92.7
	4000	80.9	82.2	84.0	86.9	86.9	86.9	86.9	86.9	86.9	86.9	86.9	86.9
8000 65.1		65.1	67.2	69.6	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5
Gesamtschallle [dB]	Gesamtschallleistungspegel [dB]		94.5	97.6	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0

Tabelle 13: 4.x/5.x-158 – 101.0 dB Oktav-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

	A-bewertete Terz-Spektren [dB]												
Windgeschwir Nabenhöhe [n		4	5	6	7	8	9	10	11	12	13	14	15
	12.5	40.6	40.9	43.2	46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6
	16	47.3	47.4	49.7	53.0	53.0	53.0	53.0	53.0	53.0	53.0	53.0	53.0
	20	52.6	52.6	54.9	58.2	58.2	58.2	58.2	58.2	58.2	58.2	58.2	58.2
	25	57.3	57.3	59.6	62.9	62.9	62.9	62.9	62.9	62.9	62.9	62.9	62.9
	32	61.5	61.6	63.9	67.2	67.2	67.2	67.2	67.2	67.2	67.2	67.2	67.2
	40	65.4	65.4	67.7	71.2	71.2	71.2	71.2	71.2	71.2	71.2	71.2	71.2
	50	68.4	68.5	70.8	74.2	74.2	74.2	74.2	74.2	74.2	74.2	74.2	74.2
	63	71.2	71.8	73.9	77.1	77.1	77.1	77.1	77.1	77.1	77.1	77.1	77.1
	80	73.6	74.7	76.7	79.5	79.5	79.5	79.5	79.5	79.5	79.5	79.5	79.5
	100	75.8	77.4	79.3	81.7	81.7	81.7	81.7	81.7	81.7	81.7	81.7	81.7
	125	78.1	80.2	82.2	84.0	84.0	84.0	84.0	84.0	84.0	84.0	84.0	84.0
	160	79.8	82.0	84.3	85.9	85.9	85.9	85.9	85.9	85.9	85.9	85.9	85.9
	200	81.1	83.3	85.9	87.7	87.7	87.7	87.7	87.7	87.7	87.7	87.7	87.7
	250	82.1	84.0	87.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1
Frequenz	315	82.7	84.2	87.8	90.2	90.2	90.2	90.2	90.2	90.2	90.2	90.2	90.2
[Hz]	400	82.4	83.3	87.3	90.3	90.3	90.3	90.3	90.3	90.3	90.3	90.3	90.3
	500	82.5	83.0	87.0	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7
	630	82.4	82.6	86.5	90.8	90.8	90.8	90.8	90.8	90.8	90.8	90.8	90.8
	800	82.4	82.1	86.1	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5
	1000	82.7	82.1	85.7	90.4	90.4	90.4	90.4	90.4	90.4	90.4	90.4	90.4
	1250	83.3	82.5	85.8	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5
	1600	82.4	82.0	84.6	89.2	89.2	89.2	89.2	89.2	89.2	89.2	89.2	89.2
	2000	81.7	81.8	83.9	88.0	88.0	88.0	88.0	88.0	88.0	88.0	88.0	88.0
	2500	80.5	81.0	82.9	86.3	86.3	86.3	86.3	86.3	86.3	86.3	86.3	86.3
	3150	78.6	79.7	81.5	84.4	84.4	84.4	84.4	84.4	84.4	84.4	84.4	84.4
	4000	75.6	77.0	78.9	81.7	81.7	81.7	81.7	81.7	81.7	81.7	81.7	81.7
	5000	71.5	73.2	75.3	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0
	6300	64.8	66.8	69.2	72.0	72.0	72.0	72.0	72.0	72.0	72.0	72.0	72.0
	8000	54.2	56.6	59.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3
	10000	40.1	42.5	45.7	49.1	49.1	49.1	49.1	49.1	49.1	49.1	49.1	49.1
Gesamtschall [dB]	Gesamtschallleistungspegel			97.6	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0

Tabelle 14: 4.x/5.x-158 - 101.0 dB Terz-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

4.7 4.x/5.x-158 - 100.0 dB Immissionsrelevanter Schallleistungspegel

Die Oktav- und Terz-Spektren in diesem Abschnitt sind anwendbar für die angegebenen Nennleistungen, Rotordrehzahlsollwerte und Nabenhöhen.

