

für Schwingungs-, Schall- und Schienenverkehrstechnik GmbH

engineers for vibration, noise and railway technology

Sitz: Essen (HRB 23825) Ladenspelderstraße 61 45147 Essen

Tel. 0201 87445 0 Fax 0201 87445 45 E-Mail office@ibugmbh.com www.ibugmbh.com

Auftraggeber: ZPP Ingenieure AG

Beratende Ingenieure Kleine Reichenstraße 1

20457 Hamburg

Objekt: Neubau U 5; ; 1. BA City-Nord-Bramfeld/Abschn. 1-3

Titel: Schwingungs- und Schalltechnische

Untersuchung

Teil II: Prognose der Körperschall- und Erschütterungs-

immissionen

Auftrag Nr.: S 03.1539.16/2

Datum: 05.02.2019

Umfang: 24 Textseiten

46 Anlagen

I.B.U.

INHALT

1	AUFGABENSTELLUNG	S.	3
2	BERECHNUNGSGRUNDLAGEN	S.	3
2.1	Pläne	S.	3
2.2	Gleisoberbau	S.	4
2.3	Brücken	S.	4
2.4	Fahrzeuge	S	4
2.5	Fahrplansituation	S.	4
2.6	Gebietsausweisung	S.	5
2.7	Gebäudestruktur	S.	6
3	IMMISSIONSKENNWERTE	S.	6
3.1	Erschütterungen	S.	6
3.2	Körperschall	S.	6
4	BEURTEILUNGSKRITERIEN	S.	7
4.1	Vorbemerkung	S.	7
4.2	Erschütterungseinwirkungen auf Menschen	S.	7
4.3	Erschütterungseinwirkungen auf Gebäude	S.	9
4.4	Körperschalleinwirkungen auf Menschen	S.	9
5	PROGNOSEVERFAHREN	S.	11
6	PROGNOSEBERECHNUNG	S.	15
7	BEURTEILUNG	S.	20
8	MAßNAHMEN	S.	22
9	ANLAGEN	S.	23
10	ÄNDERUNGSINDEX	S	24

1 <u>AUFGABENSTELLUNG</u>

Die Hamburger Hochbahn AG plant den Neubau der U-Bahnlinie U5 in Hamburg. Im Bereich Sengelmannstraße wird die geplante unterirdische Gleisanlage der U5 in einem Teilstück oberirdisch parallel zur bestehenden U-Bahnlinie U1 geführt. In diesem Bereich befindet sich zudem ein Güterzuggleis. Die vorhandenen und die geplanten Gleisanlagen erzeugen Schwingungs- und Schallemissionen, die in der benachbarten Wohnbebauung zu entsprechenden Immissionen führen. Im Rahmen des anstehenden Genehmigungsverfahrens ist es erforderlich, hierzu eine Schwingungs- und Schalltechnische Untersuchung durchzuführen. Die I.B.U. GmbH, Essen wurde vom Generalplaner, der ZPP Ingenieure AG, mit der entsprechenden Bearbeitung beauftragt.

Der vorliegende Bericht, Teil II der Gesamtbearbeitung, behandelt die Thematik der Schwingungsimmissionen der Gleisanlage.

Die weiteren Teile der Gesamtbearbeitung gliedern sich wie folgt:

Teil I: Berechnung und Beurteilung der Luftschallimmissionen

Teil III: Beurteilung der Luftschallimmissionen auf Grund bauzeitlicher Verkehrsfüh-

rungen

Teil IV: Beurteilung der durch die geplanten Bautätigkeiten zu erwartenden Luftschal-

limmissionen und Untersuchung der Vorbelastung.

2 BERECHNUNGSGRUNDLAGEN

2.1 Pläne

Für die Bearbeitung werden folgende vorgelegten Unterlagen herangezogen:

- U5 Ost Vorentwurfsheft Erläuteurngsbericht final.pdf
- Übersichtsplan Plan 1 R (-)225 0154.pdf (Brücke Sengelmannstraße)
- 1 R(-) 2250105 SE-Startschacht LP Grundrisse 20170913.pdf
- · verschiedene Bebauungspläne
- Sengelmannstraße.pdf (Lageplan Bestand und Planung)
- U5 Generalplaner-A3-1 1 V1-LP1.pdf (Lageplan Bestand und Planung)
- 1C (-)151 0054-h-1.pdf (Lageplan Gleis im Bestand)
- Schwinggeschwindigkeitspegel-DT4 und DT5.pdf

(Vergleich Fahrzeugmessergebnisse der STUVA)

- U5 Ost-Fahrzeug-Konzept DT 6 für Schallgutachter.pdf
- 1234_25 HH-Alsterdorf_S03neu.pdf (Fahrplandaten Güterzuggleis)

Weiterhin wurden die Erkenntnisse der Ortsbesichtigung vom 19. August 2017 berücksichtigt.

2.2 <u>Gleisoberbau</u>

Die Gleisanlagen der vorhandenen U-Bahn der Linie 1 sind als Schotteroberbau mit Betonschwellen ausgeführt. Die Planung sieht vor, für die neuen Gleisanlagen der U1 und der U5 die gleiche Oberbauform zu verwenden. Das vorhandene Gleis der Güterzugtrasse weist ebenfalls einen Standardschotteroberbau auf.

In Bereichen in denen die prognostizierten Schwingungsimmissionen zu hoch sind, sind elastische Oberbauvarianten entsprechend DIN 45673-Mechanische Schwingungen-Elastische Elemente des Oberbaus von Schienenverkehrswegen – Teil 1: Begriffe, Klassifizierung, Prüfverfahren-von August 2010 vorzusehen.

2.3 Brücken

Im Bereich der Sengelmannstraße befinden sich eine Eisenbahnüberführung und eine vorhandene U-Bahnbrücke. Bei dem vorhandenen Brückenbauwerken handelt es sich um Stahlkonstruktionen. Die geplanten neuen Brückenbauwerke werden ebenfalls als Stahlkonstruktion erstellt.

2.4 Fahrzeuge

Derzeit sind Fahrzeuge des Typs DT4 in dem Bereich eingesetzt. In Zukunft werden Fahrzeuge des Typs DT5 bzw. DT 6 in diesem Bereich verkehren. Im Hinblick auf das Schwingungsemissionsverhalten liegen Vergleichsmessungen DT4/DT5 vor. Für den Fahrzeugtyp DT6 existieren derzeit nur Planungen.

2.5 Fahrplansituation

Die Fahrplandaten sind in der folgenden Tabelle zusammengefasst. Für die U 1 wird für den Bestand von den aktuellen Fahrplandaten ausgegangen. Die Hochbahn geht davon aus, dass die Verkehrszahlen in der Zukunft (Prognosehorizont 2035) stark steigen werden. Für die U 1 und die neu geplante U 5 ist tagsüber von einem 90-Sekunden-Takt und zur Nachtzeit von einem 150-Sekunden-Takt als maximal mögliche Verkehrsanzahl auszugehen.

		Bes	tand	Planung		
	Linie	Tag	Nacht	Tag	Nacht	
	U 1	183	29	640	256	
	U 5	-	-	640	256	

Bestand U1: Mo - Do am Tag / Sa in der Nacht

Planung: Prognosehorizont 2035

Tabelle 1: Anzahl Fahrten je Richtung

Die Anzahl der Güterzugfahrten ist von der DBAG als Prognosezahlen für das Jahr 2025 wie folgt vorgegeben:

31 Fahrten am Tag

20 Fahrten in der Nacht

Ein über das Jahr 2025 hinausgehender Prognosehorizont wurde auch auf Nachfragen nicht vorgelegt. Für die weitergehende Beurteilung wird davon ausgegangen, dass das genannte Betriebsprogramm auch für das Jahr 2035 Gültigkeit hat.

2.6 Gebietsausweisung

Für den Bereich City-Nord existiert der Bebauungsplan Winterhude 7 vom 22. Mai 1986 (Auszug in Anlage-Nr. 1.3). Die unmittelbar im Bereich der Haltestelle Sengelmannstraße befindliche Bebauung liegt demnach in einem Kerngebiet. Für den Bereich des Rotbuchenstiegs existiert ein Baustufenplan mit Feststellung vom 14. Januar 1955 (Auszug in Anlage-Nr. 1.4). Demnach befindet sich die Bebauung dort in einem Wohngebiet. Dies entspricht auch der während der Ortsbesichtigung vorgefundenen Nutzung. Für die unmittelbar an der Sengelmannstraße befindlichen Gebäude existiert der Bebauungsplan Alsterdorf 20 vom 6. Juli 2006 (Anlage-Nr. 1.5). Demnach befinden sich die Gebäude in einem Allgemeinen Wohngebiet.

Das auf der anderen Seite der Sengelmannstraße gelegene neuere Wohngebäude Paul-Stritter-Weg 2 wird einem Mischgebiet zugeordnet.

Im Bereich Paul-Stritter-Weg befindet sich die "Evangelische Stiftung Alsterdorf". Das Gebäude der Stiftung ist einem "Urbanen Gebiet" zuzuordnen. Einzelne Gebäude der Stiftung werden als Krankenhaus genutzt. Diese Gebäude sind als besonders schutzbedürftige Einwirkungsorte zu betrachten.

2.7 <u>Gebäudestruktur</u>

Aus der während der Ortsbesichtigung erstellten Fotodokumentation kann abgelesen werden, dass die direkt angrenzende Wohnbebauung vielfältig ist. Die Gebäudestruktur wurde in den messtechnisch untersuchten Gebäuden erfasst.

3 <u>IMMISSIONSKENNWERTE</u>

3.1 <u>Erschütterungen</u>

Als Erschütterungen werden solche Schwingungen bezeichnet, die sich mit Frequenzen zwischen 1 Hz und 80 Hz in festen Medien (Erdreich, Gebäude) ausbreiten. Die zu messenden Erschütterungssignale sind die Schwinggeschwindigkeit \hat{v} (t) des angeregten Mediums in mm/s und die Erregerfrequenz f_e in Hz. Auf der Grundlage dieser Basiswerte werden die für die Beurteilung der Erschütterungseinwirkung auf Menschen in Gebäuden maßgebenden Immissionsgrößen ermittelt. Hierbei handelt es sich um die maximale bewertete Schwingstärke KB_{Fmax} bzw. die Beurteilungs-Schwingstärke KB_{FTr} in der Definition nach DIN 4150, Teil 2, von Juni 99 -Erschütterungen im Bauwesen, Einwirkung auf Menschen in Gebäuden.

3.2 Körperschall

Als Körperschall werden solche Schwingungen bezeichnet, die sich mit Frequenzen im Hörbereich in festen Medien (Erdreich, Gebäude) ausbreiten.

Die messbaren Körperschallsignale sind die Schwinggeschwindigkeit v des angeregten Mediums in mm/s und der vom Medium abgestrahlte Schallwechseldruck p in N/m² (Sekundärluftschall). Im Hinblick auf die Beurteilung der Körperschallimmissionen ist der Schallwechseldruck relevant. Es ergibt sich analog der Definition des Luftschallpegels der Sekundärluftschall in logarithmischer Form wie folgt:

$$L_p = 20 \cdot lg \frac{p}{p_0} \text{ (dB)} \qquad \qquad \text{mit } p_0 = 2 \cdot 10^{-5} \, \text{N / m}^2 \text{: Bezugsschalldruck}$$

Die Schalldruckpegel des Sekundärluftschalls werden als hörbarer Luftschall dem frequenzabhängigen menschlichen Hörvermögen mit der so genannten A-Bewertung nach DIN 45633 angepasst und als A-bewerteter Summenschallpegel für die weitere Beurteilung dargestellt.

4 <u>BEURTEILUNGSKRITERIEN</u>

4.1 <u>Vorbemerkung</u>

Für die Beurteilung der von Schienenverkehrswegen ausgehenden Körperschall- und Erschütterungsimmissionen existieren keine rechtlich bindenden Immissionsrichtwerte. Beim Umbau einer Gleisanlage kommt es daher zunächst darauf an, dass möglichst keine Verschlechterung entsteht. Darüber hinaus empfiehlt es sich, die folgend beschriebenen Regelwerke zu beachten.

