

Fluid & Energy Engineering GmbH & Co. KG

Gutachten zu Freileitungen im Windpark Granzin

Referenz-Nummer:

F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

Auftraggeber:

PROKON Regenerative Energien eG Kirchhoffstraße 3, 25524 Itzehoe

Die Ausarbeitung des Gutachtens erfolgte durch:

Fluid & Energy Engineering GmbH & Co. KG Borsteler Chaussee 178, 22453 Hamburg, www.f2e.de

Verfasser:

M.Sc. Susann Heise, Sachverständige, Hamburg, 27.07.2020

Geprüft:

Dr.-Ing. Thomas Hahm, Sachverständiger, Hamburg, 27.07.2020

Für weitere Auskünfte:

Tel.: 040 53303680-0 Fax: 040 53303680-79

Susann Heise: heise@f2e.de oder Dr. Thomas Hahm: hahm@f2e.de

Urheber- und Nutzungsrecht:

Urheber des Gutachtens ist die Fluid & Energy Engineering GmbH & Co. KG. Der Auftraggeber erwirbt ein einfaches Nutzungsrecht entsprechend dem Gesetz über Urheberrecht und verwandte Schutzrechte (UrhG). Das Nutzungsrecht kann nur mit Zustimmung des Urhebers übertragen werden. Eine Veröffentlichung und Bereitstellung der ungekürzten Fassung des Gutachtens zum uneingeschränkten Download in elektronischen Medien sind verboten. Eine Einsichtnahme der gekürzten Fassung des Gutachtens gemäß UVPG §23 (2) über die zentralen Internetportale von Bund und Ländern gemäß UVPG §20 Absatz (1) wird gestattet.

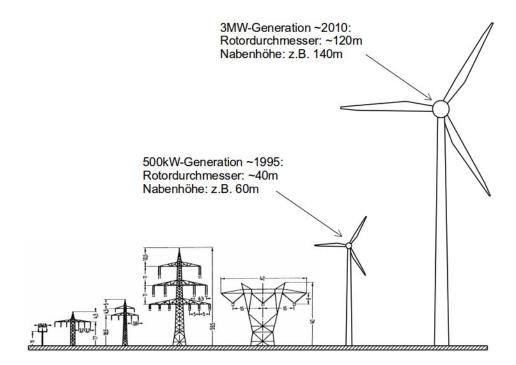
0 Kurzdarstellung des Ergebnisses

Die Leiterseile der 220-kV-Leitung Perleberg - Güstrow 321/322/328 und der geplanten 380-kV-Leitung Güstrow - Parchim Süd werden nicht vom schädigenden Einflussbereich der Nachlaufströmung der am Standort Granzin betrachteten WEA getroffen. Zusätzliche Schwingungsschutzmaßnahmen an den Freileitungen sind daher aus technischer Sicht nicht erforderlich.

ausführliche Erläuterung Ergebnisse erfolgt Kapitel 5 "Zusammenfassung und Bewertung".

Inhaltsverzeichnis

U	Kurzaarsteilung des Ergebnisses	∠
	Aufgabenstellung	
	Grundlagen	
	2.1 Normative Festlegungen nach DIN EN 50341-2-4 /1/	
	2.2 Analyse der Windbedingungen im Nachlauf mit Bezug zur Anregung v	
	Leiterseilen	
	2.3 Darstellung der verwendeten Methodik	
3	Randbedingungen	8
	3.1 Standortdaten der WEA	
	3.2 Daten der Freileitungen	13
4	Durchgeführte Untersuchungen	15
	4.1 Bestimmung der Abstände	
	4.2 Bestimmung des Einflussbereichs der Nachlaufströmung	16
	4.2.1 Ergebnisse nach /1/	17
	4.2.2 Ergebnisse der CFD-Analyse	18
5	Zusammenfassung und Bewertung	21
6	Formelzeichen und Abkürzungen	22
7	Literaturangaben	23



1 Aufgabenstellung

Die Fluid & Energy Engineering GmbH & Co. KG ist beauftragt worden, die Möglichkeit von Leiterseilanregungen durch den Nachlauf von Windenergieanlagen (WEA) unter Berücksichtigung der örtlichen Gegebenheiten darzustellen und zu bewerten.

Im Gutachten angewendet wird die am 01.04.2016 eingeführte DIN EN 50341-2-4 /1/.

Abbildung 1.1 zeigt zur Verdeutlichung der Größenverhältnisse illustrierend einige typische Abmaße wie Gesamthöhen und Traversenbreiten von Freileitungstragmasten sowie Rotordurchmesser und Nabenhöhen von WEA.

Abbildung 1.1: Typische Abmaße von Freileitungstragmasten nach /10/ sowie Beispiele typischer WEA-Größen der 500kW- und 3MW-Generation.

Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

2 Grundlagen

2.1 Normative Festlegungen nach DIN EN 50341-2-4 /1/

In /1/ wird für Freileitungen über AC 1kV ein horizontaler Mindestabstand a_{WEA} zwischen Turmachse der WEA und äußerstem ruhenden Leiterseil bestehend aus der Summe aus dem 0.5-fachen des Rotordurchmessers der WEA, einem Arbeitsraum a_{Raum} und einem waagerechten spannungsabhängigen Mindestabstand a_{LTG} gefordert.

Überschreitet die Summe aus Ausschwingbreite $D_{Schwing}$ des Leiterseils und einem spannungsabhängigen Schutzabstand D_V nach /2/ den Wert von \boldsymbol{a}_{LTG} ist diese Summe anstatt des Wertes von \boldsymbol{a}_{LTG} in die Berechnung des horizontalen Mindestabstandes einzusetzen.