Nabenhöhe [m]	Rotordrehzahlsollwerte [rpm]	Nennleistung [kW]
120.9	7.22	4090
150.0	7.22	4090
161.0	7.22	4090

	A-bewertete Oktav-Spektren [dB]												
Windgeschwin Nabenhöhe [m	•	4	5	6	7	8	9	10	11	12	13	14	15
	16	53.9	54.0	56.3	58.9	58.9	58.9	58.9	58.9	58.9	58.9	58.9	58.9
	32	67.4	67.3	69.6	72.3	72.3	72.3	72.3	72.3	72.3	72.3	72.3	72.3
	63	76.3	77.1	79.2	81.6	81.6	81.6	81.6	81.6	81.6	81.6	81.6	81.6
	125	83.0	85.0	87.1	88.4	88.4	88.4	88.4	88.4	88.4	88.4	88.4	88.4
Frequency	250	86.8	88.7	91.8	93.1	93.1	93.1	93.1	93.1	93.1	93.1	93.1	93.1
[Hz]	500	87.2	87.7	91.7	94.3	94.3	94.3	94.3	94.3	94.3	94.3	94.3	94.3
	1000	87.6	87.0	90.6	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0
	2000	86.4	86.4	88.7	91.7	91.7	91.7	91.7	91.7	91.7	91.7	91.7	91.7
	4000	80.9	82.2	84.0	86.2	86.2	86.2	86.2	86.2	86.2	86.2	86.2	86.2
	8000	65.1	67.2	69.6	71.8	71.8	71.8	71.8	71.8	71.8	71.8	71.8	71.8
Gesamtschallle [dB]	eistungspegel	93.8	94.5	97.6	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Tabelle 15: 4.x/5.x-158 - 100.0 dB Oktav-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

	A-bewertete Terz-Spektren [dB]												
Windgeschwin Nabenhöhe [r		4	5	6	7	8	9	10	11	12	13	14	15
	12.5	40.6	40.9	43.2	45.9	45.9	45.9	45.9	45.9	45.9	45.9	45.9	45.9
	16	47.3	47.4	49.7	52.3	52.3	52.3	52.3	52.3	52.3	52.3	52.3	52.3
	20	52.6	52.6	54.9	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5
	25	57.3	57.3	59.6	62.2	62.2	62.2	62.2	62.2	62.2	62.2	62.2	62.2
	32	61.5	61.6	63.9	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5
	40	65.4	65.4	67.7	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4
	50	68.4	68.5	70.8	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5
	63	71.2	71.8	73.9	76.4	76.4	76.4	76.4	76.4	76.4	76.4	76.4	76.4
	80	73.6	74.7	76.7	78.9	78.9	78.9	78.9	78.9	78.9	78.9	78.9	78.9
	100	75.8	77.4	79.3	81.1	81.1	81.1	81.1	81.1	81.1	81.1	81.1	81.1
	125	78.1	80.2	82.2	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5
	160	79.8	82.0	84.3	85.4	85.4	85.4	85.4	85.4	85.4	85.4	85.4	85.4
	200	81.1	83.3	85.9	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0
	250	82.1	84.0	87.1	88.4	88.4	88.4	88.4	88.4	88.4	88.4	88.4	88.4
Frequenz	315	82.7	84.2	87.8	89.4	89.4	89.4	89.4	89.4	89.4	89.4	89.4	89.4
[Hz]	400	82.4	83.3	87.3	89.3	89.3	89.3	89.3	89.3	89.3	89.3	89.3	89.3
	500	82.5	83.0	87.0	89.6	89.6	89.6	89.6	89.6	89.6	89.6	89.6	89.6
	630	82.4	82.6	86.5	89.5	89.5	89.5	89.5	89.5	89.5	89.5	89.5	89.5
	800	82.4	82.1	86.1	89.2	89.2	89.2	89.2	89.2	89.2	89.2	89.2	89.2
	1000	82.7	82.1	85.7	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1
	1250	83.3	82.5	85.8	89.3	89.3	89.3	89.3	89.3	89.3	89.3	89.3	89.3
	1600	82.4	82.0	84.6	88.0	88.0	88.0	88.0	88.0	88.0	88.0	88.0	88.0
	2000	81.7	81.8	83.9	86.9	86.9	86.9	86.9	86.9	86.9	86.9	86.9	86.9
	2500	80.5	81.0	82.9	85.4	85.4	85.4	85.4	85.4	85.4	85.4	85.4	85.4
	3150	78.6	79.7	81.5	83.7	83.7	83.7	83.7	83.7	83.7	83.7	83.7	83.7
	4000	75.6	77.0	78.9	81.0	81.0	81.0	81.0	81.0	81.0	81.0	81.0	81.0
	5000	71.5	73.2	75.3	77.4	77.4	77.4	77.4	77.4	77.4	77.4	77.4	77.4
	6300	64.8	66.8	69.2	71.3	71.3	71.3	71.3	71.3	71.3	71.3	71.3	71.3
	8000	54.2	56.6	59.3	61.6	61.6	61.6	61.6	61.6	61.6	61.6	61.6	61.6
	10000	40.1	42.5	45.7	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2
Gesamtschall [dB]	leistungspegel	93.8	94.5	97.6	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Tabelle 16: 4.x/5.x-158 - 100.0 dB Terz-Spektren-Schallemissionspegel als Funktion der Windgeschwindigkeit

5 Unsicherheitsangaben

Die o. g. immissionsrelevanten Schallleistungspegel sind Mittelwerte repräsentativer Gruppen von Windenergieanlagen. In den Angaben sind keine Aufschläge für Unsicherheiten enthalten. Hinweise zu Unsicherheiten in Zusammenhang mit Messungen und Mittelwerten sind in IEC 61400-11 und IEC/TS 61400-14 erläutert, weitere Hinweise zur Anwendung finden sich in Kapitel 7 dieses Dokuments.