4.2 <u>Erschütterungseinwirkungen auf Menschen</u>

Derzeit sind schon Gleise im Bereich der für den Umbau vorgesehenen Gleisanlage vorhanden. Es treten also jetzt schon nachweisbare Erschütterungsimmissionen in der vorhandenen Bebauung auf. Allgemein wird eine Zunahme der Erschütterungsimmissionen von Schienenwegen bei der Beurteilungs-Schwingstärke um bis zu 25 % durch Umbauplanungen als zulässig angesehen. Insofern kann eine Beurteilung wie folgt erfolgen:

ΔKB_{FTr} ≥ 25 %

Schutzmaßnahme erforderlich.

für ΔKB_{FTr} = KB_{FTr} (Prognose) - KB_{FTr} (Bestand)

Erschütterungsimmissionen lassen sich unabhängig von der Vorbelastung anhand DIN 4150 beurteilen:

- Teil 2, Juni 1999 Erschütterungen im Bauwesen, Einwirkungen auf Menschen in Gebäuden
- Teil 3, Dezember 2016 Erschütterungen im Bauwesen, Einwirkungen auf bauliche Anlagen.

Die Erschütterungsimmissionen des Schienenverkehrs werden nach DIN 4150/2 wie folgt behandelt:

Grundsätzlich erfolgt die Beurteilung anhand der Anhaltswerte A_u und A_r der Tabelle 1 der Norm. Im Rahmen von Prognosen erübrigt sich eine Beurteilung nach dem Anhaltswert A_o.

- Für unterirdischen Schienenverkehr gelten die Anhaltswerte Au und Ar der Tabelle 1.

- Für oberirdischen Schienenverkehr des ÖPNV (Straßen-, Stadt-, S- und U-Bahnen) gelten die um den Faktor 1,5 angehobenen Anhaltswerte der Tabelle 1.
- Für sonstigen oberirdischen Schienenverkehr gelten bei neu zu bauenden Strecken die Anhaltswerte der Tabelle 1.

Die Tabelle 1 der DIN 4150-2 (Anhaltswerte A für die Beurteilung von Erschütterungsimmissionen in Wohnungen und vergleichbar genutzten Räumen) wird wie folgt wiedergegeben:

Zeile	Einwirkungsort		tags			nachts	
		A_{u}	A_{O}	A_r	A_{U}	A_{o}	A_r
1	Einwirkungsorte, in deren Umgebung nur gewerbliche und gegebenenfalls ausnahmsweise Wohnungen für Inhaber und Leiter der Betriebe sowie für Aufsichts- und Bereitschaftspersonen untergebracht sind (vergleiche Industriegebiete § 9 BauNVO)	0,4	6	0,2	0,3	0,6	0,15
2	Einwirkungsorte, in deren Umgebung vorwiegend gewerbliche Anlagen untergebracht sind (vergleiche Gewerbegebiete § 8 BauNVO)	0,3	6	0,15	0,2	0,4	0,1
3	Einwirkungsorte, in deren Umgebung weder vorwiegend gewerbliche Anlagen noch vorwiegend Wohnungen untergebracht sind (vergleiche Kerngebiete § 7 BauNVO, Mischgebiete § 6 BauNVO, Dorfgebiete § 5 BauNVO)	0,2	5	0,1	0,15	0,3	0,07
4	Einwirkungsorte, in deren Umgebung vorwiegend oder ausschließlich Wohnungen untergebracht sind (vergleiche reines Wohngebiet § 3 BauNVO, allgemeine Wohngebiete § 4 BauNVO, Kleinsiedlungsgebiete § 2 BauNVO)	0,15	3	0,07	0,1	0,2	0,05
5	Besonders schutzbedürftige Einwirkungsorte, z.B. in Kranken- häusern, in Kurkliniken, soweit sie in dafür ausgewiesenen Son- dergebieten liegen	0,1	3	0,05	0,1	0,15	0,05

In Klammern sind jeweils die Gebiete der Baunutzungsverordnung - BauNVO angegeben, die in der Regel den Kennzeichnungen unter Zeile 1 bis 4 entsprechen. Eine schematische Gleichsetzung ist jedoch nicht möglich, da die Kennzeichnung unter Zeile 1 bis 4 ausschließlich nach dem Gesichtspunkt der Schutzbedürftigkeit gegen Erschütterungseinwirkung vorgenommen ist, die Gebietseinteilung in der BauNVO aber auch anderen planerischen Erfordernissen Rechnung trägt.

Tabelle 2: Anhaltswerte zur Beurteilung der Erschütterungsimmission

Das Beurteilungsverfahren der Norm wird -angepasst an die speziellen Belange des ÖPNV's- wie folgt erläutert.

Für die Beurteilung ist zunächst die maximale bewertete Schwingstärke (KB_{Fmax}) heranzuziehen und mit dem Anhaltswert A_u zu vergleichen:

KB
$$_{Fmax} \leq 1.5 \cdot A_{u} \rightarrow Richtwert eingehalten$$

Liegt KB_{Fmax} über $1,5 \cdot A_u$, so ist die Beurteilungs-Schwingstärke KB_{FTr} zu ermitteln. Für Schienenwege kann KB_{FTr} unter Verwendung des auf die einzelnen Gleise bezogenen Taktmaximal-Effektivwertes (KB_{FTm}) nach folgender Funktion berechnet werden:

$$KB_{FTr} = \sqrt{\frac{1}{N_r} \sum_{i=1}^{g} N_{ei} \cdot KB_{FTm,i}^2}$$

N_r : Anzahl der 30-s-Takte im Beurteilungszeitraum

tags: $N_r = 1920$ nachts: $N_r = 960$

N_{ei} : Anzahl der Fahrten auf Gleis i im jeweiligen Beurteilungszeitraum

(Hinweis: Für Stadtbahnen gilt, dass die Erschütterungseinwirkungs-

zeit einer Vorbeifahrt kleiner als 30 Sekunden ist).

g : Anzahl der Gleise

Für die Beurteilung der Erschütterungen in Wohngebäuden gilt jetzt:

 $KB_{FTr} \leq 1.5 \cdot A_r \rightarrow Richtwert eingehalten.$

4.3 Erschütterungseinwirkungen auf Gebäude

Erschütterungseinwirkungen von Schienenverkehrswegen auf Gebäude werden üblicherweise anhand der DIN 4150, Teil 3, Dezember 2016 – Erschütterungen im Bauwesen, Einwirkungen auf bauliche Anlagen – beurteilt. Die dort genannten Anhaltswerte liegen deutlich über den für die Einwirkung auf Menschen festgelegten zulässigen Erschütterungen. Insofern ist davon auszugehen, dass bei Einhaltung der vorgenannten Beurteilungskriterien nach DIN 4150-2 keine schädlichen Erschütterungsimmissionen aus dem U-Bahnverkehr auf die Gebäude einwirken.

4.4 Körperschalleinwirkungen auf Menschen

Derzeit sind schon Gleise im Bereich des für den Umbau vorgesehenen Streckenabschnittes vorhanden. Es treten also jetzt schon nachweisbare Körperschallimmissionen in der vorhandenen Bebauung auf. Allgemein wird eine Zunahme der Erschütterungsimmissionen von Schienenwegen beim Sekundärluftschall um 3 dB(A) durch Umbauplanungen als zulässig angesehen. Insofern kann eine Beurteilung wie folgt erfolgen:

 $\Delta L_p \ge 3$ dB (A) \rightarrow Schutzmaßnahmen erforderlich für $\Delta L_p = L_p$ (Prognose) - L_p (Bestand)

Ein Kriterium zur Beurteilung der absoluten Höhe der Körperschallpegel existiert in der 16. BImSchV nicht. Der 7. Senat des Bundesverwaltungsgerichts hat zu einer Eisenbahnplanung (BVerwG 7A 14.09) festgelegt, dass die Beurteilung der Körperschallimmissionen von Schienenverkehrswegen anhand der um 3 dB(A) erhöhten Schallpegel der Tabelle 1 der Anlage zur 24. BImSchV (Vierundzwanzigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes - Verkehrswege-Schallschutzmaßnahmenverordnung) erfolgen kann. Die Beurteilung nach der 24. BImSchV erfolgt anhand von Beurteilungspegeln. In Absprache mit der Hamburger Hochbahn wurde vereinbart, für die Planung der U 5 die

In Absprache mit der Hamburger Hochbahn wurde vereinbart, für die Planung der U 5 die Regelungen der TA Lärm für die Körperschallbeurteilung heranzuziehen. Die TA Lärm stellt im Vergleich zur 24. BImSchV das strengere Beurteilungskriterium dar. So sind die in der TA Lärm definierten Immissionsrichtwerte niedriger und zudem erfolgt eine zusätzliche Beurteilung anhand der Maximalpegel. Die Immissionsrichtwerte der TA Lärm ergeben sich zu:

Tagzeit

Maximalpegel: 45 dB(A)

Nachtzeit

Maximalpegel: 35 dB(A)

5 PROGNOSEVERFAHREN

Für die Vorausbestimmung der von oberirdischen U-Bahnstrecken ausgehenden Körperschall- und Erschütterungsimmissionen existiert bis heute kein rein analytisches Verfahren. Die Immissionsprognose kann daher nur auf der Basis von bereits durchgeführten umfangreichen Messungen im Einflussbereich von oberirdischen Gleisanlagen (Datenfundus) oder konkret im Projekt durchgeführten Messungen erfolgen.

Im Rahmen der Projektbearbeitung wurden Schwingungsmessungen in 3 ausgewählten Gebäuden durchgeführt. Die Ergebnisse dieser Messungen sind Basis für die weitergehende Prognose. Weiterhin sind die Einflüsse, die sich aus den geplanten Änderungen auf die Immissionssituation ergeben, zu berücksichtigen. Die Immissionsprognose erfolgt dann entsprechend Bild 1.

Für die Berechnung der Erschütterungsimmissionen ist entsprechend DIN 4150-2 der Frequenzbereich bis 80 Hz relevant. Aus dem gemessenen Taktmaximal-Effektivwert der bewerteten Schwingstärke und den gemessenen Schwinggeschwindigkeitspegeln wird die bewertete Schwingstärke der zukünftigen Situation in Form des Taktmaximal-Effektivwertes prognostiziert.

Für die Berechnung der Körperschallimmissionen ist der Frequenzbereich f_T = 5 – 250 Hz zu betrachten. Aus dem unbewerteten Schalldruckpegel am Immissionsort wird dann der für die Beurteilung anhand des Immissionsrichtwertes TA Lärm maßgebende A-bewertete Schalldruckpegel in Form des mittleren Maximalpegels ermittelt.

I.B.U.

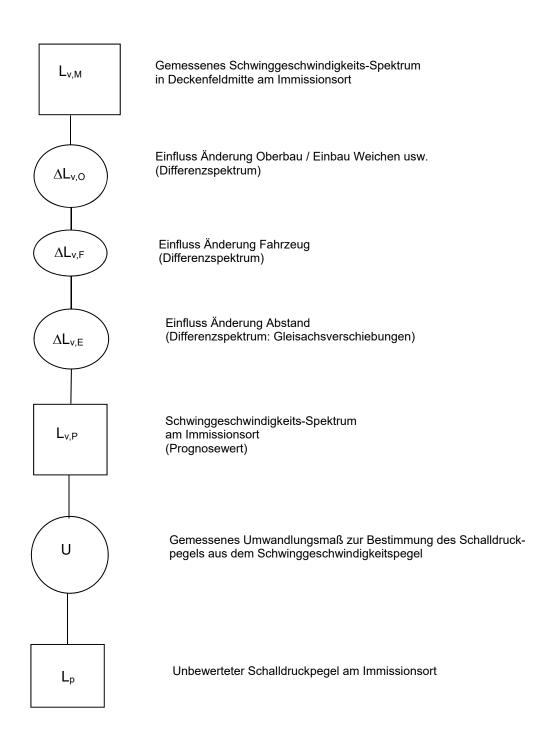


Bild 1: Prognosemodell

Erschütterungsimmissionen

$$KB_{FP} = 10^{0.05 \cdot [L_{v,P} - L_{v,M}]} \cdot KB_{FM}$$
 (5)

KB_{F,P}: prognostizierte bewertete Schwingstärke

(gesuchte Größe)

KB_{F,M}: gemessene bewertete Schwingstärke

(Beweissicherungsmessung)

L_{v,P}: linearer Summenpegel des prognostizierten Schwinggeschwindigkeits-

Spektrums für den Frequenzbereich f_T = 5-80 Hz

(aus Prognose Körperschall)

L_{v,M} : linearer Summenpegel des gemessenen Schwingsgeschwindigkeits-

Spektrums für den Frequenzbereich f_T = 5-80 Hz

(Messergebnis der Schwingungsmessung in Anliegergebäuden)

Für die Berechnung der **Erschütterungsimmissionen** wird neben dem gemessenen bzw. prognostizierten Schwinggeschwindigkeits-Summenpegel der dem Messbericht zu entnehmende **Taktmaximal-Effektivwert** der bewerten Schwingstärke (KB_{FTm}) verwendet. Der Taktmaximal-Effektivwert entspricht dem quadratischen Mittelwert aller Einzelwerte der erfassten bewerteten Schwingstärken KB_{FTi}.