Unter dem Arbeitsraum a_{Raum} ist der Abschnitt der Montage- und Kranstellfläche für die WEA zu verstehen, der über den halben Rotordurchmesser hinaus in den Bereich zwischen WEA und der Freileitung ragt. Der benötigte Arbeitsraum a_{Raum} ist laut /1/ projektbezogen vom Antragsteller/WEA-Betreiber verbindlich anzugeben und anschließend zwischen Freileitungsbetreiber und WEA-Betreiber zu vereinbaren.

Die Ausschwingbreite $D_{Schwing}$ ergibt sich entsprechend /1/ aus dem horizontalen Abstand der Leiterpositionen zwischen ausgeschwungenem und ruhendem Leiterseil.

Bis zu einem Abstand von entsprechend drei Rotordurchmessern werden wiederum Schwingungsschutzmaßnahmen gefordert, wenn nicht sichergestellt ist, dass die Leiterseile außerhalb der Nachlaufströmung der WEA liegen.

In /1/ ist ein vereinfachtes Verfahren angegeben, mit dem die Ausdehnung des Nachlaufs abgeschätzt werden kann. Hier wird für die Nachlaufströmung ausgehend vom Rotor der WEA ein Kegelstumpf mit einer Steigung von 0.1 entsprechend einem Aufweitungswinkel von knapp 6° unterstellt. Zusätzlich muss hier der Schwenkbereich des Rotors im Bereich von +- 45° bezogen auf den kürzesten Abstand zwischen Turmachse und Leiter berücksichtigt werden. Berücksichtigung findet ebenfalls der Abstand s_{Exz} zwischen der Turmachse der WEA und der Rotorblattebene.

Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

2.2 Analyse der Windbedingungen im Nachlauf mit Bezug zur Anregung von Leiterseilen

Die Nachlaufströmung hinter einer WEA entsteht dadurch, dass dem Wind Energie entzogen und umgewandelt wird. Aus diesem Grund verringert sich die Windgeschwindigkeit direkt hinter einer WEA spürbar. Parallel dazu wird die Turbulenz deutlich erhöht. Eine Grenze zwischen ungestörter und gestörter Strömung lässt sich jedoch nur schwer definieren. Physikalisch gesehen ist die Annahme eines sich beständig erweiternden Nachlaufs unplausibel. Vielmehr wird das entstehende Windgeschwindigkeitsdefizit wieder aufgefüllt und die Störung löst sich auf. Um ein Kriterium für die relevante Ausdehnung der Nachlaufströmung angeben zu können, müssen mögliche Ursachen für Leiterseilanregungen genauer betrachtet werden.

Angeströmte Leiterseile werden durch eine periodische Ablösung von Luftwirbeln zu erzwungenen Schwingungen angeregt. Die Ablösefrequenz von Wirbeln an feststehenden Zylindern ist allgemein proportional zur Windgeschwindigkeit und umgekehrt proportional zum Zylinderdurchmesser. Stimmt die Wirbelablösefrequenz mit einer Eigenfrequenz des Seils etwa überein, erfolgt eine Erregung des Seils zu Schwingungen quer zum Wind. Die auftretenden Schwingungen können wegen der damit verbundenen Biegewechselbeanspruchung vorwiegend an den Unterstützungen zu Bruchschäden der Seile führen. Relevante Schwingungsamplituden in der Aufhängung der Leiterseile liegen nach /4/ und /5/ im Bereich bis 50Hz. Ablösefrequenzen bis 50Hz entstehen durch Windgeschwindigkeiten unterhalb von ca. 7m/s.

Für typische Bedingungen von Leiterseilen beträgt der Abstand der Eigenfrequenzen, wie in /4/ weiter nachgewiesen wird, nur etwa 0.1Hz. Wegen der geringen Seil-Eigendämpfung und der dichten Folge von Eigenfrequenzen erfahren die an sich niedrigen Anregekräfte eine Resonanzüberhöhung, so dass Dämpfer zur Reduzierung der auftretenden Biegewechselbeanspruchung verschiedentlich eingesetzt werden /4, 5/.

Da nur die geringen Windgeschwindigkeiten bis ca. 7m/s zur Anregung führen und andererseits eine WEA die Windgeschwindigkeit in ihrem Nachlauf reduziert, wird vermutet, dass es durch benachbarte WEA aufgrund der häufiger auftretenden geringen Windgeschwindigkeiten zu einer erhöhten Schwingungsbelastung kommt. Diesem Ansatz folgt die bereits erwähnte Studie /3/. Bei der Ermittlung der Schädigungspotentiale wurden hier folgende Annahmen getroffen:

 Das Seil befindet sich in der gesamten Länge des Spannfelds ständig im Einflussbereich der Nachlaufströmung.

- Als natürliche Turbulenzintensität wurden 1% und für deren Erhöhung im Nachlauf 5% unterstellt. Nach /3/ wirken dabei hohe Turbulenzintensitäten dämpfend.
- Weiterhin werden die Leiterseile vom Kern der Nachlaufströmung getroffen und erfahren dabei eine gegenüber dem ungestörten Wind bis auf 40% reduzierte Anströmgeschwindigkeit.

Diese Werte sind als konservativ in Bezug auf ihr Schädigungspotential zu sehen, weil:

- es bei einer typischen Spannfeldlänge von 350m bis 400m bei Hochspannungsleitungen (110 - 220kV) nicht möglich ist, dass die Seile in ihrer gesamten Länge und ständig vom Nachlauf einer WEA getroffen werden,
- unterhalb von 7m/s Windgeschwindigkeit sowohl die Umgebungsturbulenzintensität als auch deren Erhöhung durch den Nachlauf größer als die unterstellten Werte sind. Im Bereich von 3 bis 7m/s werden WEA für Umgebungsturbulenzintensitäten von 42.0 bis 24.9% ausgelegt. Dies kann als Obergrenze angesehen werden und entspricht in etwa der Größenordnung, die im direkten Nachlauf der WEA bei diesen Windgeschwindigkeiten erreicht wird.
- Eine Erniedrigung der Windgeschwindigkeit auf 40% der ungestörten Strömung dicht am erreichbaren Grenzwert liegt.