Nach LAI Empfehlung ist für σ_P ein Wert von 1,2 dB zu verwenden.

Die Unsicherheiten bei Oktav- und Terz-Schallleistungspegeln liegen in der Regel höher als bei Gesamtschallleistungspegeln. Hinweise hierzu finden Sie in IEC 61400-11.

6 Tonalität

Für den Referenzmesspunkt im Abstand r_0 gemäß IEC 61400-11 wird für die 4.x/5.x-158 Windenergieanlagen, ungeachtet der Windgeschwindigkeit, ein Wert für die Tonhaltigkeit im Nahbereich von $\Delta L_{a,k}$ < 2 dB, bzw. $K_{TN} \le 1$ dB gemäß FGW, angegeben.

7 Terminologie nach IEC 61400-11 und IEC/TS 61400-14

- L_{WA,k} ist der immissionsrelevante Schallleistungspegel der WEA (bezogen auf 10⁻¹²W), der mit A-Bewertung als Funktion der Windgeschwindigkeit ermittelt wurde. Wird er von mehreren Messberichten nach IEC 61400-11 abgeleitet, wird er als Mittelwert angenommen.
- u_c ist die Messunsicherheit für Schallmessverfahren, wie in IEC 61400-11 definiert. Dies ist keine Eigenschaft des Produktes, sondern der Messung und kann daher nicht von GE spezifiziert werden. Bei durchschnittlichen Test- bzw. Messbedingungen beträgt der typische Wert für u_c 0,7 dB – 1,0 dB.
- σ_P ist die Produktstreuung, d. h. die Produktabweichung von einer 4.x/5.x-158 Einheit zur n\u00e4chsten, gem\u00e4\u00df IEC/TS 61400-14. Dies ist eine Eigenschaft des Produktes und kann daher von GE spezifiziert werden (siehe Kapitel 5).
- σ_R ist die gesamte Test-Reproduzierbarkeit, wie in IEC/TS 61400-14 definiert. Dies ist keine Eigenschaft des Produktes, sondern der Messung und kann daher nicht von GE spezifiziert werden. Für typische Tests bzw. Messungen gemäß IEC 61400-11 wird ein Wert von σ_R = 0,5 dB weitgehend akzeptiert.
- σ_T ist die Gesamtstandardabweichung und kombiniert sowohl σ_P als auch σ_R (siehe IEC/TS 61400-14)
- ΔL_{a, k} ist die tonale Hörbarkeit gemäß IEC 61400-11, auch bezeichnet als potenziell hörbares, schmalbandiges Geräusch.

8 Referenzdokumente

- IEC 61400-11, Windkraftanlagen Teil 11: Schallmessverfahren, Ausgabe 2.1 (2006-11) oder Ausgabe 3 (2012-11)
- IEC/TS 61400-14, Windenergieanlagen Teil 14: Angabe der immissionsrelevanten Schallleistungspegel- und Tonalitätswerte, Ausgabe 1 (2005-03).
- MNPT "Machine Noise Performance Test", Technische Dokumentation
- Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Rev. 18, 01.02.2008, Fördergesellschaft Windenergie (FGW).

Anhang I - Windgeschwindigkeit in 10 m Höhe für alle Nabenhöhen

	Windgeschwindigkeit in 10 m Höhe für alle Nabenhöhen											
Windgeschwindigkeit in Nabenhöhe [m/s]	4	5	6	7	8	9	10	11	12	13	14	15
Windgeschwindigkeit in 10 m Höhe bei einer Nabenhöhe von 120.9 m [m/s]	2.7	3.4	4.1	4.8	5.4	6.1	6.8	7.5	8.2	8.8	9.5	10.2
Windgeschwindigkeit in 10 m Höhe bei einer Nabenhöhe von 150.0 m [m/s]	2.6	3.3	4.0	4.6	5.3	6.0	6.6	7.3	7.9	8.6	9.3	9.9
Windgeschwindigkeit in 10 m Höhe bei einer Nabenhöhe von 161.0 m [m/s]	2.6	3.3	3.9	4.6	5.2	5.9	6.6	7.2	7.9	8.5	9.2	9.8

ENERCON E-40 6.44

Schallvermessungsberichte

WINDTEST, Prüfbericht WT 1740/01 vom 11.04.2001 bzw. die Zusammenfassung WT 1706/01 vom 21.3.2001

WINDconsult, Bericht WICO 207SE899 vom 13.3.2000 bzw. dessen Nachtrag WICO 207SE899/01 vom 24.8.2000

WINDconsult, Bericht WICO 287SEA01/01 vom 5.12.2001.