Damit ergibt sich der Taktmaximal-Effektivwert der bewerteten Schwingstärke (KB_{FTm}) als Prognosewert. Aus KB_{FTm} wird unter Berücksichtigung der Fahrplansituation die Beurteilungs-Schwingstärke errechnet. Die maximale bewertete Schwingstärke liegt, abgeleitet aus den Messergebnissen, um den Faktor 1,3 bis 2,8 höher als der Taktmaximal-Effektivwert:

$$KB_{Fmax} = K_{E.max} \cdot KB_{FTm}$$

gewählt: K_{E,max} ≈ 2

Körperschallimmissionen

$$L_{pA_m} = 10 \text{ Ig } \sum_{i=f_{T,c}}^{f_{T_o}} 10^{0.1 \cdot (L_{pm,T} + K_A)} \text{ dB(A)}$$

 $f_{\text{Tu}},\,f_{\text{To}}$: untere bzw. obere Terzmittenfrequenz des maßgebenden

Frequenzbereiches f_{Tu} = 5 Hz bis f_{To} = 250 Hz

L_{pm,T}: Schalldruckpegel bei der entsprechenden Terzmittenfrequenz

K_A: A-Bewertung entsprechend DIN 45634

Da die Prognose auf energetischen Mittelwerten (L_{pA_m}) basiert, entsprechen die Ergebnisse der Berechnung des Sekundärluftschalls dem zu erwartenden mittleren Maximalpegel.

Der absolute Maximalwert liegt, abgleitet aus den Messergebnissen, um 1,5 bis 9,1 dB(A) über dem mittleren Maximalpegel:

$$L_{\text{pA}_{max}} \approx L_{\text{pA}_{m}} \, + \, K_{\text{L,max}} \, \, dB(A)$$

gewählt:
$$K_{L,max} \approx 6 \text{ dB (A)}$$

6 PROGNOSEBERECHNUNG

Wie bereits erläutert basiert die Immissionsprognose auf den Messdaten unter Berücksichtigung der geplanten Ergänzungen und Änderungen. In den <u>Anlagen-Nr. 1.1 + 1.2</u> ist die örtliche Situation in 2 Lageplänen dargestellt.

Ausgangspegel für die Immissionsprognose sind die auf dem jeweiligen Deckenfeld gemessenen Schwinggeschwindigkeitspegel. Diese können den Bericht zur Beweissicherung (Teil 1 des Gesamtberichts) entnommen werden.

Der **Einfluss des Oberbaus** wird dem Datenfundus entnommen. Da nach wie vor ein Schotteroberbau eingesetzt wird, ist lediglich der Einfluss des Einbaus von Weichen und Kreuzungen zu berücksichtigen.

Der gemessene Ausgangspegel bezieht sich auf den derzeit in dem Bereich verkehrenden **Fahrzeug** des Typs DT4. Für das Fahrzeug DT5 wird das Ergebnis einer Vergleichsmessung der STUVA e.V. vorgelegt. (Anlage-Nr. 1.6)

Der Einfluss der **geänderten Lage von Gleisachsen** wurde in Anlehnung an die Abnahmefunktion im "Fernfeld" der DIN 4150 - Erschütterungen im Bauwesen, Teil 1: Vorermittlung von Schwingungsgrößen, Juni 2001 – wie folgt festgelegt:

$$\Delta L_{VE} = \left(\frac{R}{R_1}\right) - n e^{\left(-\alpha(R-R_1)\right)}$$

n: von der Wellenart, der Quellengeometrie und der Art der Schwingung abhängiger Exponent

R: Gebäudeabstand zur Gleistrasse

R₁: Standardabstand 10 m

α: Abklingkoeffizient [m⁻¹]; $\alpha \approx 2 \text{ πD} / \lambda$

D: Dämpfungsgrad

 λ : maßgebende Wellenlänge; $\lambda = c/f$

c: Ausbreitungsgeschwindigkeit der Welle [m/s]

f: Frequenz [Hz]

Die Übertragungsfunktion wurde unter Berücksichtigung folgender Parameter errechnet:

n=0,3 c=160 m/sD=0,002-0,02, frequenzabhängig

Das Umwandlungsmaß ergibt sich aus den Messergebnissen für die einzelnen Messorte/Messpunkte.

Für das neue Fahrzeug DT 6 liegen noch keine Messdaten zu den Schwingungemissionen der Fahrzeuge vor. Daher erfolgte die Prognose für die Fahrzeuge DT4 und DT5. Es wird davon ausgegangen, dass das geplante Fahrzeug DT6 ein schwingungsdynamisches Verhalten aufweist, dass mit der Prognose DT4/DT5 abgedeckt ist.

Der <u>Anlage-Nr. 2</u> sind Auszüge der Prognoseberechnung zu entnehmen. Die Ergebnisse der Prognoseberechnung sind in den Tabellen der <u>Anlage-Nr. 3</u> zusammengefasst. Die für die weitere Beurteilung relevanten Ergebnisse sind in Tabelle 3 und Tabelle 4 aufgelistet.

I.B.U.

		Mes	ssung			Prog	gnose	
Immissionsort	145		B _{FTr}	L_pAm	KB * KB		B _{FTr}	L_pAm
	KB _{FTm} *	Tag	Nacht	dB(A)*	KB _{FTm} *	Tag	Nacht	dB(A)*
U 1 – Fahrzeug DT4 – Normalgleis – Fahrplan Bestand								
Paul-Stritter-Weg 2	0,044	0,02	0,01	37	0,076	0,03	0,01	54
Rotbuchenstieg 28	0,100	0,04	0,02	<30	0,116	0,04	0,02	<30
Rotbuchenstieg 42	0,160	0,06	0,03	<30	0,162	0,06	0,03	38
U 1	– Fahrzeu	g DT5	– Norma	lgleis – F	ahrplan B	estand		
Paul-Stritter-Weg 2	0,044	0,02	0,01	37	0,062	0,02	0,01	49
Rotbuchenstieg 28	0,100	0,04	0,02	<30	0,081	0,03	0,02	<30
Rotbuchenstieg 42	0,160	0,06	0,03	<30	0,117	0,04	0,03	35
U 1	– Fahrzeu	g DT4	– Norma	lgleis – F	ahrplan P	lanung		
Paul-Stritter-Weg 2	0,044	0,02	0,01	37	0,076	0,05	0,04	54
Rotbuchenstieg 28	0,100	0,04	0,02	<30	0,116	0,07	0,07	<30
Rotbuchenstieg 42	0,160	0,06	0,03	<30	0,162	0,11	0,10	38
U 1	– Fahrzeu	g DT5	– Norma	lgleis – F	ahrplan P	lanung		
Paul-Stritter-Weg 2	0,044	0,02	0,01	37	0,062	0,04	0,04	49
Rotbuchenstieg 28	0,100	0,04	0,02	<30	0,081	0,05	0,05	<30
Rotbuchenstieg 42	0,160	0,06	0,03	<30	0,117	0,08	0,07	35
U 5	– Fahrzeu	g DT4	– Norma	lgleis – F	ahrplan P	lanung		
Paul-Stritter-Weg 2	0,044	0,02	0,01	37	0,066	0,05	0,04	50
Rotbuchenstieg 28	0,100	0,04	0,02	<30	0,093	0,07	0,06	34
Rotbuchenstieg 42	0,160	0,06	0,03	<30	0,203	0,13	0,11	37
U5 -	- Fahrzeu	g DT5 -	- Norma	lgleis – Fa	ahrplan Pl	anung	T	
Paul-Stritter-Weg 2	0,044	0,02	0,01	37	0,054	0,04	0,03	45
Rotbuchenstieg 28	0,100	0,04	0,02	<30	0,065	0,05	0,04	<30
Rotbuchenstieg 42	0,160	0,06	0,03	<30	0,148	0,09	0,08	33

^{*}für das Gleis mit den höheren Werten

Tabelle 3: Ergebnisse der Immissionsprognose

KB_{FTm}: Taktmaximal-Effektivwert der bewerteten Schwingstärke KB_{FTr} Beurteilungs-Schwingstärke L_{pAm:} mittlerer Maximalpegel des Sekundärluftschalls

	Messung			Prognose				
Immissionsort	I/D *	KI	B_{FTr}	L_{pAm}	I/D *	KB _{FTr}		L_pAm
	KB _{FTm} *	Tag	Nacht	dB(A)*	KB _{FTm} *	Tag	Nacht	dB(A)*
U	J 1 – Fahrz	zeug D	Γ4 –Weiα	he – Fahi	rplan Plar	ung		
Paul-Stritter-Weg 2	0,044	0,02	0,01	37	ke	in Weic	heneinflu	ISS
Rotbuchenstieg 28	0,100	0,04	0,02	<30	0,116	0,08	0,07	<30
Rotbuchenstieg 42	0,160	0,06	0,03	<30	0,150	0,11	0,10	38
U	1 – Fahrz	eug D1	5 – Wei	che – Fah	rplan Plar	nung		
Paul-Stritter-Weg 2	0,044	0,02	0,01	37	kein Weicheneinfluss			ISS
Rotbuchenstieg 28	0,100	0,04	0,02	<30	0,081	0,06	0,05	<30
Rotbuchenstieg 42	0,160	0,06	0,03	<30	0,114	0,08	0,07	35
U	5 – Fahrz	eug D1	4 – Wei	che – Fah	rplan Plar	nung		
Paul-Stritter-Weg 2	0,044	0,02	0,01	37	0,203	0,15	0,13	57
Rotbuchenstieg 28	0,100	0,04	0,02	<30	0,118	0,09	0,08	39
Rotbuchenstieg 42	0,160	0,06	0,03	<30	0,158	0,10	0,09	<30
U	5 – Fahrz	eug D1	5 – Wei	che – Fah	rplan Plar	nung		
Paul-Stritter-Weg 2	0,044	0,02	0,01	37	0,181	0,13	0,11	53
Rotbuchenstieg 28	0,100	0,04	0,02	<30	0,086	0,06	0,06	34
Rotbuchenstieg 42	0,160	0,06	0,03	<30	0,121	0,08	0,07	<30

*für das Gleis mit den höheren Werten

KB_{FTm:} Taktmaximal-Effektivwert der bewerteten Schwingstärke

KB_{FTr} Beurteilungs-Schwingstärke

 L_{pAm} : mittlerer Maximalpegel des Sekundärluftschalls

Tabelle 4: Ergebnisse der Immissionsprognose – U-Bahn mit Weiche

Für die Güterzugtrasse gilt, dass diese nicht verändert wird. Insofern ist auch keine Veränderung bei den Erschütterungsimmissionen der Güterzugtrasse zu erwarten. In Tabelle 5 sind die entsprechenden Messwerte zusammengestellt.

	Messung = Prognose			
Immissionsort	I/D *	K	B _{FTr}	I . dB(A)
	KB _{FTm} *	Tag	Nacht	L _{pAm} dB(A)
Paul-Stritter-Weg 2	0,042	0,01	0,01	35
Rotbuchenstieg 28	0,183	0,02	0,03	<30
Rotbuchenstieg 42	0,318	0,04	0,05	35

*für das Gleis mit den höchsten Werten

KB_{FTm}: Taktmaximal-Effektivwert der bewerteten Schwingstärke

KB_{FTr}: Beurteilungs-Schwingstärke

L_{pAm}: mittlerer Maximalpegel des Sekundärluftschalls

Tabelle 5: Immissionen der Güterzugtrasse

Die Immissionsprognose erfolgte für jeweils eine U-Bahnlinie auf zwei Gleisen. Für eine Beurteilung der Erschütterungsimmissionen nach DIN 4150-2 sind die Ergebnisse der unterschiedlichen U-Bahnlinien und Gleise zu einer Beurteilungs-Schwingstärke aller Vorbeifahrten zusammenzufassen. Da die DIN für den Schienenverkehr des Öffentlichen Personennahverkehrs (ÖPNV) im Vergleich zum Eisenbahnverkehr andere Anhaltswerte vorsieht, ist eine Addition der Erschütterungsimmissionen des U-Bahn- und Güterzugverkehrs nicht sinnvoll. In Tabelle 6 ist die Beurteilungs-Schwingstärke für die U-Bahntrasse der Planungssituation aufgelistet, die Werte, die über den 1,5fachen Anhaltswerten der Tabelle 1 der DIN 4150-2 für Wohngebiete liegen sind farbig markiert. Die Werte ergeben sich aus der Zusammenfassung der jeweils maximalen Einzelwerte, wie unter Abschn. 4.2 beschrieben. In Tabelle 7 ist die Beurteilungs-Schwingstärke der Bestandssituation für das Fahrzeug DT4 wiedergegeben.