2.3 Darstellung der verwendeten Methodik

Grundsätzlich unterscheidet man den Nahbereich der Nachlaufströmung, in dem die von den Blattspitzen generierte Turbulenz und das von der WEA insgesamt erzeugte Windgeschwindigkeitsdefizit mit deutlichen Konturen präsent sind. Abhängig von der atmosphärischen Strömung geht dieser Nahbereich zwischen 3 bis 5 Rotordurchmesser Abstand hinter der WEA in den Fernbereich der Nachlaufströmung über, in dem die vorhandenen scharfen Konturen verschwinden und in einen weichen Verlauf übergehen.

Interessant in Bezug auf die Anregung von Leiterseilen ist nur der Nahbereich der Nachlaufströmung, da nur hier die oben definierten Bedingungen erreicht werden können. Der Kern der Nachlaufströmung mit einer nennenswerten Reduzierung der Windgeschwindigkeit ist in diesem Bereich scharf abgegrenzt und kleiner als der Rotordurchmesser.

Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

Der angenommene schädigungsrelevante Bereich der auf 40% reduzierten Anströmgeschwindigkeit muss daher deutlich kleiner als der in /1/ und /3/ definierte Kegelstumpf sein.

Eine genaue Verifizierung dieses Bereiches gestaltet sich schwierig. Geeignete Freifeldmessungen an realen WEA liegen nicht vor oder geben nur Ausschnitte wieder. Es sind daher verschiedene Nachlaufmodelle entwickelt worden (siehe z.B. /6/). In den letzten Jahren haben sich zunehmend dreidimensionale Computational Fluid Dynamics (CFD) Simulationen etabliert /6, 7, 8/, die bereits in stationären Berechnungen gute Übereinstimmungen mit Messergebnissen bezüglich des Windgeschwindigkeitsdefizits liefern (siehe z.B. /7/).

Es liegt daher nahe, den relevanten Einflussbereich einer WEA bezüglich benach barter Freileitungen durch eine dreidimensionale CFD-Simulation zu erfassen.

In den von uns bislang durchgeführten Untersuchungen dehnt sich der oben definierte schädigungsrelevante Einflussbereich des Nachlaufs nicht über die horizontal nach hinten verlängerte Rotorfläche hinaus aus und löst sich zum Ende des Nahbereichs auf /9/.

Demgegenüber führt das in /1/ definierte Verfahren (siehe Abbildung 2.3.1) für Freileitungen über AC 1kV zu einer vergleichsweise sehr konservativen Abschätzung.

Im Einzelfall erfolgt eine genauere Analyse auf Basis von CFD-Berechnungen, die eine realistischere und unter Berücksichtigung der in 2.2 dargelegten Randbedingungen konservative Eingrenzung des schädigungsrelevanten Anteils der Nachlaufströmung ermöglicht. In sehr strukturiertem Gelände wird der Einfluss des Geländeprofils berücksichtigt.

Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

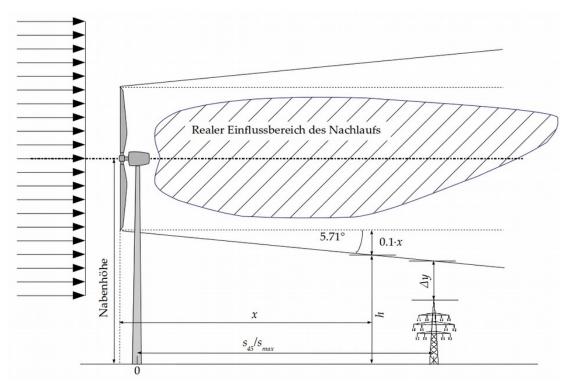


Abbildung 2.3.1: Vereinfachtes Verfahren zur Abschätzung des schädigenden Einflussbereichs der Nachlaufströmung nach /1/ und beispielhafter realer Einflussbereich (gestreift) auf Basis von CFD-Berechnungen.

3 Randbedingungen

3.1 Standortdaten der WEA

Am Standort Granzin (Mecklenburg-Vorpommern) plant bzw. betreibt der Auftraggeber vier Windenergieanlagen (WEA 1 - 4) vom Typ GE 5.5-158 5.5MW, NH 161.0m.

In der unmittelbaren Umgebung der WEA befinden sich die 220-kV-Leitung Perleberg - Güstrow 321/322/328 und die geplante 380-kV-Leitung Güstrow - Parchim Süd der 50Hertz Transmission GmbH. Die Standorte der WEA 1 - 4 liegen in unmittelbarer Nähe zur Freileitung.

Die vom Auftraggeber übermittelten Daten zur Windparkkonfiguration sind in Tabelle 3.1.1 bzw. Abbildung 3.1.1 dargestellt.