ENERCON Schalleistungspegel E-40/6.44

Seite 1 v. 1

Die Schalleistungspegel der ENERCON E-40 mit 600kW Nennleistung und 44m Rotordurchmesser werden wie folgt angegeben:

	Schalleistungs für 95% Nen	ENERCON <u>Garantie</u>				
Anzahl	1. Vermessung	2. Vermessung	3. Vermessung	Garantierter Schallel-		
WEA	E-40/6.44 mit 46m NH	E-40/6,44 mit 65m NH	E-40/6.44 mit 78m NH	stungspegel und Tonhal-		
Institut	WIND-consult GmbH	WINDTEST KWK	WIND-consult GmbH	tigkeitszuschlag für 95% Nennieistung nach FGW-		
Bericht	WICO 207SE899 vom 27.03.2000	WT 1740/01 vom 11.04.2001	WICO 287SEA01/01 vom 05.12.2001	Richtlinie		
46m NH	100,7 dB(A) 0 dB	100,5 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB		
50m NH	100,7 dB(A) 0 dB	100,6 dB(A) 0 dB	100,1 dB(A) 0 dB	1 01,0 dB(A) 0-1 dB		
58m NH	100,8 dB(A) 0 dB	100,8 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB		
65m NH	100,8 dB(A) 0 dB	100,8 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB		
78m NH	100,8 dB(A) 0 dB	100,8 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB		

- 1. Die Schalleistungspegelvermessungen, sowie die Ermittlung der Tonhaltigkeit und der Impulshaltigkeit, wurden entsprechend den FGW-Richtlinien (Technische Richtlinien für Windenergieanlagen, Revision 12 Stand 01.10.1998 und Revision 13 Stand 01.01.2000, Hamburg, Fördergesellschaft Windenergie e.V., Teil 1: Bestimmung der Schallemissionswerte), basierend auf der DIN EN61400-11 (Windenergieanlagen, Teil 11: Geräuschimmissionen) mit Stand Februar 2000 durchgeführt. Die Bestimmung der Impulshaltigkeit entspricht der DIN 45645 (T1, "Einheitliche Ermittlung des Beurteilungspegels für Geräuschimmissionen", Stand Juli 1996). Zur Feststellung der Tonhaltigkeit wurde entsprechend der Technischen Richtlinie nach DIN 45681 (Entwurf, "Bestimmung der Tonhaltigkeit von Geräuschen und Ermittlung eines Tonzuschlages für die Beurteilung von Geräuschimmissionen", Stand Januar 1992) verfahren.
- 2. Der Schalleistungspegel für 95% der Nennleistung bezieht sich nach FGW-Richtlinie auf die Referenzwindgeschwindigkeit von 10 m/s in 10 m Höhe.
- 3. Aus den drei vorliegenden Meßberichten (WICO 287SEA01/01, WT 1740/01 und WICO 207SE899) lassen sich folgende energetische Mittelwerte bilden: für den Schalleistungspegel ergibt sich ein Wert von L_{WA, 95% Nennleistung, Mittel} = 100,6dB(A). In Bezug auf die Standardabweichung wurde ein Wert von s_{95% Nennleistung, Mittel} = 0,4dB(A) ermittelt.
- 4. Umgerechnete Schalleistungspegelwerte für die genannten Nabenhöhen ergeben sich als Berechnung aus den Vermessungen der E-40/6.44 der jeweils vermessenen Nabenhöhe.
- ENERCON Anlagen gewährleisten aufgrund ihres verschleißfreien Konzeptes und ihrer variablen Betriebsführung, daß vorgegebene Schallwerte während der gesamten Lebensdauer eingehalten werden.

