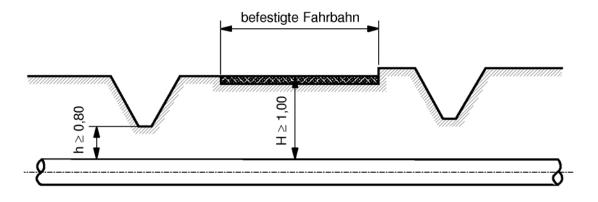
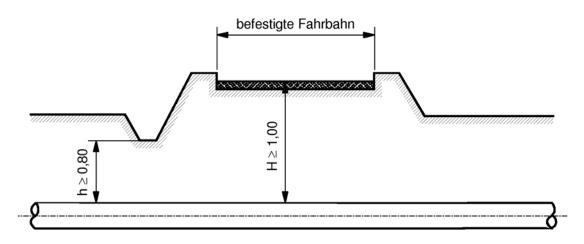
Guideline

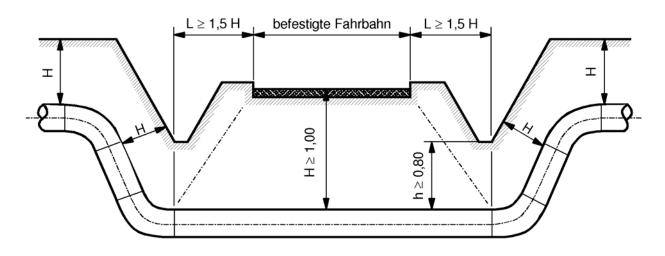

Gestaltung und Ausführung von Kreuzungen von Gasrohrleitungen DN 100 bis DN 1200 mit Verkehrswegen, Bächen und Gräben, mit und ohne Mantelrohr, ≥ MOP 5

GL 262-501 Mai 2004

Maße in m

Inhalt	Seite		Seite
1	Kreuzungen von Verkehrswegen	7.1	Anwendungsbereich10
	ohne Mantelrohr1	7.2	Konstruktive Ausbildung 10
2	Kreuzungen von Verkehrswegen mit Mantelrohr3	7.2.1	Auswahltabelle für Leitungsrohranordnung 10
3	Autobahnkreuzungen mit Mantelrohr4	7.2.2	Berechnungsverfahren für Leitungsrohranordnung11
4	Eisenbahnkreuzungen mit Mantelrohr6	7.2.3	Weitere Berechnungsverfahren 12
5	Graben- und Bachkreuzungen;	7.3	Verschluss von Mantelrohren 12
	Ausführung mit Betonreitern 8	7.4	Verfüllen von Press- und
6	Graben- und Bachkreuzungen; Ausführung mit Betonierung		Empfangsgruben bei Mantelrohrpressungen 12
7	Gestaltung von Mantelrohrkreuzungen10	Bezugs	dokumente 13


1 Kreuzungen von Verkehrswegen ohne Mantelrohr



GL 262-501 Mai 2004 Seite 2 von 13

Bild 2

Bild 3

Bei Mitverlegung eines Kabels:

Das Kabelschutzrohr ist mit der Leitung auf normale Deckung hochzuführen. Die Vorflut der Seitengräben darf nicht behindert werden.

2 Kreuzungen von Verkehrswegen mit Mantelrohr

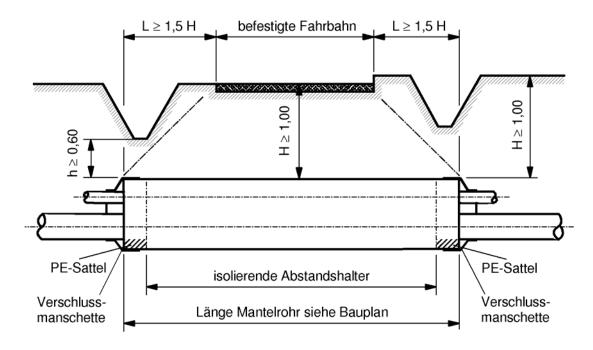
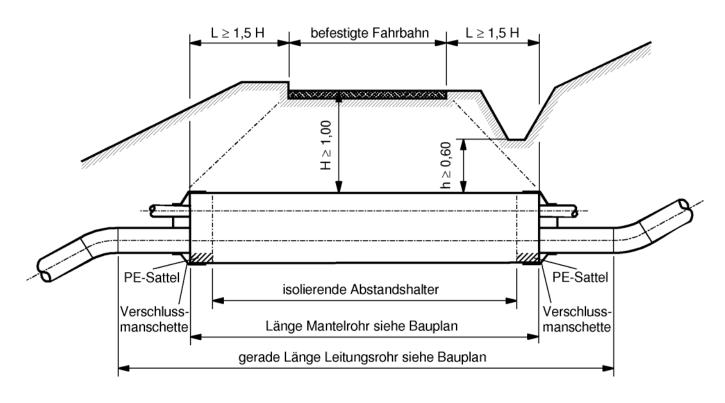