Gebäude	Messpunkt	Fahrzeug DT4 Fahrzeug I			zeug DT5
Gebaude	iviesspurikt	Tag	Nacht	Tag	Nacht
Daul Strittor Mog 2	MP 2.1	0.15	0.13	0.13	0.12
Paul-Stritter-Weg 2	MP 2.2	0.05	0.04	0.04	0.04
	MP 2.1	0.10	0.09	0.07	0.06
Rotbuchenstieg 28	MP 3.1	0.08	0.07	0.06	0.05
	MP 3.2	0.12	0.10	0.08	0.07
	MP 2.1	0.03	0.03	0.02	0.02
Pothushonsting 42	MP 2.2	0.17	0.15	0.13	0.11
Rotbuchenstieg 42	MP 3.1	0.10	0.09	0.07	0.06
	MP 3.2	0.10	0.07	0.07	0.04

Anhaltswert Tag/Nacht: 0,1/0,07

Tabelle 6: Beurteilungs-Schwingstärke U1/U5 Prognose 2035

Gebäude	Massaunkt	Fahrz	zeug DT4
Gebaude	Messpunkt	Tag	Nacht
Paul-Stritter-Weg 2	MP 2.1	0.02	0.01
Paul-Stritter-weg 2	MP 2.2	0.01	0.00
Rotbuchenstieg 28	MP 2.1	0.03	0.02
	MP 3.1	0.02	0.01
	MP 3.2	0.04	0.02
	MP 2.1	0.01	0.01
Rotbuchenstieg 42	MP 2.2	0.06	0.03
	MP 3.1	0.03	0.02
	MP 3.2	0.04	0.02

Tabelle 7: Beurteilungs-Schwingstärke U1 - Bestand

7 BEURTEILUNG

Die durchgeführte Immissionsprognose zeigt, dass eine deutliche Zunahme der Erschütterungsimmissionen zu erwarten ist. Die Beurteilungs-Schwingstärke nimmt um mehr als 25 % zu, so dass das unter Abschn. 4.3 beschriebene Veränderungskriterium überschritten wird. Ursache hierfür sind die Zunahme der Anzahl der Fahrten, die Verschiebung der Gleisachsen und der Einbau von Weichenanlagen mit Herzstücklücken. Die ermittelte Beurteilungs-Schwingstärke der zusammen betrachteten U-Bahngleise liegt größtenteils über den 1,5fachen Anhaltswerten der Tabelle 1 der DIN 4150-2 für Wohngebiete (Einwirkungsorte, in deren Umgebung vorwiegend oder ausschließlich Wohnungen untergebracht sind). Insgesamt gesehen besteht die Notwendigkeit, eine Maßnahme zur Minderung der Erschütterungsemissionen der Gleisanlage anzuordnen.

Die durchgeführte Immissionsprognose zeigt weiterhin, dass eine deutliche Zunahme der Körperschallimmissionen zu erwarten ist. Der Sekundärluftschall nimmt um mehr als 3 dB(A) zu, so dass das unter Abschn. 4 beschriebene Veränderungskriterium überschritten wird. Die Ursachen sind die gleichen wie bei den Erschütterungsimmissionen. Die ermittelten mittleren Maximalpegel liegen teilweise über den in der TA Lärm für Körperschallübertragungen festgelegten Immissionsrichtwerten. Insofern ist eine Maßnahme zur Minderung der Körperschallemissionen der Gleisanlage erforderlich.

Zur Reduzierung der Schwingungsimmissionen in der Nachbarschaft der Gleisanlage sind Maßnahmen in den folgend aufgelisteten Gleisabschnitten (Schutzbereiche) erforderlich:

- Bereich des Gleiswechsels vor der Haltestelle Sengelmannstraße
- Bereich des Gleiswechsels hinter der Haltestelle Sengelmannstraße und auf dem Brückenbauwerk Sengelmannstraße
- Gleis 1 im Bereich Paul-Stritter-Weg 2
- Gleis 1 im Bereich Rotbuchenstieg 6 28
- Gleiswechsel der U1 im Bereich Floot

Die Schutzbereiche einschließlich der empfohlenen Maßnahmen am Gleis (s. Abschnitt 8) sind in <u>Anlage-Nr. 4</u> dargestellt.

8 <u>MAßNAHMEN</u>

Wie den vorhergehenden Ausführungen zu entnehmen ist, ist es erforderlich, eine Maßnahme zur Reduzierung der Erschütterungs- und Körperschallemissionen der Gleisanlage
vorzusehen. In Bild 1 sind die elastischen Oberbauformen wie sie in DIN 45673 – Mechanische Schwingungen, Elastische Elemente von Schienenfahrwegen, Teil 1: Begriffe, Klassifizierung, Prüfverfahren – beschrieben sind zusammengestellt, mit denen eine entsprechende
Minderung erreicht werden kann.

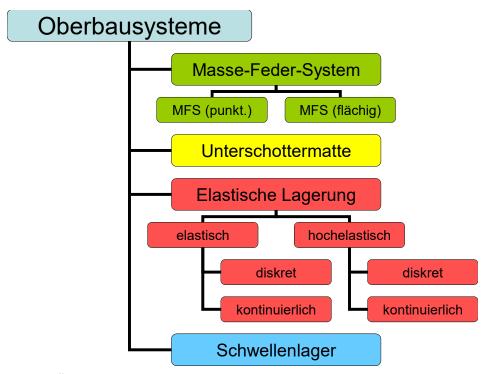


Bild 1: Übersicht elastische Oberbauformen

Die Gleisanlage wird als Schotteroberbau ausgeführt. Insofern kommen folgende Maßnahmen grundsätzlich infrage:

- diskrete elastische Lagerung
- diskrete hochelastische Lagerung
- Unterschottermatten auf Betonunterkonstruktion
- Masse-Feder-System

Im Hinblick auf die erforderliche Minderung der Schwingungsemissionen des Gleiswechsels ist die Anordnung einer elastischen Schienenlagerung nicht ausreichend.

Für die Bereiche der Weichenanlagen wird der Einbau von Unterschottermatten auf eine Betonunterkonstruktion empfohlen. Die Oberbauvariante hat den Vorteil, dass das Gleis durchgängig als Schotteroberbau ausgeführt werden kann. Lediglich in den Schutzbereichen wird vor Erstellung des Oberbaus eine steife Betonwanne erstellt, die mit einer weichen Unterschottermatte auszurüsten ist. Im Bereich der Brücke über die Sengelmannstraße, hat die Anordnung noch den Vorteil, dass eine Minderung der Luftschallabstrahlung der Brücke eintritt.

Für das Gleis 1 im Bereich Paul-Stritter-Weg 2 und Rotbuchenstieg 6 – 28 kann alternativ auch eine elastische Schienenlagerung eingesetzt werden.

9 <u>ANLAGEN</u>

Anlagen-Nr. 1.1+1.2: Lagepläne der örtlichen Situation Anlage-Nr. 1.3 Bebauungsplanauszug City-Nord

Anlage-Nr. 1.4: Bebauungsplanauszug Fuhlsbüttel-Alsterdorf-Gross-Bostel-Ohls-

dorf

Anlage-Nr. 1.5: Bebauungsplanauszug Alsterdorf

Anlage-Nr. 1.6: Ergebnisse Vergleichsmessung DT 4/ DT 5

Anlagen-Nr. 2.1 – 2.19: Rechnerausdrucke der Prognoseberechnung (auszugsweise)

Anlagen-Nr. 3.1 – 3.20: Ergebnisse der Prognoseberechnung

Anlage-Nr. 4: Schutzbereiche mit empfohlener Maßnahme

10 ÄNDERUNGSINDEX

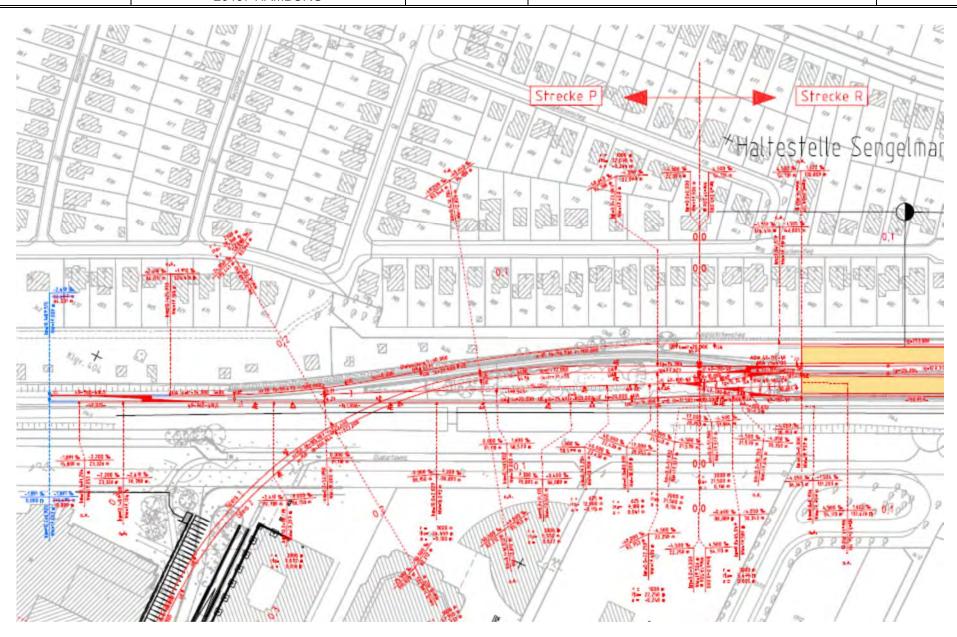
Index	Datum	Bearbeiter	Bemerkungen
а			
b			

Bearbeitung: Dipl.-Ing. U. Lenz

Essen, den 05.02.2019

I.B.U.