WICO 287SEA01/01

Messung der Schallemission der Windenergieanlage (WEA) des Typs ENERCON E-40/6.44

nach

FGW-Richtlinie /1/

Standort:

Windpark Friesoythe (Niedersachsen)

Bargeshagen, 5. Dezember 2001

Standort	Windpark Friesoythe				
the state of the s	(Niedersachsen)				
Aufgabenstellung	Messungen zum Schalldruckpegel und Bestimmung der Emissionsparameter einer Windenergieanlage (WEA)				
Meß-/ Prüfobjekt	ENERCON E-40/6.44, Nabenhöhe 78 m				
Art der Messung / Prü-	Akustische Vermessung nach FGW-Richtlinie /1/				
fung	 Ermittlung des Schalleistungspegels 				
	 Ermittlung der Tonhaltigkeit 				
	- Ermittlung der Impulshaltigkeit				
	 Umrechnung auf andere Nabenhöhen 				
Auftraggeber	ENERCON GmbH Dreekamp 5				
	D-26605 Aurich				
Auftragserteilung/-	01.10.2001				
bestätigung	09.10.2001				
Auftragnehmer	WIND-consult GmbH				
Authaghenmer	Reuterstraße 9				
	D-18211 Bargeshagen				
	Tel. +49 (0) 38203-507 25				
	Fax +49 (0) 38203-507 23				

Bearbeitung

Prüfung

Dipt.-Ing. René Haevernick

Dipl.-Ing. Wolfgang Wilke

Bargeshagen, den 5. Dezember 2001

Dieser Bericht darf - mit Ausnahme der Anlage 8 - nur mit schriftlicher Zustimmung der WIND-consult GmbH auszugsweise vervielfältigt und genutzt werden. Die Ergebnisse beziehen sich ausschließlich auf das Meß- / Prüfobjekt.

6 Abweichungen zur Richtlinie

Zu Abweichungen mit Bezug auf die Vermessungsrichtline /1/ werden die folgenden Hinweise gegeben:

- 1. Informationen, die die Herstellerbescheinigung (vgl. Anlage 4) ergänzen: (1)Turmfußdurchmesser: 4190 mm
- 2. Es sind keine Fotos vom Meßstandort vorhanden. Der Standort ist im Abschnitt 2 sowie durch den Lageplan (Anlage 1) beschrieben.
- 3. Die Daten der Kalibration vor und nach der Meßkampagne können dem Meßprotokoll entnommen werden. Die Meßkette wurde vor und nach der Messung kalibriert.
- 4. Bezüglich der Meßunsicherheit wird die Abschätzung der Gesamtmeßunsicherheit ausgewiesen. Für die Ermittlung der Tonhaltigkeit, der Richtwirkung und der Terzspektren wird keine Unsicherheit ausgewiesen.
- 5. Ein der Wirkleistung proportionales analoges Signal wurde durch den Auftraggeber über die Kundenschnittstelle bereitgestellt und für die Messung verwendet.

7 Zusammenfassung

Am 06.11.2001 wurde die WEA des Typs ENERCON E-40/6.44 mit einer Nabenhöhe von $h_N = 78$ m im Windpark *Friesoythe (Niedersachsen)* akustisch vermessen. Die Datenauswertung erfolgte nach /1/.

Die vermessene WEA zeigte während der Meßkampagne dem subjektiven Eindruck nach keine Auffälligkeiten des Geräusches. Die subjektive Bewertung des Anlagengeräusches wird durch die objektive Geräuschbewertung nach /1/ gestützt.

Die Ergebnisse der akustischen Vermessung werden in der nachfolgenden Tabelle zusammengefaßt dargestellt.

Klassenmitte	ms ⁻¹	6	7	8	8,9 ²⁾
Referenz-Wirkleistung ¹⁾	kW	212	343	484	570
Tonhaltigkeit K _{TN}	dB	0	0	0	0
Impulshaltigkeit K _{IN}	dB	0	0	0	0
Schalleistungspegel Lwa, P	dB(A)	96,9	98,5	99,6	100,1

Tab. 12 Ergebnisübersicht

- 1) Ermittlungsbasis: Leistungskurve, die der Ermittlung des Schalleistungspegels zugrunde liegt (vgl. Anlage 5).
- 2) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA bei v₁₀ = 8,9 ms⁻¹ in 10 m ü.G..

Die A-bewerteten Schalleistungsspektren sind in Anlage 6 dargestellt.

Die Meßunsicherheit wird nach /1/ mit $U_{ges} = 1,4$ dB abgeschätzt.

Die vorliegende Untersuchung wurde von der WIND-consult GmbH gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen unparteilsch erstellt.