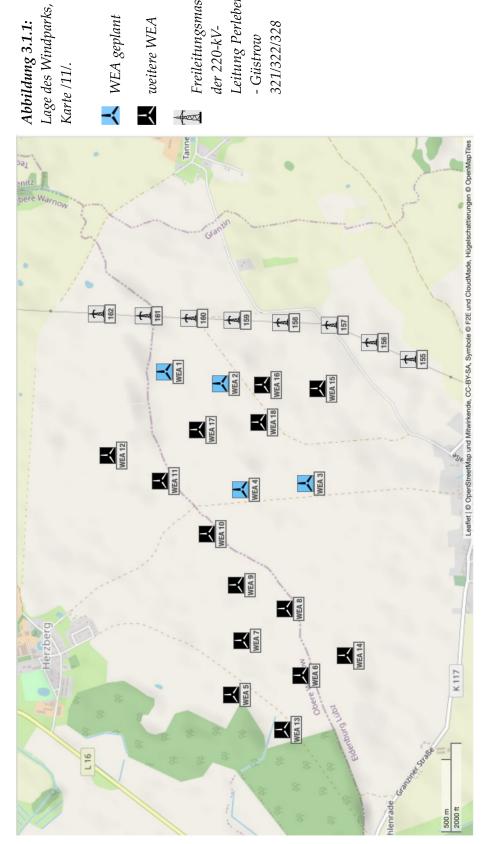
Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

	Lfd.Nr.	Bezeichnung	Koordinaten (UTM ETRS89 Zone 32)		Hersteller	WEA-Typ	P _N [MW]	RD [m]	NH [m]	S _{exz}	Höhe EOK üNN [m]
			East	North				[111]	[111]	[111]	urviv [iii]
人	1	P_WEA 01	695977	5934397	GE Wind Energy	GE 5.5-158	5.5	158.0	161.0	4.17	73.14
人	2	P_WEA 02	695914	5934003	GE Wind Energy	GE 5.5-158	5.5	158.0	161.0	4.17	73.83
人	3	P_WEA 04	695257	5933383	GE Wind Energy	GE 5.5-158	5.5	158.0	161.0	4.17	70.75
人	4	P_WEA 05	695196	5933833	GE Wind Energy	GE 5.5-158	5.5	158.0	161.0	4.17	70.92
人	5	W1	693797 5933843		Vestas	V162	5.6	162.0	166.0*		
人	6	W2	693948 5933363		Vestas	V162	5.6	162.0	166.0*		
人	7	W3	694168	5933786	Vestas	V162	5.6	162.0	166.0*		
人	8	W4	694399	5933493	Vestas	V162	5.6	162.0	166.0*		
人	9	W5	694546	5933836	Vestas	V162	5.6	162.0	166.0*		
人	10	W6	694885	5934055	Vestas	V162	5.6	162.0	166.0*		
人	11	W7	695233	5934398	Vestas	V162	5.6	162.0	166.0*		
人	12	W8	695392	5934770	Vestas	V162	5.6	162.0	166.0*		
人	13	W9	693572	5933477	Vestas	V162	5.6	162.0	166.0*		
人	14	W10	694097	5933060	Vestas	V162	5.6	162.0	166.0*		
人	15	W11	695905	5933323	Vestas	V162	5.6	162.0	166.0*		
人	16	W12	695918	5933711	Vestas	V162	5.6	162.0	166.0*		
人	17	E_WEA 01	695593	5934152	GE Wind Energy	GE 5.5-158	5.5	158.0	161.0		

Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

	Lfd.Nr.	Bezeichnung	Koordinaten (UTM ETRS89 Zone 32) East North		Hersteller	WEA-Typ	P _N [MW]	RD [m]	NH [m]	s _{exz} [m]	Höhe EOK üNN [m]
人	18	E_WEA 02	695660	5933728	GE Wind Energy	GE 5.5-158	5.5	158.0	161.0		

Tabelle 3.1.1: Windparkkonfiguration.


Alle Benennungen von WEA im Dokument beziehen sich auf die Nomenklatur von Spalte 2 (Lfd. Nr.) in Tabelle 3.1.1!

^{*:} Zuzüglich zur angegebenen Nabenhöhe weist die WEA eine Fundamenterhöhung von 3m auf.

Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung für PROKON Regenerative Energien eG im Windpark Granzin, Juli 2020

Gutachten zu Freileitungen

Leitung Perleberg

321/322/328

- Güstrow

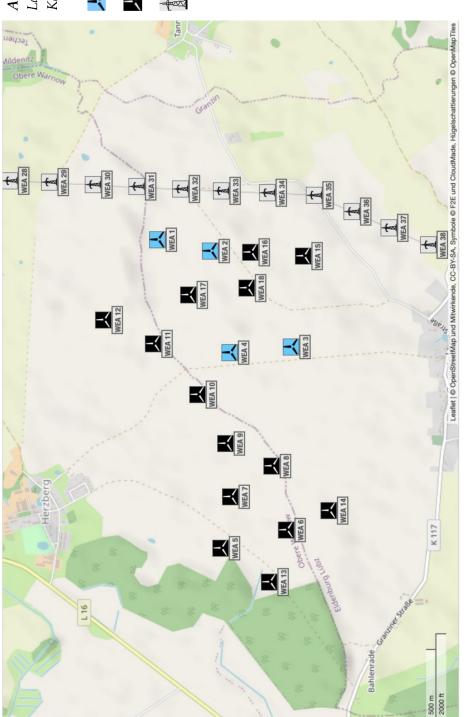
Freileitungsmast

der 220-kV-

weitere WEA

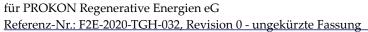
Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung für PROKON Regenerative Energien eG im Windpark Granzin, Juli 2020 Gutachten zu Freileitungen

Lage des Windparks, Karte /11/. Abbildung 3.1.2:


🙏 WEA geplant

weitere WEA

Freileitungsmast der geplanten 380-kV-Güstrow -Parchim Süd Leitung

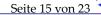


3.2 Daten der Freileitungen

Die vom Auftraggeber übermittelten Daten zur 220-kV-Leitung Perleberg - Güstrow 321/322/328 und zur 380-kV-Leitung Güstrow - Parchim Süd sind in den Tabellen 3.2.1 und 3.2.2 dargestellt.