Ingenieurbüro für Schwingungs-, Schallund Schienenverkehrstechnik GmbH

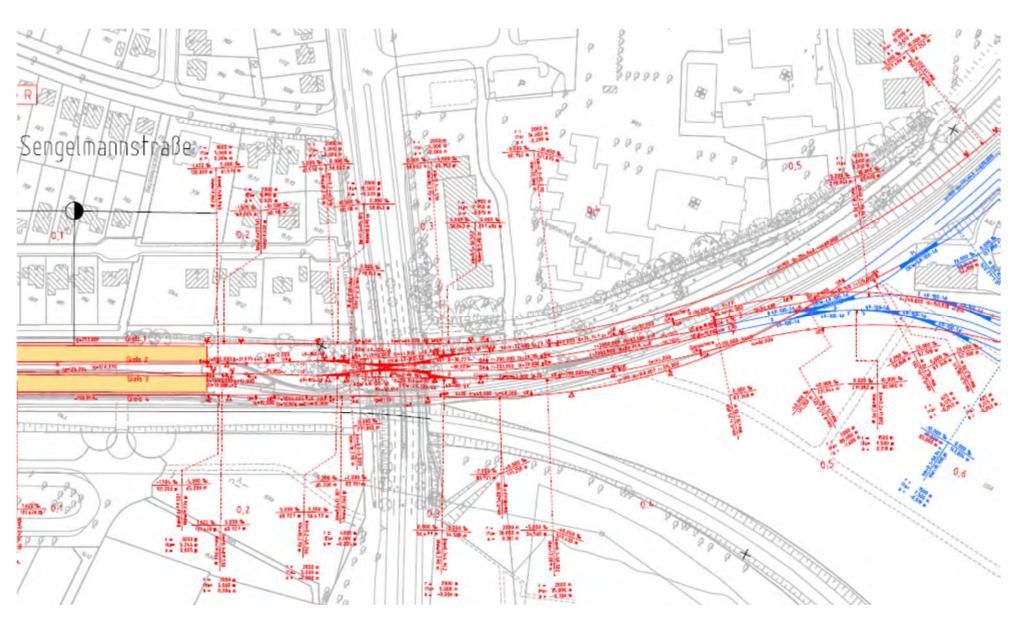

AUFTRAGGEBER:
ZPP INGENIEURE GMBH
BERATENDE INGENIEURE
20457 HAMBURG

AUFTRAG-NR.: S 03.1539.16/2

HALTESTELLE SENGELMANNSTRAßE	=

Neubau U 5

ANLAGE-NR. 1.1

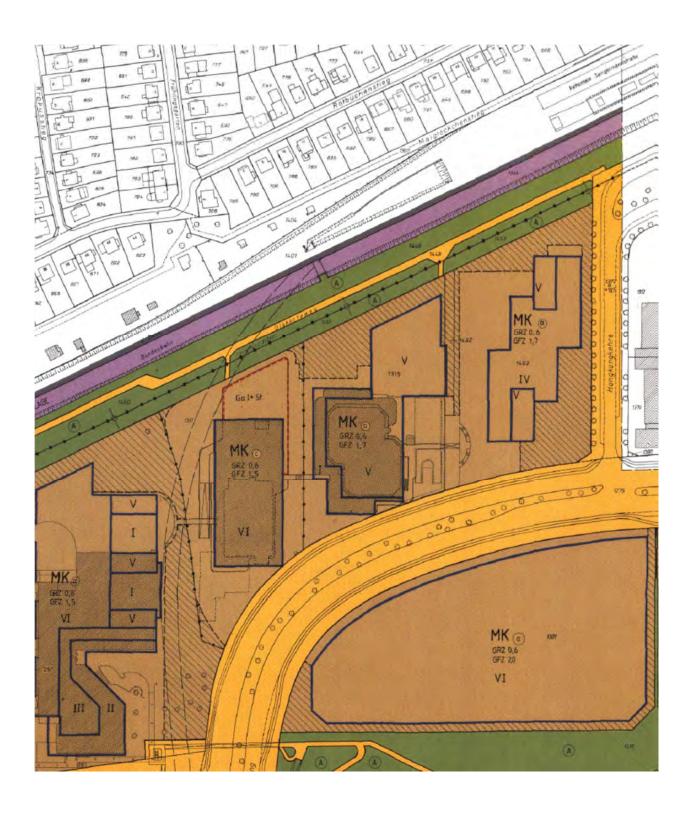

AUFTRAGGEBER:
ZPP INGENIEURE GMBH
BERATENDE INGENIEURE
20457 HAMBURG

AUFTRAG-NR.: S 03.1539.16/2

HAI TESTEL	E SENGEL	MANNST	BAKE

Neubau U 5

ANLAGE-NR. 1.2



AUFTRAGGEBER: ZPP Ingenieure GmbH Beratende Ingenieure Kleine Reichenstraße 1 20457 Hamburg AUFTRAG-NR.: S 03.1539.16/2

Neubau U 5

ANLAGE-NR.: 1.3

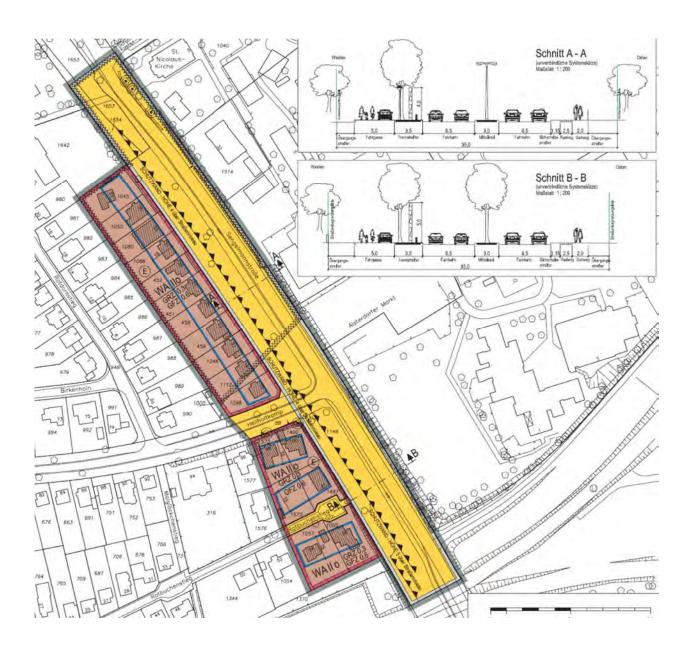
BABAUUNGSPLAN CITY-NORD

AUFTRAGGEBER: ZPP INGENIEURE GMBH BERATENDE INGENIEURE 20457 HAMBURG

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5

ANLAGE-NR. 1.4

BBAUUNGSPLAN FUHLSBÜTTEL-ALSTERDORF



AUFTRAG-NR.:	
S 03.1539.16/2	

Neubau U 5

ANLAGE-NR.: 1.5

BABAUUNGSPLAN ALSTERDORF

AUFTRAGGEBER: ZPP Ingenieure GmbH Beratende Ingenieure Kleine Reichenstraße 1	AUFTRAG-NR.: S 03.1539.16/2	Neubau U 5	ANLAGE-NR.: 1.6
20457 Hamburg		ERGEBNISSE VERGLEICHSMESSUNG DT4/DT5	

Schwinggeschwindigkeitspegel – Vergleich DT4 und DT5, gleicher Messpunkt, gleiche Gleise. Geschwindigkeit ca. 70 km/h bis 75 km/h, ebenerdiger Verkehr, gemittelte Spektren (AVG) über die die Vorbeifahrtzeit T_p

STUVA, November 2017

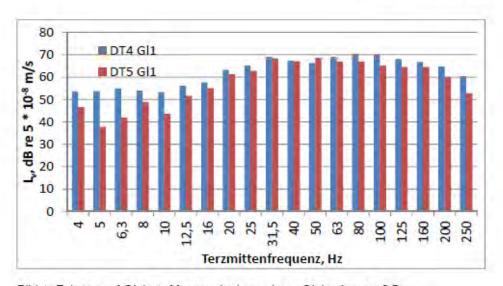


Bild 1: Fahrten auf Gleis 1, Messpunktabstand von Gleismitte ca. 2,5 m

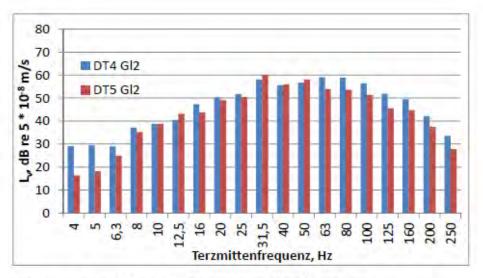


Bild 2: Fahrten auf Gleis 2, Messpunktabstand von Gleismitte ca. 6 m

AUFTRAGGEBER: ZPP Ingenieure AG Beratende Ingenieure	ngenieure AG S 03.1539.16/2 ende Ingenieure	Neubau U 5; 1. BA City-Nord- Bramfeld	ANLAGE-NR.: 2.1
Kleine Reichenstraße 1 20457 Hamburg		RECHNERAUSDRUCKE DER PROGNOSEBERECHNUNG	

	Paul- Stritter- Weg 2 MO1 U1/DT4	MP 2.2		Fahrtrichtung	: Ril	
	L _{vM}	ΔL_{VE}	ΔL_{VF}	L_{vl}	U	L_pA
5	35.3	1.5	0.0	36.8	21.7	0.0
6.3	42.2	1.6	0.0	43.8	13.9	0.0
8	47.3	2.8	0.0	50.1	1.5	0.0
10	44.1	3.1	0.0	47.2	5.8	0.0
12.5	45.9	3.5	0.0	49.4	10.8	0.0
16	44.9	4.0	0.0	48.9	11.0	3.2
20	42.3	4.6	0.0	47.0	17.1	13.6
25	44.7	5.4	0.0	50.1	9.7	15.1
31.5	39.2	6.4	0.0	45.6	12.8	19.1
40	38.9	7.8	0.0	46.6	11.5	23.5
50	32.4	9.3	0.0	41.7	21.5	33.0
63	28.5	11.3	0.0	39.9	17.0	30.7
80	19.5	14.0	0.0	33.5	20.6	31.6
100	16.3	17.1	0.0	33.4	30.6	44.9
125	16.1	21.0	0.0	37.1	29.3	50.2
160	17.1	18.3	0.0	35.3	26.0	47.9
200	18.9	15.6	0.0	34.5	19.2	42.8
250	22.3	12.8	0.0	35.1	16.9	43.4

L_{vM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

 $\begin{array}{lll} \Delta L_{\text{VO}}: & EinflussOberbau \ (Weiche) \\ & L_{\text{VI}}: & Schwingschnelle Immissionsort \\ & U: & Umwandlungsmass \ aus \ Messung \\ & L_{\text{pA}}: & A\text{-bewerteter Schalldruckpegel} \end{array}$

 $KB_{Fmax} = 0.041$ $KB_{FTm} = 0.027$

 $\begin{array}{ccc} KB_{FTr,Tag} & 0.01 \\ KB_{FTr,Nacht} & 0.00 & L_{pA} & 53.9 & dB(A) \end{array}$

AUFTRAGGEBER:
ZPP Ingenieure AG
Beratende Ingenieure
Kleine Reichenstraße 1
20457 Hamburg

AUFTRAG-NR.:
S 03.1539.16/2

Neubau U 5; 1. BA City-Nord- Bramfeld

RECHNERAUSDRUCKE DER
PROGNOSEBERECHNUNG

	Rotbuchenstieg 28					
		MP				
	MO2	3.2		Fahrtrichtung:	Ril	
	U1/DT4					
	L_{vM}	ΔL_{VE}	ΔL_{vF}	L_{vl}	U	L_pA
5	33.7	0.5	0.0	34.2	23.2	0.0
6.3	37.4	0.6	0.0	38.0	19.0	0.0
8	42.1	0.9	0.0	43.0	15.7	0.0
10	46.0	1.0	0.0	47.0	5.3	0.0
12.5	54.1	1.1	0.0	55.1	-3.2	0.0
16	65.8	1.3	0.0	67.0	-2.7	7.7
20	55.1	1.4	0.0	56.5	3.5	9.5
25	40.4	1.7	0.0	42.1	14.4	11.8
31.5	36.2	2.0	0.0	38.1	15.2	13.9
40	38.4	2.4	0.0	40.7	8.4	14.6
50	32.4	2.8	0.0	35.2	9.5	14.5
63	39.7	3.4	0.0	43.1	-3.3	13.6
80	36.7	4.2	0.0	40.9	-1.0	17.3
100	21.2	5.1	0.0	26.3	9.0	16.2
125	10.3	6.2	0.0	16.5	16.1	16.5
160	10.4	5.4	0.0	15.8	16.0	18.4
200	7.0	4.6	0.0	11.7	24.0	24.8

0.0

18.1

11.5

21.0

L_{vM}: Messwerte Gebäudedecke

14.3

3.8

 ΔL_{VE} : Einfluss Abstand

250

 $\begin{array}{lll} \Delta L_{VO}: & EinflussOberbau \ (Weiche) \\ & L_{VI}: & Schwingschnelle Immissionsort \\ & U: & Umwandlungsmass \ aus \ Messung \\ & L_{PA}: & A-bewerteter \ Schalldruckpegel \end{array}$

 $KB_{Fmax} = 0.174$ $KB_{FTm} = 0.116$

KB_{FTr,Tag} 0.04

 $KB_{FTr,Nacht} \quad 0.02 \qquad L_{pA} \qquad 28.9 \qquad dB(A)$

AUFTRAGGEBER:
ZPP Ingenieure AG
Beratende Ingenieure
Kleine Reichenstraße 1
20457 Hamburg