Bericht WICO 207SE899/01

Abschätzung des Schalleistungspegels auf andere Nabenhöhen Windenergieanlage (WEA) des Typs E40 /6.44

nach

FGW-Richtlinie /1/

Standort:

Nesse (Niedersachsen)

Bargeshagen, 24. August 2000

Standort	Nesse
	(Niedersachsen)
Aufgabenstellung	Abschätzung des Schalleistungspegels einer Windenergieanlage (WEA)
Meß-/ Prüfobjekt Art der Messung / Prüfung	E40/6.44 Umrechnung des Schalleistungspegels nach /1/

Auftraggeber ENERCON GmbH	
Dreekamp 5	j
26605 Aurich	
	1

 1. C. Marine (19. 10. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19
 快车员"健康"(1915年),他们的"特别"(1917年),他们们的"特别"(1917年),在1917年),在1917年,1917年,1917年,1917年,1917年,1917年,1917年,1917年,1917年,1
 (Auttrogeortoilung combaile 24 08 2000
 Auftragserteilung 24.08.2000
 PAULEASSELEILUNG ARTENIA G 47.00.2000
 Limbality in the Company of the Wind in the Company of the Compa

Bezugsquellen:	"Messung der Schallemission der Windenergieanlage (WEA)
	des Typs E40 /6.44"
Standort	Nesse
Datum	27.03.2000
Bericht-Nr. (WIND-consult	WICO 207SE899
GmbH)	
Auftraggeber	ENERCON GmbH
	Dreekamp 5
	26605 Aurich

Auftragnehmer	WIND-consult GmbH
	Reuterstraße 9
	D-18211 Bargeshagen
	Tel. +49 (0) 38203-507 25
	Fax +49 (0) 38203-507 23

Bearbeitung

Dipl.-Ing. Wolfgang Wilke

Prüfung

Diplying. Ulrich Arndt

Bargeshagen, den 24. August 2000

Dieser Bericht darf nur mit schriftlicher Zustimmung der WIND-consult GmbH auszugsweise vervielfältigt und genutzt werden. Die Ergebnisse beziehen sich ausschließlich auf das Meß-/Prüfobjekt.

Inhalt

1	Aufgabenstellung	4
2	Methode	4
3	Ergebnisse	4

Verzeichnis der verwendeten Formelzeichen und Abkürzungen Verzeichnis der verwendeten Literatur

1 Aufgabenstellung

Die Windenergieanlage (WEA) E40/6.44 mit einer Nabenhöhe von $h_N = 46$ m ist akustisch nach /1/ vermessen worden. Der vollständige Meßbericht /2/ liegt vor. Dieser Bericht ersetzt die Umrechnung auf andere Narbenhöhen Pkt. 5) der Bezugsquelle /2/.

Die Richtlinie /1/ sieht die Möglichkeit vor, den für eine Nabenhöhe durch Messung bestimmten Schalleistungspegel rechnerisch für andere Nabenhöhen anzugeben.

Auf dieser Basis ist der Schalleistungspegel aus /2/ für die Nabenhöhen $h_N = 50$ m, $h_N = 58$ m, $h_N = 65$ m und $h_N = 78$ m anzugeben.

2 Methode

Die Richtlinie /1/ ermöglicht die Umrechnung des Schalleistungspegels auf andere Nabenhöhen, wenn die Regressionsparamter für den Zusammenhang Schalleistungspegel - Windgeschwindigkeit bekannt sind (vgl. /1/, Anhang C).

Der maximale Schalleistungspegel wird für den Referenzpunkt $v_{10} = 10 \text{ ms}^{-1}$ in 10 m ü.G. bzw., sofern dieser Betriebspunkt früher erreicht wird, für den Referenzpunkt der 95%igen Nennleistung angegeben.

3 Ergebnisse

Kenng	röße	Referenzpunkt in 10 m li.G.	$h_N = 46 \text{ m}^{(1)}$	h _N =50 m	h _N ≕58 m	h _N =65 m	$b_n = 78 \text{ m}$
LWAP	[dB(A)]	6 ms ⁻¹	97,8	97,9	98,1	98,2	98,4
LWAP	[dB(A)]	7 ms ⁻¹	98,9	99,0	99,1	99,3	99,4
L WAP	[dB(A)]	8 ms ⁻¹	99,8	99,9	100,0	100,1	100,3
L_{WAP}	[dB(A)]	9 ms ⁻¹	100,4	100,5	100,5	100,6	100,7
LWAP	[dB(A)]	10 ms ⁻¹	100,7	100,7	100,8	100,8	100,8

Tab. 1 Abschätzung des Schalleistungspegels

1) Vermessung /2/

Hinweise:

- Die in Tab. 1 gegebene Abschätzung unterstellt eine akustisch baugleiche Anlage!
- Eine Neuauswertung der Ton- oder Impulshaltigkeit ist nicht erforderlich, da das Anlagengeräusch im gesamten vermessenen Bereich weder ton- noch impulshaltig ist (vgl. /2/).

Die vorliegende Untersuchung wurde von der WIND-consult GmbH gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen unparteiisch erstellt.