	Trag- mast	Koordinaten (UTM ETRS89 Zone 32) East North		Masttyp	Traversen -breite [m]	Höhe EOK üNN [m]	Mast- höhe [m]	Höhe Mastspitze üNN [m]
22	0-kV-Le			w 321/322/328				
1	155	696135	5932702	T-2 1 TK	15.0	61.76	23.71*	85.47**
1	156	696238	5932978	T-2 1 TK	15.0	70.25	23.81*	94.06**
1	157	696345	5933263	WA 2 AK	15.3	62.05	22.61*	84.66**
1	158	696347	5933603	T+6 2 TK	15.0	69.12	31.83*	100.95**
1	159	696348	5933943	T+4 2 TK	15.0	72.07	29.92*	101.99**
1	160	696350	5934242	T+2 2 TK	15.0	70.96	27.85*	98.81**
1	161	696352	5934563	T-2 1 TK	15.0	69.90	24.11*	94.01**
1	162	696353	5934888	-	15.0	72.02	-	-
	0-kV-Le	itung Güstr	ow - Parchim	Süd				
1	103	696372	5938400	T1+2.5	16.6	66.62	38.50	105.12
1	104	696370	5938077	T1+2.5	16.6	67.79	38.50	106.29
1	105	696368	5937743	T1+2.5	16.6	67.07	38.50	105.57
1	106	696366	5937407	WA1+0	20.0	70.63	32.50	103.13
1	107	696365	5937075	T1-7.5	16.6	77.47	28.50	105.97
1	108	696363	5936758	T1+0	16.6	68.71	36.00	104.71
1	109	696361	5936458	T1-2.5	16.6	71.77	33.50	105.27
1	110	696359	5936117	T1+0	16.6	71.88	36.00	107.88
1	111	696358	5935827	T1+0	16.6	72.34	36.00	108.34
1	112	696356	5935498	T1+2.5	16.6	74.82	38.50	113.32
To the	113	696355	5935209	T1-2.5	16.6	71.58	33.50	105.08
to	114	696353	5934887	T1-2.5	16.6	72.12	33.50	105.62
to	115	696351	5934562	T1-2.5	16.6	70.00	33.50	103.50
1	116	696350	5934242	T1+2.5	16.6	71.06	38.50	109.56
1	117	696348	5933942	T1+0	16.6	72.17	36.00	108.17

Gutachten zu Freileitungen im Windpark Granzin, Juli 2020



	Trag- mast	Koordinaten (UTM ETRS89 Zone 32) East North		Masttyp	Traversen -breite [m]	Höhe EOK üNN [m]	Mast- höhe [m]	Höhe Mastspitze üNN [m]
1	118	696346	5933602	T1+5.0	16.6	69.22	41.00	110.22
to	119	696344	5933257	WA2+2.5	20.0	62.09	35.00	97.09
to	120	696239	5932977	T1-5	16.6	70.17	31.00	101.17
TO	121	696136	5932701	T1-2.5	16.6	61.75	33.50	95.25
to	122	696024	5932403	T1-2.5	16.6	62.90	33.50	96.40
to	123	695920	5932126	T1+0	16.6	61.51	36.00	97.51
1	124	695809	5931829	T1-2.5	16.6	62.61	33.50	96.11
1	125	695690	5931512	T1+2.5	16.6	60.82	38.50	99.32
1	126	695571	5931196	T1-2.5	16.6	66.36	33.50	99.86
1	127	695457	5930892	T1+2.5	16.6	59.01	38.50	97.51
to	128	695337	5930571	T1+0	16.6	60.93	36.00	96.93
1	129	695224	5930269	T1+0	16.6	64.07	36.00	100.07
1	130	695105	5929952	T1+0	16.6	59.82	36.00	95.82
1	131	695010	5929699	WA1+5	20.0	61.17	37.50	98.67
1	132	694814	5929454	T1+0	16.6	64.82	36.00	100.82

Tabelle 3.2.1: Liste der Tragmasten mit Höhenangaben.

- *: Die Masthöhe berechnet sich aus der Höhe der Mastspitze üNN abzüglich der Höhe der EOK üNN
- **: Aufgrund unterschiedlicher Angaben der Höhe der Mastspitze üNN wurden konservativ die höheren Werte verwendet.

Referenz-Nr.: F2E-2020-TGH-032	Revision 0 - ungekürzt	e Fassung
		0

Betroffenes Spannfeld	WEA in diesem Bereich	D _{schwing} [m]	D _v [m]	D _{schwing} + D _V [m]	>/<	a _{LTG} [m]	a _{Raum}	Breite des Schutz- streifens [m]
220-kV-Leitu	ing Perleberg	- Güstrow 321	/322/328					
160-161	1	15.85*	5	20.85	<	30	0	30.85**
159-160	2	15.00*	5	20.00	<	30	0	30.00**
157-158	3	16.62*	5	21.62	<	30	0	30.58**
156-157	3	14.70*	5	19.70	<	30	0	30.00**
158-159	4	15.58*	5	20.58	<	30	0	31.92**
380-kV-Leitu	ıng Güstrow -	Parchim Süd						
115-116	1	11.14*	5	16.14	<	30	0	27.74
116-117	2	10.50*	5	15.50	<	30	0	27.10
118-119	3	10.06*	5	15.06	<	30	0	30.06
119-120	3	8.59*	5	13.59	<	30	0	28.59
117-118	4	11.90*	5	16.90	<	30	0	28.50

Tabelle 3.2.2: Weitere verwendete Daten zu den Spannfeldern.

Für die WEA 1 - 4 wurden vom Auftraggeber für \boldsymbol{a}_{Raum} keine Werte übermittelt. Für die weitere Berechnung wird daher ein \boldsymbol{a}_{Raum} von 0m verwendet. Sollte \boldsymbol{a}_{Raum} über den Rotorradius hinaus in den Bereich zwischen WEA und Freileitung reichen, müssen die Mindestabstände nach /1/ entsprechend angepasst werden.