AUFTRAG-NR.:
S 03.1539.16/2

Neubau U 5; 1. BA City-Nord- Bramfeld

RECHNERAUSDRUCKE DER
PROGNOSEBERECHNUNG

Rotbuchenstieg 42

		MP				
	MO3	3.2		Fahrtrichtung	: Ril	
	U1/DT4					
	L_{vM}	ΔL_{VE}	ΔL_{VF}	L_{vl}	U	L_pA
5	35.2	1.1	0.0	36.2	29.5	0.0
6.3	39.2	1.1	0.0	40.4	22.0	0.0
8	42.3	1.8	0.0	44.1	15.7	0.0
10	53.9	2.0	0.0	55.9	0.9	0.0
12.5	58.7	2.2	0.0	60.9	2.5	0.0
16	49.8	2.5	0.0	52.3	11.1	6.8
20	45.4	2.9	0.0	48.3	12.4	10.1
25	41.1	3.3	0.0	44.4	7.6	7.3
31.5	38.3	3.9	0.0	42.2	16.7	19.6
40	36.3	4.7	0.0	41.1	13.5	20.0
50	30.1	5.6	0.0	35.7	21.6	27.1
63	30.6	6.8	0.0	37.4	13.4	24.6
80	31.2	8.4	0.0	39.6	10.5	27.6
100	20.4	10.2	0.0	30.6	16.6	28.2
125	9.9	12.5	0.0	22.4	24.1	30.3
160	7.8	10.9	0.0	18.6	25.9	31.2
200	-2.4	9.3	0.0	6.9	33.3	29.3
250	12.9	7.7	0.0	20.6	17.1	29.1

L_{vM}: Messwerte Gebäudedecke

ΔL_{vE}: Einfluss Abstand

 ΔL_{VO} : EinflussOberbau (Weiche)

 L_{vl} : Schwingschnelle Immissionsort U: Umwandlungsmass aus Messung L_{pA} : A-bewerteter Schalldruckpegel

 $KB_{Fmax} = 0.103$ $KB_{FTm} = 0.069$

KB_{FTr,Tag} 0.02

 $KB_{FTr,Nacht} \quad 0.01 \qquad L_{pA} \qquad 38.0 \qquad dB(A)$

AUFTRAGGEBER: ZPP Ingenieure AG Beratende Ingenieure	enieure AG S 03.1539.16/2	Neubau U 5; 1. BA City-Nord- Bramfeld	ANLAGE-NR.: 2.4
Kleine Reichenstraße 1 20457 Hamburg		RECHNERAUSDRUCKE DER PROGNOSEBERECHNUNG	

	Paul- Stritter- Weg 2 MO1	MP 2.1		Fahrtrichtung	: Ril	
	U1/DT5			_		
	L_{vM}	ΔL_{VE}	ΔL_{VF}	L_{vl}	U	L_pA
5	43.4	1.5	-14.4	30.4	0.0	0.0
6.3	46.6	1.6	-10.6	37.7	0.0	0.0
8	49.0	2.8	-3.8	48.0	0.0	0.0
10	47.9	3.1	-7.4	43.5	0.0	0.0
12.5	50.3	3.5	-2.2	51.6	0.0	0.0
16	53.9	4.0	-3.3	54.6	0.0	0.0
20	53.5	4.6	-1.8	56.4	0.0	0.0
25	52.7	5.4	-2.0	56.1	0.0	0.0
31.5	50.4	6.4	0.6	57.4	0.0	0.0
40	44.9	7.8	0.0	52.7	0.0	0.0
50	38.7	9.3	2.0	50.0	0.0	0.0
63	34.1	11.3	-3.9	41.5	0.0	0.0
80	29.2	14.0	-4.3	38.9	0.0	0.0
100	25.3	17.1	-5.0	37.5	0.0	0.0
125	27.7	21.0	-5.1	43.6	0.0	0.0
160	25.5	18.3	-3.8	40.0	0.0	0.0
200	29.0	15.6	-5.0	39.5	0.0	0.0
250	33.4	12.8	-6.8	39.4	0.0	0.0

L_{vM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

 $\begin{array}{lll} \Delta L_{VO}: & EinflussOberbau \ (Weiche) \\ & L_{VI}: & Schwingschnelle Immissionsort \\ & U: & Umwandlungsmass \ aus \ Messung \end{array}$

L_{pA}: A-bewerteter Schalldruckpegel

 $KB_{Fmax} = 0.093$ $KB_{FTm} = 0.062$

AUFTRAGGEBER:
ZPP Ingenieure AG
Beratende Ingenieure
Kleine Reichenstraße 1
20457 Hamburg

AUFTRAG-NR.:
S 03.1539.16/2

Neubau U 5; 1. BA City-Nord- Bramfeld

RECHNERAUSDRUCKE DER
PROGNOSEBERECHNUNG

	Rotbuchenstieg 28					
		MP				
	MO2	3.1		Fahrtrichtung:	Ril	
	U1/DT5					
	L_{vM}	ΔL_{VE}	ΔL_{VF}	L_{vl}	U	L_pA
5	36.0	0.5	-14.4	22.1	0.0	0.0
6.3	41.9	0.6	-10.6	31.9	0.0	0.0
8	46.4	0.9	-3.8	43.6	0.0	0.0
10	46.9	1.0	-7.4	40.5	0.0	0.0
12.5	54.3	1.1	-2.2	53.2	0.0	0.0
16	58.3	1.3	-3.3	56.3	0.0	0.0
20	55.6	1.4	-1.8	55.3	0.0	0.0
25	49.2	1.7	-2.0	48.8	0.0	0.0
31.5	38.3	2.0	0.6	40.9	0.0	0.0
40	38.1	2.4	0.0	40.5	0.0	0.0
50	39.6	2.8	2.0	44.4	0.0	0.0
63	40.0	3.4	-3.9	39.5	0.0	0.0
80	30.6	4.2	-4.3	30.4	0.0	0.0
100	17.8	5.1	-5.0	17.9	0.0	0.0
125	7.9	6.2	-5.1	9.0	0.0	0.0
160	14.5	5.4	-3.8	16.2	0.0	0.0
200	9.7	4.6	-5.0	9.3	0.0	0.0
250	17.7	3.8	-6.8	14.7	0.0	0.0

L_{vM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

 $\begin{array}{lll} \Delta L_{VO}: & EinflussOberbau \, (Weiche) \\ & L_{VI}: & Schwingschnelle Immissionsort \\ & U: & Umwandlungsmass \, aus \, Messung \end{array}$

L_{pA}: A-bewerteter Schalldruckpegel

 $KB_{Fmax} = 0.070$ $KB_{FTm} = 0.046$

KB_{FTr,Tag} 0.01

 $\label{eq:KBFTr,Nacht} KB_{\text{FTr,Nacht}} \quad 0.01 \qquad L_{\text{pA}} \qquad \quad - \qquad \quad dB(A)$

AUFTRAGGEBER:
ZPP Ingenieure AG
Beratende Ingenieure
Kleine Reichenstraße 1
20457 Hamburg

AUFTRAG-NR.:
S 03.1539.16/2

Neubau U 5; 1. BA City-Nord- Bramfeld

RECHNERAUSDRUCKE DER
PROGNOSEBERECHNUNG

	Rotbuchenstieg 42					
		MP				
	MO3	2.1		Fahrtrichtung:	Ril	
	U1/DT5					
	L_{vM}	ΔL_{VE}	ΔL_{VF}	L_{vl}	U	L_pA
5	38,3	1,1	-14,4	24,9	0,0	0,0
6,3	38,6	1,1	-10,6	29,1	0,0	0,0
8	39,6	1,8	-3,8	37,6	0,0	0,0
10	39,7	2,0	-7,4	34,3	0,0	0,0
12,5	42,8	2,2	-2,2	42,8	0,0	0,0
16	47,3	2,5	-3,3	46,5	0,0	0,0
20	49,1	2,9	-1,8	50,2	0,0	0,0
25	39,1	3,3	-2,0	40,5	0,0	0,0
31,5	41,0	3,9	0,6	45,5	0,0	0,0
40	41,9	4,7	0,0	46,7	0,0	0,0
50	40,1	5,6	2,0	47,7	0,0	0,0
63	37,7	6,8	-3,9	40,6	0,0	0,0
80	35,9	8,4	-4,3	39,9	0,0	0,0
100	24,1	10,2	-5,0	29,3	0,0	0,0
125	12,8	12,5	-5,1	20,1	0,0	0,0
160	10,7	10,9	-3,8	17,8	0,0	0,0
200	6,8	9,3	-5,0	11,0	0,0	0,0

7,7

-6,8

0,0

0,0

16,0

L_{vM}: Messwerte Gebäudedecke

15,1

 ΔL_{VE} : Einfluss Abstand

250

 $\begin{array}{lll} \Delta L_{VO}: & EinflussOberbau \ (Weiche) \\ & L_{VI}: & Schwingschnelle \ Immissionsort \\ & U: & Umwandlungsmass \ aus \ Messung \end{array}$

 L_{pA} : A-bewerteter Schalldruckpegel

 $KB_{Fmax} = 0,034$ $KB_{FTm} = 0,023$

AUFTRAGGEBER:	AUFTRAG-NR.:		ANLAGE-NR.:
ZPP Ingenieure AG	S 03.1539.16/2	Neubau U 5; 1. BA City-Nord- Bramfeld	2.7
Beratende Ingenieure		,	
Kleine Reichenstraße 1			
20457 Hamburg		RECHNERAUSDRUCKE DER	
20.01		PROGNOSEBERECHNUNG	

	Paul- Stritter- Weg 2 MO1 U5/DT4	MP 2.1			Fahrtrichtung:	Rill	
	L_{vM}	ΔL_{VE}	ΔL_{VF}	ΔL_{vO}	L_{vl}	U	L_pA
5	42,6	0,4	0,0	3,0	46,0	0,0	0,0
6,3	45,9	0,5	0,0	3,0	49,3	0,0	0,0
8	49,7	0,9	0,0	2,0	52,6	0,0	0,0
10	48,9	1,0	0,0	2,0	51,9	0,0	0,0
12,5	47,3	1,1	0,0	2,0	50,5	0,0	0,0
16	54,3	1,4	0,0	2,0	57,7	0,0	0,0
20	53,3	1,6	0,0	9,0	63,8	0,0	0,0
25	52,9	1,9	0,0	13,0	67,8	0,0	0,0
31,5	49,7	2,3	0,0	13,0	65,0	0,0	0,0
40	41,0	2,7	0,0	10,0	53,7	0,0	0,0
50	37,8	3,3	0,0	4,0	45,2	0,0	0,0
63	34,5	4,1	0,0	3,0	41,6	0,0	0,0
80	28,3	5,1	0,0	5,0	38,4	0,0	0,0
100	21,6	6,2	0,0	5,0	32,8	0,0	0,0
125	25,5	7,7	0,0	9,0	42,2	0,0	0,0
160	23,3	6,6	0,0	7,0	37,0	0,0	0,0
200	26,7	5,6	0,0	7,0	39,4	0,0	0,0
250	32,0	4,6	0,0	3,0	39,7	0,0	0,0

L_{vM}: Messwerte Gebäudedecke

 ΔL_{vE} : Einfluss Abstand

 $\begin{array}{lll} \Delta L_{\text{VO}}: & EinflussOberbau \ (Weiche) \\ & L_{\text{VI}}: & Schwingschnelle Immissionsort \\ & U: & Umwandlungsmass \ aus \ Messung \\ & L_{\text{PA}}: & A-bewerteter \ Schalldruckpegel \end{array}$

 $KB_{Fmax} = 0,224$ $KB_{FTm} = 0,150$

 $KB_{FTr,Tag}$ 0,09 L_{pA} - dB(A)

AUFTRAG-NR.: ANLAGE-NR.: AUFTRAGGEBER: S 03.1539.16/2 2.8 ZPP Ingenieure AG Neubau U 5; 1. BA City-Nord- Bramfeld Beratende Ingenieure Kleine Reichenstraße 1 RECHNERAUSDRUCKE DER 20457 Hamburg **PROGNOSEBERECHNUNG**