Verzeichnis der verwendeten Formelzeichen und Abkürzungen

Bezeichnung	Symbol	Einheit
Luftdruck	ρ	hPa
Linienabstand	Δf	Hz
Bandbreite der Frequenzgruppe	Δf_c	Hz
Tonpegeldifferenz	ΔL	dB
Regressionskoeffizient	a	dB(A)
Bestimmtheitsmaß	r	-
Regressionskoeffizient	b	dB(A)/x
Turmdurchmesser (Turmfuß)	b _r	m
Rotordurchmesser	d _R	m
relative Luftfeuchte	F	%
untere Grenzfrequenz der Gruppe	f ₁	Hz
obere Grenzfrequenz der Gruppe	f ₂	Hz
Akustisch beanspruchte Fläche	F_{aku}	ha
Tonfrequenz	f _T	Hz
Fundamenthöhe	h _f	m
Nabenhöhe ü.G.	h _N	m
Gesamtnabenhöhe (ü.G.)	h _{N. ges.}	m
Referenzhöhe	h _{ref.}	m
Impulszuschlag nach DIN 45645 ("N" f. Nahbereich)	K _{IN}	dB
Tonzuschlag nach DIN 45681 ("N" für Nahbereich)	K _{TN}	dB
AF-bewerteter Schalldruckpegel	L _{AF}	dB(A.)
äquivalenter Dauerschallpegel [Perzentil]	L _{AFeq. [xx]}	dB(A)
äquivalenter Dauerschallpegel (für Referenz)	LAFeq. ref.	dB(A)
äquivalenter Dauerschallpegel (für Referenz korrigiert)	LAFeq. ref., k	dB(A)
Perzentilpegel x %	LAFX	dB(A)
Frequenzgruppenpegel des verdeckten Geräusches	L _c	dB
Tonpegel	L _T	dB
Schalleistungspegel bezogen auf v _{10, ref.}	L _{wA}	dB(A)
Schalleistungspegel bezogen auf Pref.	L _{WA, P}	dB(A)
Wirkleistung [95%]	P ₍₉₅₎	kW
Wirkleistung, korrigiert auf Normalatmosphäre	P _k	kW
Referenzwirkleistung	P _{ref.}	kW
Abstand Rotationsebene-Gondeldrehachse	Γ _e	m
Abstand Schallquellenmitte-Aufpunkt (IEA)	R _i	m
Meßentfernung (Meßpunkt - Turmaußenhaut)	R _{om}	m
Lufttemperatur	T	°C
Meßunsicherheit	U _{ges.}	₫B
Windgeschwindigkeit in 10 m ü.G.	V ₁₀	m s ⁻¹
Referenzwindgeschwindigkeit in x m über Grund	V _{x, ref.}	m s ⁻¹
Referenzrauhigkeitslänge	Z _{e, ref.}	m

Verzeichnis der verwendeten Literatur

- /1/ FÖRDERGESELLSCHAFT WINDENERGIE E.V. (FGW) FÖRDERGESELLSCHAFT WINDENERGIE E.V. (FGW): Technische Richtlinien für Windenergieanlagen. Rev. 13 Stand 01.01.2000. Hamburg (D)
- WIND-CONSULT GMBH (WICO): Messung der Schallemission der Windenergieanlage (WEA) des Typs E40/6.44. Berichts-Nr. WICO 207SE899. Bargeshagen (D), 27.03.2000

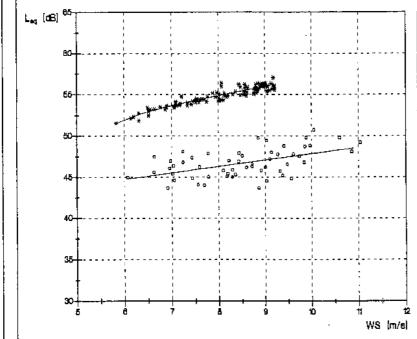
Zusammenfassung der Messergebnisse für die Schallemissionsmessung an der Windenergieanlage

Enercon E40/6.44

Bericht WT 1706/01 vom 2001-03-21

WINDTEST

Kaiser-Wilhelm-Koog GmbH


Technische Daten der Windenergieanlage: Тур:..... Е40/6.44 Hersteller:..... Enercon GmbH, Aurich Nennleistung:..... 600 kW Nabenhöhe über Grund: 65,0 m Nabenhöhe über Fundamentoberkante: 65,0 m Leistungsregelung: pitch Turmbauart: Stahlrohr Rotorblattanzahl: 3 Rotorblatthersteller:.... Enercon Rotorblattyp:..... Enercon Rotordrehzahl(bereich): 18 - 34 min⁻¹ Getriebehersteller: entf.