Bild 5

GL 262-501 Mai 2004 Seite 4 von 13

Bild 6

3 Autobahnkreuzungen mit Mantelrohr

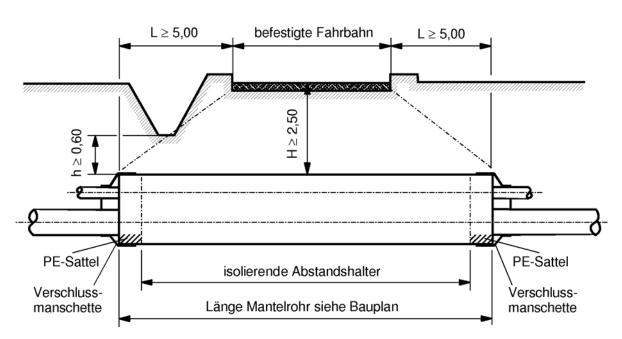


Bild 8

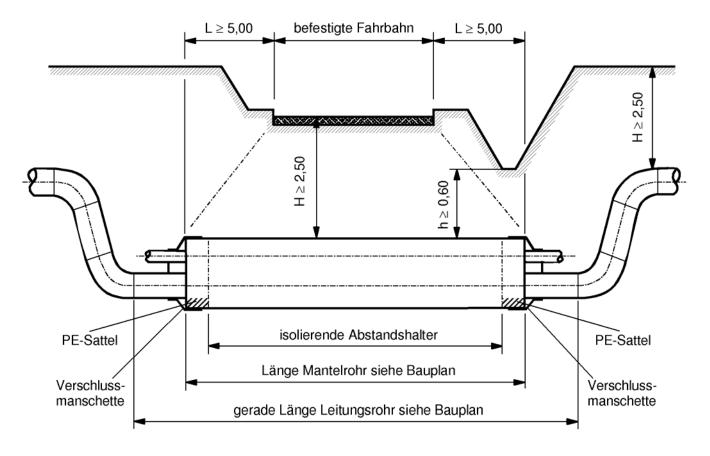