4 Durchgeführte Untersuchungen

4.1 Bestimmung der Abstände

Entsprechend den Erläuterungen in Kapitel 2 kann die Bestimmung der einzuhaltenden Mindestabstände nach /1/ vorgenommen werden.

Nach /1/ ist der Abstand zwischen der Turmachse und dem äußersten ruhenden Leiterseil zu ermitteln. Dieser darf die Summe aus dem 0.5-fachen Rotordurchmesser, dem Arbeitsraum a_{Raum} und dem spannungsabhängigen Mindestabstand a_{LTG} nicht

^{*:} Für D_{schwing} wurde mangels Angaben konservativ abdeckend die Strecke zwischen äußerstem ruhenden Leiterseil und dem breitesten Punkt des Schutzstreifens zu Grunde gelegt.

^{**:} Aufgrund unterschiedlicher Angaben der Breite des Schutzstreifens der Freileitungen wurden konservativ die höheren Werte verwendet.

unterschreiten.

Die in der Tabelle 3.2.2 dargestellte Summe aus D_{schwing} und D_V ist in der vorliegenden Konfiguration an den WEA 1 - 4 kleiner als a_{LTG}. Zur weiteren Berechnung wird daher a_{LTG} als spannungsabhängiger Mindestabstand verwendet.

	T CJ NI.	Damai alamana	Mindestabstand a _{wea}	Vorhanden	er Abstand a _{wea}				
	Lfd.Nr.	Bezeichnung	nach /1/ [m]	[m]	in RD				
220	220-kV-Leitung Perleberg - Güstrow 321/322/328								
人	1	P_WEA 01	109.0	358.9	2.27				
人	2	P_WEA 02	109.0	419.8	2.66				
人	3	P_WEA 04	109.0	1045.7	6.62				
人	4	P_WEA 05	109.0	1136.9	7.20				
380)-kV-Leitunş	g Güstrow - Parchi	m Süd						
人	1	P_WEA 01	109.0	356.8	2.26				
人	2	P_WEA 02	109.0	417.7	2.64				
人	3	P_WEA 04	109.0	1042.3	6.60				
人	4	P_WEA 05	109.0	1134.8	7.18				

Tabelle 4.1.1: Abstand der Turmachse der WEA zum äußersten ruhenden Leiterseil nach /1/.

Der Standorte der WEA 1 und 2 weisen Abstände von weniger als drei Rotordurchmessern zwischen Turmachse der WEA und äußerstem ruhenden Leiterseil der Freileitungen auf. Für diese WEA ist daher nach /1/ der Nachweis zu führen, dass die Freileitungen nicht vom schädigenden Einflussbereich der Nachlaufströmung getroffen werden.

Der in der Norm /1/ geforderte horizontale Mindestabstand zwischen Turmachse der WEA und äußerstem ruhenden Leiterseil a_{WEA} wird in der vorliegenden Konfiguration an keiner der betrachteten WEA unterschritten.

4.2 Bestimmung des Einflussbereichs der Nachlaufströmung

Entsprechend den Erläuterungen in Kapitel 2 erfolgt die Bewertung des schädigenden Einflussbereiches der Nachlaufströmung mit dem vereinfachten Berechnungsverfahren nach /1/. Falls erforderlich wird eine Bewertung mittels einer detaillierten CFD-Analyse vorgenommen.

Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

Im vorliegenden Fall wurde zusätzlich für die WEA 1 und 2 eine Bewertung mittels einer CFD-Analyse vorgenommen.

4.2.1 Ergebnisse nach /1/

Im vorliegenden Fall wird der vertikale Abstand in Bezug zum höchstgelegenen Leiterseil mit dem größten horizontalen Abstand zur Turmachse der WEA bestimmt. Im konkreten Fall wird bei der 220-kV-Leitung Perleberg - Güstrow 321/322/328 das Erdseil am Obergurt der Traverse mit einem horizontalen Abstand von 15.0m von der Trassenachse betrachtet und bei der 380-kV-Leitung Güstrow - Parchim Süd wird das Erdseil am Obergurt der Traverse mit einem horizontalen Abstand von 13.9m von der Trassenachse betrachtet.

Aufgrund der in /1/ geforderten Betrachtung des Schwenkbereiches des Rotors von +- 45° ist entweder der Abstand für 45° s_{45°} oder der maximal zu betrachtende Abstand von drei Rotordurchmessern s_{max} maßgeblich (siehe Abbildung 4.2.1.1). Dabei ist die Exzentrizität der Rotorebene zu berücksichtigen.

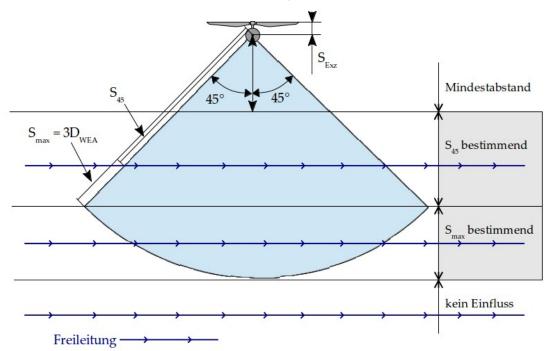


Abbildung 4.2.1.1: Zu betrachtender Einflussbereich der Nachlaufströmung (blau) in der Draufsicht und relevante Abstände.

Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

Im vorliegenden Fall ist der maximal zu betrachtende Abstand von drei Rotordurchmessern s_{max} für die WEA 1 und 2 maßgeblich und in Tabelle 4.2.1.1 dargestellt.