Getriebetyp:entf. Generatortyp: Ringbauweise, synchron

Messgeometrie:	
Messentfernung R ₀ :	
Mikrophonhöhe ha:	0 m
Rotationsebene ⇒ Turmmittelpkt, d:	2,5 m

Messbedingur	igen:	
Messzeitraum:	2000-12-13	19:00h - 22:45h
		09:30h - 11:00h
Windgeschwindigk	eit in 10m Höhe,	
1-min Mittel, WG to		
Windrichtung WR:		
Elektr. Wirkleistun	g Pwel (1-s Wert)	: 130 - 670 kW
uftdruck putt:		1001 hPa
Lufttemperatur T _{Lu}	#¦	7 °C
Luftfeuchte:		

Bestimmung der Schalleistung nach FGW-Richtlinie **:

						5
wa _{De}	6. Û	2,0	8.0	9.0	9.2	001301
(18) سيدا	51.9	53,7	51.9	95.9	56. l	
بينسبا (186	11.7	15.5	16,3	17.1	17. 2	
L(dBf)	51.Q	52.9	51.2	55.3	35. 1	
L., (d9)	96. 1	98. 1	99.6	100.7	100.8	3
table 1 :	result	s L -	f(WS))		3

-1.55939898-02	1.002162(E+0)
1.01197386+02	7. 7805054E-01
-1.9774005£+01	0.0000000000000000000000000000000000000
1.68790770+00	0. 0000000 0E +00
-5. 106173LE-02	0.000000000000000
	1.6879027€+00

Backgr. L-A+B-X

table 2 ; regression parameters

k - 101

WINDTEST Kaleer-Wilhelm-Koog GmbH

Enercon E40/6.44 Regression of Leg over Wind Speed

Haswigerine Measurem: 2000-12-13 Standard: FGW/EC Data base 1 Hz sampling in charge: Olpi-ing I Clausen

Bemerkungen:

- Der 95 %-Wert der Nennieistung beträgt 570 kW entsprechend 9,2 m/s in 10 m Höhe,
- ** Die Auswertung erfolgt gemäß Technischer Richtlinie bis 95% der Nennleistung.

WINDTEST

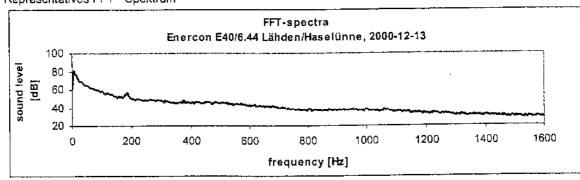
Bericht WT 1706/01 vom 2001-03-21 Kaiser-Wilhelm-Koog GmbH

Impulshaltigkeit nach FGW-Richtlinie/DIN 45645 T1 für Referenzbedingungen:

BiN [m/s]	BIN – Grenzen [m/s]	BIN - Mitte	Mittelungs- pegel L _{Asq} [dB]	Taktmaxima Ipegel L _{AFTm} [dB]	Berechneter Impulszuschiag K _{IN} [dB]	Impulszuschlag nach FGW-Richtlinie [dB]
6	5,5 - 6,5	6,1	52,4	54.3	1,8	0
7	6,5 - 7,5	7.0	53.9	55,7	1,8	0
8	7,5 - 8,5	7,9	54,9	56,7	1,8	0
9	8,5 - 9,5	8,9	55,9	57,6	1,8	0
10	9.5 - 10.5	9,9	56,5	58,1	1,7	0

Terzanalyse für Referenzbedingungen (für 9,2 m/s in 10 m Höhe entspr. 570 kW):

25	31,5	40	50	63	80	100	125	160	200	250	315	400	500	630
63,6	68,8	71,7	75,0	78,2	80,3	82,0	83,7	85,3	88,0	87,6	89,1	91,0	93,0	92,2


800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
90,2	91,3	89,0	86,6	84,0	82,2	81,2	78,8	76.4	71.8	65,8	59,9

Oktavanalyse für Referenzbedingungen (für 9,2 m/s in 10 m Höhe entspr. 570 kW):

				. (
31,5	63	125	250	500	1000	2000	4000	8000
73,8	83,0	88,5	93,0	96,9	95,0	89,3	83,9	72,9

Bestimmung der Tonhaltigkeit nach FGW-Richtlinie / EDIN 45681 für Referenzbedingungen (9,2 m/s in 10 m Höhe entspr. 570 kW):

Repräsentatives FFT - Spektrum

Ergebnistabelle (für Referenzbedingungen **:

Bereich WG _{10m}	BIN - Mittel WG _{10m}	Anzahl der Spektren	Tonfrequenz fr	Pegeldifferenz &L	Tonzuschlag nach FGW - Richtlinie
[m/s]	[m/s]	(-)	[Hz]	[dB]	[dB]
5,5 - 6,5	6	12		-	- 0
6,5 - 7,5	7	12	-	-	0
7,5 - 8,5	8	12		-	0
8,5 - 9,5	9	12	*	-	0
9,5 - 10,5	10 *	12	176 - 190	-2,38	0

Bearbeiter:

Geprüft:

Dipl.-Ing J. Clausen

Dintalng J Neubert