Rotbuchenstieg						
20	MP					
MO2	2.1			Fahrtrichtung:	Ril	
U5/DT4						
L_{vM}	ΔL_{VE}	ΔL_{VF}	ΔL_{VO}	L_{vl}	U	L_pA
34.5	-0.6	0.0	3.0	36.9	0.0	0.0
38.8	-0.7	0.0	3.0	41.1	0.0	0.0
40.9	-1.2	0.0	2.0	41.7	0.0	0.0
44.1	-1.3	0.0	2.0	44.8	0.0	0.0
54.3	-1.5	0.0	2.0	54.9	0.0	0.0
63.3	-1.7	0.0	2.0	63.6	0.0	0.0
55.9	- 2.0	0.0	9.0	62.9	0.0	0.0
40.6	-2.4	0.0	13.0	51.2	0.0	0.0
35.9	-2.8	0.0	13.0	46.1	0.0	0.0
38.7	-3.4	0.0	10.0	45.3	0.0	0.0
32.0	-4.1	0.0	4.0	31.9	0.0	0.0
43.2	-5.0	0.0	3.0	41.2	0.0	0.0
41.7	-6.1	0.0	5.0	40.6	0.0	0.0
27.5	-7.5	0.0	5.0	25.0	0.0	0.0
16.8	-9.2	0.0	9.0	16.5	0.0	0.0
12.0	-8.0	0.0	7.0	11.0	0.0	0.0
7.5	-6.8	0.0	7.0	7.7	0.0	0.0
12.9	-5.6	0.0	3.0	10.3	0.0	0.0
	28 MO2 U5/DT4 LvM 34.5 38.8 40.9 44.1 54.3 63.3 55.9 40.6 35.9 38.7 32.0 43.2 41.7 27.5 16.8 12.0 7.5	28 MP MO2 U5/DT4 L _{VM} 34.5 -0.6 38.8 -0.7 40.9 -1.2 44.1 -1.3 54.3 -1.5 63.3 -1.7 55.9 -2.0 40.6 -2.4 35.9 -2.8 38.7 34.9 32.0 -4.1 43.2 -5.0 41.7 -6.1 27.5 16.8 -9.2 12.0 -8.0 7.5 -6.8	28 MP MO2 U5/DT4 L _{VM} 34.5 -0.6 38.8 -0.7 40.9 41.1 -1.3 0.0 54.3 -1.5 0.0 63.3 -1.7 0.0 55.9 -2.0 40.6 -2.4 0.0 35.9 -2.8 0.0 38.7 34.0 32.0 41.7 -6.1 0.0 43.2 -5.0 0.0 41.7 -6.1 0.0 27.5 -7.5 0.0 12.0 -8.0 0.0 7.5 -6.8 0.0	28 MP MO2 U5/DT4 L _{VM} ΔL _{VE} ΔL _{VF} ΔL _{VF} ΔL _{VO} 34.5 -0.6 0.0 3.0 38.8 -0.7 0.0 2.0 44.1 -1.3 0.0 2.0 44.1 -1.3 0.0 2.0 54.3 -1.5 0.0 2.0 63.3 -1.7 0.0 2.0 63.3 -1.7 0.0 2.0 55.9 -2.0 0.0 9.0 40.6 -2.4 0.0 13.0 35.9 -2.8 0.0 13.0 38.7 -3.4 0.0 10.0 43.2 -5.0 0.0 3.0 41.7 -6.1 0.0 5.0 27.5 -7.5 0.0 5.0 16.8 -9.2 0.0 9.0 12.0 -8.0 0.0 7.0	MP MO2 U5/DT4 L _{VM} ΔL _{VE} ΔL _{VF} ΔL _{VO} 34.5 -0.6 0.0 3.0 38.8 -0.7 0.0 3.0 41.1 40.9 -1.2 0.0 2.0 44.8 54.3 -1.5 0.0 2.0 54.9 63.3 -1.7 0.0 2.0 63.6 55.9 -2.0 0.0 9.0 62.9 40.6 -2.4 0.0 13.0 51.2 35.9 -2.8 0.0 13.0 46.1 38.7 -3.4 0.0 10.0 45.3 32.0 -4.1 0.0 4.0 31.9 43.2 -5.0 0.0 3.0 40.6 27.5 -7.5 0.0 5.0 25.0 16.8 -9.2 0.0 9.0 11.0 7.5	MP MO2 U5/DT4 L _{VM} ΔL _{VE} ΔL _{VF} ΔL _{VO} 34.5 -0.6 0.0 38.8 -0.7 0.0 38.8 -0.7 0.0 30.0 41.1 0.0 40.9 -1.2 0.0 2.0 44.1 -1.3 0.0 2.0 44.8 0.0 54.3 -1.5 0.0 2.0 63.3 -1.7 0.0 2.0 63.3 -1.7 0.0 2.0 63.3 -1.7 0.0 2.0 63.6 0.0 55.9 -2.0 0.0 9.0 62.9 0.0 40.6 -2.4 0.0 13.0 51.2 0.0 35.9 -2.8 0.0 13.0 46.1 0.0 38.7 -3.4 0.0 10.0 45.3 0.0 32.0 -4.1 0.0 43.2 -5.0 0.0 30.0 41.2 0.0 41.7 -6.1 0.0 45.3 0.0 41.2 0.0 41.7 -6.1 0.0 5.0 40.6 0.0 27.5 -7.5 0.0 5.0 25.0 0.0 16.8 -9.2 0.0 11.0 0.0 7.5

L_{vM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

ΔL_{vO}: EinflussOberbau (Weiche) $L_{\text{\tiny VI}}$: Schwingschnelle Immissionsort U: Umwandlungsmass aus Messung

L_{pA}: A-bewerteter Schalldruckpegel

KB_{Fmax}= 0.151 KB_{FTm}= 0.100

KB_{FTr,Tag} 0.06

KB_{FTr,Nacht} 0.05 dB(A) L_{pA}

AUFTRAGGEBER: ZPP Ingenieure AG Beratende Ingenieure Kleine Reichenstraße 1 20457 Hamburg AUFTRAG-NR.: S 03.1539.16/2

MP

Neubau U 5; 1. BA City-Nord- Bramfeld

ANLAGE-NR.: 2.9

RECHNERAUSDRUCKE DER PROGNOSEBERECHNUNG

Rotbuchenstieg 42

		IVII					
	MO3	2.2			Fahrtrichtung:	Ril	
	U5/DT4						
	L_{vM}	ΔL_{vE}	ΔL_{vF}	ΔL_{vO}	L_{vl}	U	L_pA
5	36.2	-1.7	0.0	3.0	37.5	0.0	0.0
6.3	39.4	-1.9	0.0	3.0	40.5	0.0	0.0
8	44.0	-3.8	0.0	2.0	42.2	0.0	0.0
10	46.0	-4.3	0.0	2.0	43.7	0.0	0.0
12.5	55.9	-5.0	0.0	2.0	52.9	0.0	0.0
16	63.3	-5.9	0.0	2.0	59.4	0.0	0.0
20	50.1	-6.9	0.0	9.0	52.2	0.0	0.0
25	44.4	-8.2	0.0	13.0	49.2	0.0	0.0
31.5	51.8	-9.9	0.0	13.0	55.0	0.0	0.0
40	46.9	-12.1	0.0	10.0	44.8	0.0	0.0
50	39.8	-14.7	0.0	4.0	29.2	0.0	0.0
63	38.6	-18.0	0.0	3.0	23.6	0.0	0.0
80	43.1	-22.4	0.0	5.0	25.7	0.0	0.0
100	40.8	-27.6	0.0	5.0	18.2	0.0	0.0
125	21.2	-34.1	0.0	9.0	-3.9	0.0	0.0
160	15.2	-29.5	0.0	7.0	-7.2	0.0	0.0
200	9.9	-25.0	0.0	7.0	-8.1	0.0	0.0
250	20.0	-20.5	0.0	3.0	2.5	0.0	0.0

L_{vM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

 $\begin{array}{lll} \Delta L_{VO}: & EinflussOberbau \ (Weiche) \\ & L_{VI}: & Schwingschnelle Immissionsort \\ & U: & Umwandlungsmass \ aus \ Messung \\ & L_{PA}: & A-bewerteter \ Schalldruckpegel \end{array}$

 $KB_{Fmax} = 0.095$ $KB_{FTm} = 0.063$

KB_{FTr,Tag} 0.04

 $\label{eq:kbftr,Nacht} KB_{FTr,Nacht} \quad 0.03 \qquad \qquad L_{pA} \quad \ - \qquad \ dB(A)$

	Rotbuchenstieg 28					
		MP				
	MO2	3.2		Fahrtrichtung:	Rill	
	U1/DT4					
	L_{vM}	ΔL_{VE}	ΔL_{VF}	L_{vl}	U	L_pA
5	32.2	0.1	0.0	32.2	24.9	0.0
6.3	35.2	0.1	0.0	35.2	18.2	0.0
8	39.3	0.1	0.0	39.4	16.3	0.0
10	45.3	0.1	0.0	45.4	7.4	0.0
12.5	52.7	0.2	0.0	52.9	-2.0	0.0
16	60.5	0.2	0.0	60.7	-2.7	1.3
20	46.5	0.2	0.0	46.7	4.7	0.9
25	31.9	0.3	0.0	32.2	14.5	1.9
31.5	29.8	0.3	0.0	30.1	16.1	6.8
40	29.8	0.4	0.0	30.1	7.5	3.0
50	27.3	0.5	0.0	27.7	12.8	10.3
63	32.7	0.6	0.0	33.3	0.3	7.4
80	30.0	0.7	0.0	30.7	1.6	9.8
100	25.4	0.9	0.0	26.3	5.5	12.7
125	3.5	1.1	0.0	4.6	26.7	15.2
160	8.3	0.9	0.0	9.2	18.7	14.5
200	- 2.0	8.0	0.0	-1.3	33.2	21.1
250	12.9	0.6	0.0	13.6	14.7	19.6

L_{VM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

ΔL_{vO}: EinflussOberbau (Weiche)

 L_{vl} : Schwingschnelle Immissionsort U: Umwandlungsmass aus Messung L_{pA} : A-bewerteter Schalldruckpegel

 $KB_{Fmax} = 0.084$ $KB_{FTm} = 0.056$

KB_{FTr,Tag} 0.03

 $\mathsf{KB}_{\mathsf{FTr},\mathsf{Nacht}}$ 0.03 L_{pA} 25.3 $\mathsf{dB}(\mathsf{A})$

	Rotbuchenstieg 42					
		MP				
	MO3	2.2		Fahrtrichtung:	Rill	
	U1/DT4					
	L_{vM}	ΔL_{VE}	ΔL_{VF}	L_{vl}	U	L_pA
5	58.1	0.0	0.0	58.1	0.0	0.0
6.3	57.1	0.0	0.0	57.1	0.0	0.0
8	60.0	0.1	0.0	60.1	0.0	0.0
10	61.5	0.1	0.0	61.6	0.0	0.0
12.5	72.8	0.1	0.0	72.9	0.0	0.0
16	75.1	0.1	0.0	75.2	0.0	0.0
20	62.4	0.1	0.0	62.5	0.0	0.0
25	60.1	0.2	0.0	60.2	0.0	0.0
31.5	60.7	0.2	0.0	60.9	0.0	0.0
40	54.0	0.2	0.0	54.2	0.0	0.0
50	52.0	0.3	0.0	52.3	0.0	0.0
63	54.9	0.3	0.0	55.2	0.0	0.0
80	49.7	0.4	0.0	50.1	0.0	0.0
100	50.7	0.5	0.0	51.2	0.0	0.0
125	40.9	0.6	0.0	41.5	0.0	0.0
160	32.6	0.5	0.0	33.2	0.0	0.0
200	27.3	0.5	0.0	27.8	0.0	0.0

0.0

26.8

0.0

0.0

L_{vM}: Messwerte Gebäudedecke

26.4

0.4

 ΔL_{VE} : Einfluss Abstand

250

 $\begin{array}{lll} \Delta L_{VO}: & EinflussOberbau \ (Weiche) \\ & L_{VI}: & Schwingschnelle Immissionsort \\ & U: & Umwandlungsmass \ aus \ Messung \end{array}$

L_{pA}: A-bewerteter Schalldruckpegel

 $KB_{Fmax} = 0.243$ $KB_{FTm} = 0.162$

KB_{FTr,Tag} 0.09

 $\label{eq:KBFTr,Nacht} KB_{\text{FTr,Nacht}} \quad 0.08 \qquad L_{\text{pA}} \qquad \text{-} \qquad \text{dB(A)}$