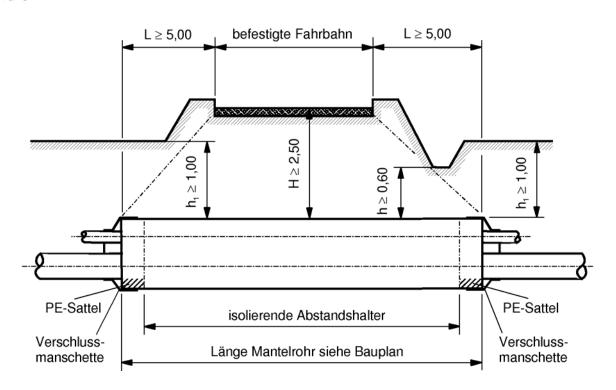
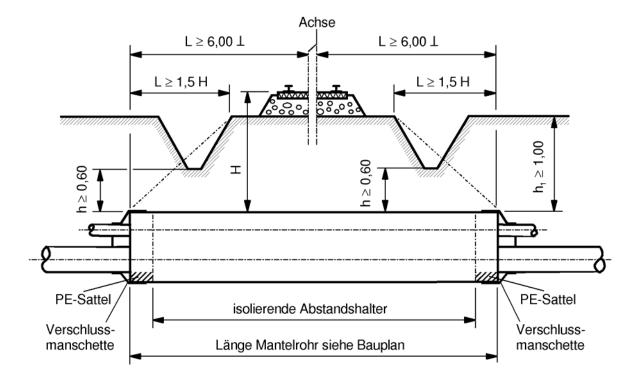
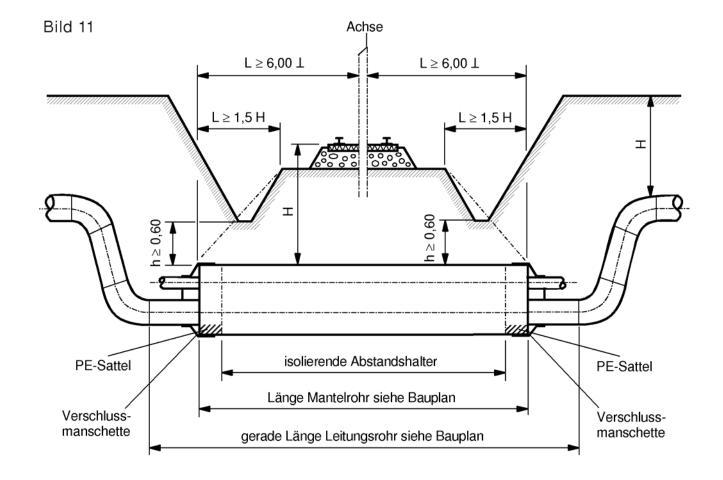
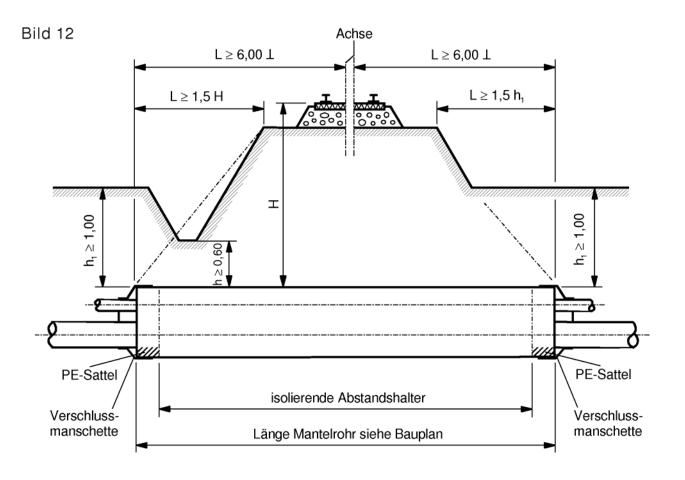