Es ergeben sich damit folgende vertikalen Abstände zwischen der Unterkante des Einflussbereiches der Nachlaufströmung und dem ruhenden Leiterseil:

Betrachteter Abstand	WEA	Vertikaler Abstand der Nachlaufströmung zum ruhenden Leiterseil Δy [m]						
220-kV-Leitung Perleberg - Güstrow 321/322/328								
S _{max}	1	8.5						
S _{max}	2	6.0						
380-kV-Leitung Güstrow - Parchin	n Süd							
S _{max}	1	-2.2						
S _{max}	2	-1.5						

Tabelle 4.2.1.1: Abstände der Nachlaufströmung zu den Leiterseilen der Freileitungen.

Damit liegt der Einflussbereich der Nachlaufströmung der WEA 1 und 2 nach dem vereinfachten Verfahren oberhalb der Leiterseile der 220-kV-Leitung Perleberg - Güstrow 321/322/328.

Damit ragt der Einflussbereich der Nachlaufströmung der WEA 1 und 2 nach dem vereinfachten Verfahren bei Queranströmung in den Bereich der Leiterseile der 380-kV-Leitung Güstrow - Parchim Süd

4.2.2 Ergebnisse der CFD-Analyse

Die Ausdehnung der Nachlaufzone der Windenergieanlagen wurde auf Grundlage einer Simulation der Nachlaufströmung bewertet. Hierzu wurde in einem 3-D-Modell das Strömungsfeld hinter einer Windenergieanlage in der Größe der WEA vom Typ GE 5.5-158 5.5MW, NH 161.0m, mit der Computational Fluid Dynamics (CFD) Software FLUENT berechnet. CFD-Software wird zur Berechnung dreidimensionaler Strömungsprozesse unter Berücksichtigung des Wärmetransports durch Leitung, Konvektion und Strahlung sowie chemischer Reaktionen eingesetzt. Die Programmentwicklung und –auslieferung von Fluent ist nach BSI qualitätsgesichert (British Standard Institution America Inc.; Certificate No. FM 55686; Reston VA, 2000).

Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

Aufgrund der nicht allzu großen Steigungen des Geländes kann unterstellt werden, dass die bodennahe Strömung dem Gelände folgt. In der CFD-Berechnung wurden Höhenunterschiede zwischen den einzelnen WEA- und Tragmast-Positionen daher nicht berücksichtigt.

Die Abbildung 4.2.2.1 zeigt eine Darstellung des sich einstellenden Geschwindigkeitsfeldes hinter den WEA in Bezug auf die betroffenen Tragmasten für eine Anströmwindgeschwindigkeit von 10m/s auf Nabenhöhe.

Die Windenergieanlagen vom Typ GE 5.5-158 5.5MW, NH 161.0m, reichen bei einem Rotordurchmesser von 158m mit ihrem Rotor in ungünstigster Stellung bis auf 82m über Grund herunter.

Man erkennt in der Abbildung 4.2.2.1, dass der Bereich starker Geschwindigkeitsabsenkung auf einen engen Bereich begrenzt ist. Absenkungen der mittleren Windgeschwindigkeit auf 40% der Anströmwindgeschwindigkeit, wie sie in der Norm /1/ zugrunde liegenden Studie /3/ angenommen werden, treten im Bereich der einzelnen Tragmasten nicht auf.

Weiterhin ist zu erkennen, dass sich das Geschwindigkeitsdefizit hinter den WEA nicht trichterförmig aufweitet, sondern eine relativ konstante zylindrische Form aufweist. Insbesondere ist sehr gut zu erkennen, dass die Windgeschwindigkeit auf Höhe des Erdseils und darunter in der Umgebung der WEA nicht reduziert wird.

Eine Darstellung des weiteren Kriteriums aus /3/, der für eine Schwingungsanregung notwendigen niedrigen Turbulenz, erübrigt sich, da der in /3/ angenommenen Wert der Turbulenzintensität von 6% im Nachlauf der WEA überall deutlich überschritten wird.

Die in Abbildung 4.2.2.1 enthaltenen Aussagen enthalten daher entsprechend sehr viele Konservativitäten. Auf Basis der Ergebnisse der CFD-Simulation lässt sich somit der Schluss ziehen, dass die Leiterseile der Freileitung nicht vom schädigenden Einflussbereich der Nachlaufströmung der WEA getroffen werden.

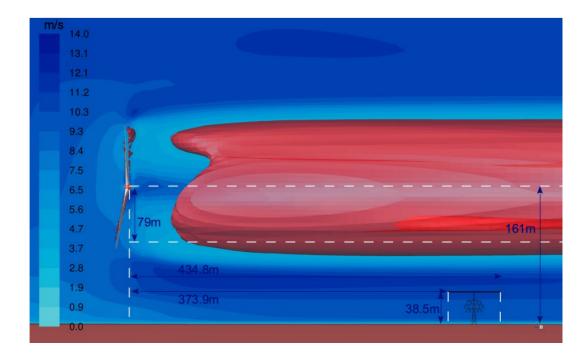


Abbildung 4.2.2.1: Vertikaler Schnitt in der Achse einer WEA vom Typ GE 5.5-158 5.5MW, NH 161.0m, bei einer Anströmung mit 10m/s. Dargestellt sind zusätzlich die Positionen der einzelnen Tragmasten der 380-kV-Leitung Güstrow - Parchim Süd entsprechend ihres Abstandes zu WEA 1 und 2. Weiterhin dargestellt ist der einhüllende Isoflächenbereich der auf 40% reduzierten Windgeschwindigkeit (rot).

Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

5 Zusammenfassung und Bewertung

Am Standort Granzin (Mecklenburg-Vorpommern) plant bzw. betreibt der Auftraggeber vier Windenergieanlagen vom Typ GE 5.5-158 5.5MW, NH 161.0m, siehe hierzu Abbildung 3.1.1.