Bild 9

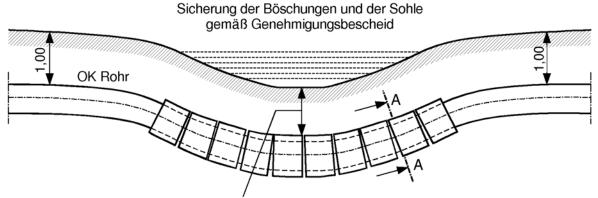

GL 262-501 Mai 2004 Seite 6 von 13


4 Eisenbahnkreuzungen mit Mantelrohr


⊥ = Rechtwinklig zur Gleisachse

Mindestdeckung: \leq DN 1500 H = 1,5m

> DN 1500 H = DN



GL 262-501 Mai 2004 Seite 8 von 13

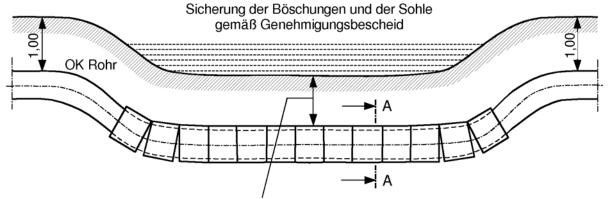

5 Graben- und Bachkreuzungen; Ausführung mit Betonreitern

Bild 13

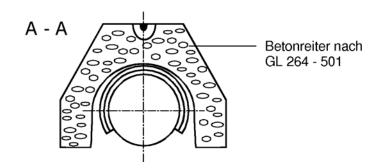

Mindestabdeckung über Beton = 1,00 m bzw. gemäß Genehmigungsbescheid

Bild 14

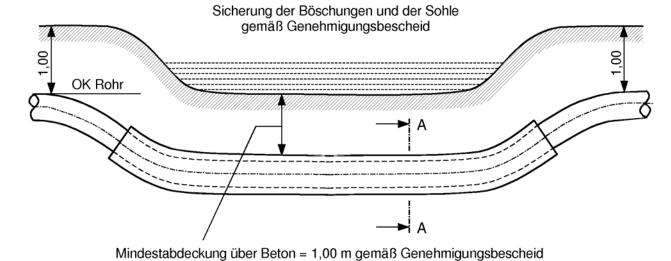
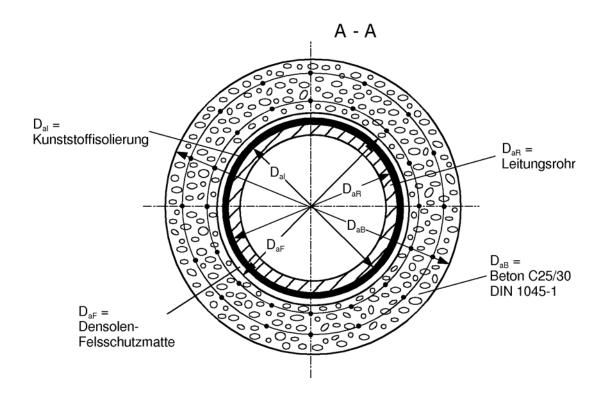

Mindestabdeckung über Beton = 1,00 m bzw. gemäß Genehmigungsbescheid

Bild 15 Schnitt A - A



6 Graben- und Bachkreuzungen; Ausführung mit Betonierung

Bild 16

Bild 17 Schichtaufbau

GL 262-501 Mai 2004 Seite 10 von 13

7 Gestaltung von Mantelrohrkreuzungen

7.1 Anwendungsbereich

Diese Guideline regelt die konstruktive Ausbildung von zu errichtenden Gashochdruckleitungen mit Nennweiten ab DN 100 bis DN 1200 bei Kreuzungsbauwerken mit Mantelrohren und die Verfüllung der Press- und Empfangsgruben.

7.2 Konstruktive Ausbildung

7.2.1 Auswahltabelle für Leitungsrohranordnung

Leitungsrohre benötigen am Mantelrohreintritt zur Aufnahme von Kräften aus der Behinderung der Dehnung aus Druck- und Temperaturdifferenz eine gerade Länge in Abhängigkeit vom nachfolgenden Etagensprung.

Bild 18

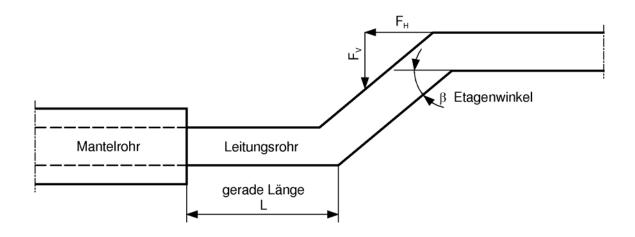


Tabelle 1 gibt die erforderlichen Mindestlängen in Abhängigkeit von der maximalen Wanddicke und den maximal zulässigen Etagenwinkeln für Leitungen im Druckbereich ≤ MOP 100 und im Betriebstemperaturbereich von - 10 °C bis + 60 °C vor.

Tabelle 1

Produktenrohre MOP ≤ 100				
DN Leitungsrohr	max. Wanddicke [mm]	gerade Mindestlänge [m]	max. Etagenwinkel [°]	
100	4,0	2,3	40	
150	5,0	2,6	35	
200	6,3	2,7	30	
250	8,0	3,4	30	
300	8,0	3,6	30	
400	10,0	3,7	25	
500	9,4	3,9	25	
600	11,4	3,7	20	
700	13,1	4,2	20	
800	15,0	4,8	20	
900	16,7	4,0	15	
1000	18,5	4,5	15	
1100	17,8	4,5	15	
1200	19,4	5,0	15	

7.2.2 Berechnungsverfahren für Leitungsrohranordnung

Wenn die örtlichen Gegebenheiten eine Anwendung der Tabelle 1 nicht zulassen, kann die nachfolgende Überschlagsrechnung angewand werden.

$$F_H = (D - T) \times \pi \times T (E \times \Delta t \times \alpha + \frac{p \times D}{2 \times T} (0.5 - v))$$

$$F_{V} = F_{H} x \tan \beta$$

$$L = \frac{F_{v}}{40 \times D}$$

GL 262-501 Mai 2004 Seite 12 von 13

D = Rohraußendurchmesser [cm]

T = Rohrwanddicke [cm]

E = Elastizitätsmodul des Rohrwerkstoffes (20,6 x 10⁶ N/cm²)

 Δt = Betriebstemperaturdifferenz (± 30 °C)

 α = Temperaturausdehnungskoeffizient (12 x 10⁻⁶) [1/°]

 $v = Querkontraktion (\approx 0,3)$ $p = Betriebsdruck [N/cm^2]$ $F_H = Horizontalkraft [N]$ $F_V = Vertikalkraft [N]$

β = Winkel des Etagensprungs [°]

L = gerade Länge [cm]

40 = zulässige Flächenpressung [N/cm²]

7.2.3 Weitere Berechnungsverfahren

Genauere Berechnungen können, falls erforderlich, mit dem Programm Rohr II oder mit der Finite-Elemente-Methode durchgeführt werden.

7.3 Verschluss von Mantelrohren

Zum Verschluss des Mantelrohres sind Verschlüsse, Manschetten und ggf. Verschlussplatten zu verwenden. An den Enden des Mantelrohres sind PE-Sättel einzulegen (L = 500 mm). Zwischen den PE-Sätteln sind im Abstand von je 2 m isolierende Abstandhalter zu installieren. Das Kabelschutzrohr ist mit der Leitung auf normale Deckung hochzuführen. Die Vorflut der Seitengräben darf nicht behindert werden.

7.4 Verfüllen von Press- und Empfangsgruben bei Mantelrohrpressungen

Für das Verfüllen von Press- und Empfangsgruben bei Kreuzungsbauwerken mit Mantelrohren sind folgende besondere Maßnahmen vorzusehen:

- Freischachten der Baugrubensohle bis auf gewachsenen Boden. Entfernen von losem Material. Es ist besonders darauf zu achten, dass die Baugrube frei von Wasser und Schlamm ist.
- Verfüllen und lagenweises Verdichten mit verdichtungsfähigem Material über die gesamte Baugrubenfläche bis ca. 30 cm unter den Rohrstrang. Dies gilt auch für Etagen.
- Prüfen der Proctordichte dieser Auffüllung. Es ist eine Proctordichte von mindestens 97 % nachzuweisen.
- Verbinden des in das Mantelrohr eingezogenen Leitungsrohres mit dem im Rohrgraben abgesenkten Rohr zu einem Strang.
- Anheben des Rohrstranges bis zum oberen Anschlag im Mantelrohr, jedoch um mindestens 15 cm. Verfüllen des jetzt zwischen Rohrstrang und Auffüllung entstandenen Raumes mit Sand unter gleichzeitigem Verdichten mit Stampfern.
- Ablassen des Rohrstranges, so dass er satt auf voller L\u00e4nge im Sandbett aufliegt, wobei am Mantelrohrende zwischen Leitungsrohrunterkante und Auflagesattel (PE-Sattel) ein Abstand von 1 - 2 cm verbleiben soll.

GL 262-501 Mai 2004 Seite 13 von 13

- Wiederholen der Arbeitsgänge sofern die geforderte Bedingung nicht mit einem einmaligen Durchgang erzielt wurde.
- Verschließen des Mantelrohres mit elastischer Abdichtmanschette und Verfüllen und lagenweises Verdichten mit verdichtungsfähigem Material bis Oberkante Rohrstrang über die gesamte Baugrubenfläche.
- Verfüllen der Baugrube mit geeignetem Material bis zur endgültigen Geländehöhe.

Bezugsdokumente

DIN 1045-1 Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 1: Bemessung und

Konstruktion

GL 264-501 Betonreiter für Gasleitungen DN 100 bis DN 1200

Ausführung, Bewehrungspläne und Stapelung