In der unmittelbaren Umgebung der WEA befinden sich die 220-kV-Leitung Perleberg - Güstrow 321/322/328 und die geplante 380-kV-Leitung Güstrow - Parchim Süd der 50Hertz Transmission GmbH. Die Standorte der WEA 1 - 4 liegen in unmittelbarer Nähe zur Freileitung.

Die Planung wurde von uns daraufhin bewertet, ob die Möglichkeit von Leiterseilanregungen durch den Nachlauf der WEA unter Berücksichtigung der örtlichen Bedingungen gegeben ist.

Die Standorte der WEA 1 und 2 weisen Abstände von weniger als drei Rotordurchmessern zwischen Turmachse der WEA und äußerstem ruhenden Leiterseil auf. Für diese WEA ist daher nach /1/ der Nachweis zu führen, dass die Freileitung nicht vom schädigenden Einflussbereich der Nachlaufströmung getroffen wird.

Der in der Norm /1/ geforderte horizontale Mindestabstand zwischen Turmachse der WEA und äußerstem ruhenden Leiterseil wird in der vorliegenden Konfiguration an keiner der betrachteten WEA unterschritten.

Die Untersuchung ergab, dass mit dem gewählten Windenergieanlagentyp GE 5.5-158 5.5MW, NH 161.0m, die Leiterseile der Freileitungen nicht vom schädigenden Einflussbereich der Nachlaufströmung der WEA getroffen werden.

Von den WEA 1 - 4 gehen deshalb keine die Lebensdauer durch Schwingung verkürzende Einwirkung auf die betrachteten Freileitungen aus.

Zusätzliche Schwingungsschutzmaßnahmen an den Freileitungen sind daher aus technischer Sicht nicht erforderlich.

Referenz-Nr.: F2E-2020-TGH-032, Revision 0 - ungekürzte Fassung

6 Formelzeichen und Abkürzungen

WEA	Windenergieanlage	
RD	Rotordurchmesser	
NH	Nabenhöhe	
SRTM	Shuttle Radar Topographic Mission	
CFD	Computational Fluid Dynamics	
EOK	Erdoberkante	
üNN	über Normal Null	
ETRS89	Europäisches Terrestrisches Referenzsystem 1989	
UTM	Universale Transversale Mercator Projektion	
WGS84	World Geodetic System 1984	
D_{WEA}	Rotordurchmesser WEA	[m]
v	Windgeschwindigkeit	[m/s]
h	Höhe	[m]
$ alla_{ ext{WEA}}$	Horizontaler Mindestabstand zwischen Turmachse und äußerstem ruhenden Leiterseil	[m]
$a_{ m Raum}$	Arbeitsraum	[m]
$a_{ m LTG}$	Spannungsabhängiger Mindestabstand	[m]
$D_{\text{Schwing}} \\$	Ausschwingbreite der Leiterseile	[m]
D_{v}	spannungsabhängiger Schutzabstand	[m]
S_{Exz}	Abstand zwischen der Turmachse der WEA und der Rotorebene	[m]
S ₄₅	Für einen Schwenkbereiches des Rotors von +- 45° zu betrachtender Abstand nach DIN EN 50341-2-4	[m]
S_{max}	Maximal zu betrachtender Abstand nach DIN EN 50341-2-4	[m]
Δy	Vertikaler Abstand zwischen dem betrachteten Leiterseil und der Nachlaufströmung nach dem vereinfachten Modell der DIN EN 50341-2-4	[m]

7 Literaturangaben

- /1/ DIN EN 50341-2-4 (VDE 0210-2-4); Freileitungen über AC 1 kV Teil 2-4: Nationale Normative Festlegungen (NNA) für Deutschland (basierend auf EN 50341-1:2012); Deutsche Fassung EN 50341-2-4:2016, April 2016.
- /2/ DIN VDE 0105-100 (VDE 0105-100); Betrieb von elektrischen Anlagen Teil 100: Allgemeine Festlegungen; Oktober 2009.
- /3/ Degener, T.; Kießling, F.; Tzschoppe, J.; Mindestabstand zwischen Windenergieanlagen und Freileitungen; Elektrizitätswirtschaft Jg. 98 (1999), Heft 7, Seite 32-35.
- /4/ P. Hagedorn: Leiterseilschwingungen in Theorie und Praxis ein Überblick. etz-Report 26, VDE-Verlag, Berlin, Offenbach (1990).
- /5/ W. Philipps : Seilschwingungen bei Freileitungen Elektrizitätswirtschaft Jg. 67 (1968), Heft 11, S. 279 ff.
- /6/ L.J. Vermeer, J.N. Sørensen, A. Crespo; Wind turbine wake aerodynamics; Progress in Aerospace Sciences 39, pp. 467-510, 2003.
- /7/ Th. Hahm, J. Kröning; Modellierung der Nachlaufströmung einer Windenergieanlage; Fluent Anwenderkonferenz 2001; Bingen, 17./18. Sept. 2001
- /8/ St. Wußow, L. Sitzki, Th. Hahm; 3D-simulation of the turbulent wake behind a wind turbine; The Science of Making Torque from Wind, Journal of Physics: Conference Series 75 (2007) 012033.
- /9/ Th. Hahm; Hochspannung und Windkraft; energy 2.0, S. 44-46, April 2008.
- /10/ Prof. B. R. Oswald; Universität Hannover, Institut für Energieversorgung und Hochspannungstechnik; Vorlesung Elektrische Energieversorgung I Skript Freileitungen, korrigierte Ausgabe 2005.
- /11/ OpenStreetMap und Mitwirkende; siehe Internet: http://www.openstreetmap.org, http://openda-tacommons.org, http://creativecommons.org.