	Rotbuchenstieg 28					
		MP				
	MO2	3.1		Fahrtrichtung:	Rill	
	U1/DT5					
	L_{vM}	ΔL_{VE}	ΔL_{VF}	L_{vl}	U	L_pA
5	32.8	0.1	-14.4	18.4	0.0	0.0
6.3	37.1	0.1	-10.6	26.6	0.0	0.0
8	40.5	0.1	-3.8	36.8	0.0	0.0
10	45.1	0.1	-7.4	37.8	0.0	0.0
12.5	53.9	0.2	-2.2	51.8	0.0	0.0
16	49.6	0.2	-3.3	46.5	0.0	0.0
20	45.3	0.2	-1.8	43.8	0.0	0.0
25	39.3	0.3	-2.0	37.5	0.0	0.0
31.5	32.4	0.3	0.6	33.3	0.0	0.0
40	34.3	0.4	0.0	34.7	0.0	0.0
50	34.8	0.5	2.0	37.3	0.0	0.0
63	34.2	0.6	-3.9	30.9	0.0	0.0
80	19.3	0.7	-4.3	15.7	0.0	0.0
100	14.7	0.9	-5.0	10.5	0.0	0.0
125	4.4	1.1	-5.1	0.4	0.0	0.0
160	12.2	0.9	-3.8	9.4	0.0	0.0
200	2.2	8.0	-5.0	-2.0	0.0	0.0
250	16.4	0.6	-6.8	10.3	0.0	0.0

L_{vM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

ΔL_{vO}: EinflussOberbau (Weiche)

 L_{vl} : Schwingschnelle Immissionsort U: Umwandlungsmass aus Messung L_{pA} : A-bewerteter Schalldruckpegel

 $KB_{Fmax} = 0.033$ $KB_{FTm} = 0.022$

KB_{FTr,Tag} 0.01

 $\mathsf{KB}_{\mathsf{FTr},\mathsf{Nacht}}$ 0.01 L_{pA} - $\mathsf{dB}(\mathsf{A})$

Rotbuchenstieg 42

		MP				
	MO3	3.2		Fahrtrichtung:	Rill	
	U1/DT5					
	L_{vM}	ΔL_{VE}	ΔL_{VF}	L_{vl}	U	L_pA
5	53.4	0.0	-14.4	38.9	6.5	0.0
6.3	60.3	0.0	-10.6	49.7	-2.8	0.0
8	64.7	0.1	-3.8	61.0	-7.8	0.0
10	75.9	0.1	-7.4	68.6	-23.4	0.0
12.5	74.5	0.1	-2.2	72.4	-12.8	0.0
16	58.2	0.1	-3.3	55.0	3.9	2.2
20	48.7	0.1	-1.8	47.0	10.7	7.2
25	51.4	0.2	-2.0	49.5	-3.8	1.1
31.5	46.8	0.2	0.6	47.6	5.6	13.8
40	45.2	0.2	0.0	45.5	2.4	13.3
50	35.2	0.3	2.0	37.4	12.1	19.3
63	31.8	0.3	-3.9	28.3	10.5	12.6
80	32.2	0.4	-4.3	28.3	8.6	14.3
100	29.5	0.5	-5.0	25.0	7.9	13.8
125	18.3	0.6	-5.1	13.8	14.4	12.2
160	11.1	0.5	-3.8	7.9	22.6	17.1
200	3.1	0.5	-5.0	-1.4	31.4	19.1
250	13.6	0.4	-6.8	7.2	16.0	14.6

L_{VM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

 $\begin{array}{lll} \Delta L_{VO}: & EinflussOberbau \ (Weiche) \\ & L_{VI}: & Schwingschnelle Immissionsort \\ & U: & Umwandlungsmass \ aus \ Messung \\ & L_{PA}: & A-bewerteter \ Schalldruckpegel \end{array}$

 $KB_{Fmax} = 0.063$ $KB_{FTm} = 0.042$

KB_{FTr,Tag} 0.02

 $\mathsf{KB}_{\mathsf{FTr},\mathsf{Nacht}}$ 0.02 L_{pA} 25.9 $\mathsf{dB}(\mathsf{A})$

AUFTRAGGEBER: ZPP Ingenieure AG Beratende Ingenieure Kleine Reichenstraße 1	AUFTRAG-NR.: S 03.1539.16/2	Neubau U 5; 1. BA City-Nord- Bramfeld	ANLAGE-NR.: 2.14	
20457 Hamburg		RECHNERAUSDRUCKE DER PROGNOSEBERECHNUNG		

	Paul- Stritter- Weg 2 MO1 U5/DT4	MP 2.1			Fahrtrichtung:	Ril	
	L_{vM}	ΔL_{VE}	ΔL_{vF}	ΔL_{vO}	L_{vl}	U	L_pA
5	43.4	1.1	0.0	3.0	47.5	0.0	0.0
6.3	46.6	1.2	0.0	3.0	50.8	0.0	0.0
8	49.0	2.1	0.0	2.0	53.1	0.0	0.0
10	47.9	2.4	0.0	2.0	52.2	0.0	0.0
12.5	50.3	2.7	0.0	2.0	55.0	0.0	0.0
16	53.9	3.1	0.0	2.0	59.0	0.0	0.0
20	53.5	3.6	0.0	9.0	66.1	0.0	0.0
25	52.7	4.2	0.0	13.0	69.9	0.0	0.0
31.5	50.4	5.0	0.0	13.0	68.5	0.0	0.0
40	44.9	6.1	0.0	10.0	61.0	0.0	0.0
50	38.7	7.3	0.0	4.0	50.0	0.0	0.0
63	34.1	8.9	0.0	3.0	46.0	0.0	0.0
80	29.2	11.0	0.0	5.0	45.3	0.0	0.0
100	25.3	13.5	0.0	5.0	43.9	0.0	0.0
125	27.7	16.6	0.0	9.0	53.3	0.0	0.0
160	25.5	14.4	0.0	7.0	47.0	0.0	0.0
200	29.0	12.3	0.0	7.0	48.3	0.0	0.0
250	33.4	10.1	0.0	3.0	46.5	0.0	0.0

L_{vM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

ΔL_{vO}: EinflussOberbau (Weiche)

 $\begin{array}{lll} L_{\text{vi}}: & Schwingschnelle Immissionsort \\ U: & Umwandlungsmass aus Messung \\ L_{\text{pA}}: & A\text{-bewerteter Schalldruckpegel} \end{array}$

 $KB_{Fmax} = 0.305$ $KB_{FTm} = 0.203$

KB_{FTr,Tag} 0.12

 $KB_{FTr,Nacht}$ 0.10 L_{pA} - dB(A)

	Rotbuchenstieg 28						
		MP					
	MO2	3.2			Fahrtrichtung:	Rill	
	U5/DT4						
	L_{vM}	ΔL_{VE}	ΔL_{VF}	ΔL_{VO}	L_{vl}	U	L_pA
5	32,2	0,6	0,0	3,0	35,8	24,9	0,0
6,3	35,2	0,6	0,0	3,0	38,8	18,2	0,0
8	39,3	1,2	0,0	2,0	42,5	16,3	0,0
10	45,3	1,4	0,0	2,0	48,7	7,4	0,0
12,5	52,7	1,6	0,0	2,0	56,3	-2,0	0,0
16	60,5	1,8	0,0	2,0	64,4	-2,7	4,9
20	46,5	2,2	0,0	9,0	57,6	4,7	11,8
25	31,9	2,5	0,0	13,0	47,4	14,5	17,2
31,5	29,8	3,1	0,0	13,0	45,9	16,1	22,6
40	29,8	3,7	0,0	10,0	43,5	7,5	16,3
50	27,3	4,5	0,0	4,0	35,8	12,8	18,3
63	32,7	5,5	0,0	3,0	41,3	0,3	15,3
80	30,0	6,9	0,0	5,0	41,8	1,6	20,9
100	25,4	8,4	0,0	5,0	38,8	5,5	25,3
125	3,5	10,4	0,0	9,0	22,9	26,7	33,5
160	8,3	9,0	0,0	7,0	24,2	18,7	29,6
200	-2,0	7,6	0,0	7,0	12,6	33,2	34,9
250	12,9	6,3	0,0	3,0	22,2	14,7	28,3

L_{VM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

ΔL_{vO}: EinflussOberbau (Weiche)

 L_{vl} : Schwingschnelle Immissionsort U: Umwandlungsmass aus Messung L_{pA} : A-bewerteter Schalldruckpegel

 $KB_{Fmax} = 0,138$ $KB_{FTm} = 0,092$

KB_{FTr,Tag} 0,05

 $KB_{FTr,Nacht}$ 0,05 L_{pA} 38,9 dB(A)

	Rotbuchenstieg 42						
		MP					
	MO3	2.2 Fahrtrichtung: Rill					
	U5/DT4						
	L_{vM}	ΔL_{VE}	ΔL_{VF}	ΔL_{VO}	L_{vl}	U	L_pA
5	58.1	-1.0	0.0	3.0	60.1	0.0	0.0
6.3	57.1	-1.1	0.0	3.0	59.0	0.0	0.0
8	60.0	-2.3	0.0	2.0	59.7	0.0	0.0
10	61.5	-2.7	0.0	2.0	60.8	0.0	0.0
12.5	72.8	-3.1	0.0	2.0	71.7	0.0	0.0
16	75.1	-3.7	0.0	2.0	73.5	0.0	0.0
20	62.4	-4.3	0.0	9.0	67.1	0.0	0.0
25	60.1	-5.2	0.0	13.0	67.9	0.0	0.0
31.5	60.7	-6.2	0.0	13.0	67.5	0.0	0.0
40	54.0	-7.7	0.0	10.0	56.3	0.0	0.0
50	52.0	-9.3	0.0	4.0	46.7	0.0	0.0
63	54.9	-11.5	0.0	3.0	46.4	0.0	0.0
80	49.7	-14.4	0.0	5.0	40.4	0.0	0.0
100	50.7	-17.7	0.0	5.0	38.0	0.0	0.0
125	40.9	-21.9	0.0	9.0	28.0	0.0	0.0
160	32.6	-18.9	0.0	7.0	20.7	0.0	0.0
200	27.3	-16.0	0.0	7.0	18.3	0.0	0.0
250	26.4	-13.1	0.0	3.0	16.3	0.0	0.0

L_{VM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

ΔL_{vO}: EinflussOberbau (Weiche)

 L_{vl} : Schwingschnelle Immissionsort U: Umwandlungsmass aus Messung L_{pA} : A-bewerteter Schalldruckpegel

 $KB_{Fmax} = 0.237$ $KB_{FTm} = 0.158$

KB_{FTr,Tag} 0.09

 $\label{eq:kbftrNacht} KB_{FTr,Nacht} \quad 0.08 \qquad \qquad L_{pA} \qquad \text{-} \qquad dB(A)$

AUFTRAGGEBER: ZPP Ingenieure AG Beratende Ingenieure	AUFTRAG-NR.: S 03.1539.16/2	Neubau U 5; 1. BA City-Nord- Bramfeld	ANLAGE-NR.: 2.17
Kleine Reichenstraße 1 20457 Hamburg		RECHNERAUSDRUCKE DER PROGNOSEBERECHNUNG	

	Paul- Stritter- Weg 2 MO1 U5/DT5	MP 2.1			Fahrtrichtung:	Ril
	L_{vM}	ΔL_{VE}	ΔL_{VF}	ΔL_{vO}	L_{vl}	U
5	43.4	1.1	-14.4	3.0	33.0	0.0
6.3	46.6	1.2	-10.6	3.0	40.3	0.0
8	49.0	2.1	-3.8	2.0	49.4	0.0
10	47.9	2.4	-7.4	2.0	44.8	0.0
12.5	50.3	2.7	-2.2	2.0	52.8	0.0
16	53.9	3.1	-3.3	2.0	55.7	0.0
20	53.5	3.6	-1.8	9.0	64.3	0.0
25	52.7	4.2	-2.0	13.0	67.9	0.0
31.5	50.4	5.0	0.6	13.0	69.0	0.0
40	44.9	6.1	0.0	10.0	61.0	0.0
50	38.7	7.3	2.0	4.0	52.0	0.0
63	34.1	8.9	-3.9	3.0	42.1	0.0
80	29.2	11.0	-4.3	5.0	41.0	0.0
100	25.3	13.5	-5.0	5.0	38.9	0.0
125	27.7	16.6	-5.1	9.0	48.2	0.0
160	25.5	14.4	-3.8	7.0	43.2	0.0
200	29.0	12.3	-5.0	7.0	43.3	0.0
250	33.4	10.1	-6.8	3.0	39.7	0.0

L_{VM}: Messwerte Gebäudedecke

 ΔL_{VE} : Einfluss Abstand

 ΔL_{vO} : EinflussOberbau (Weiche)

 $\begin{array}{lll} L_{\text{vi}}: & \text{Schwingschnelle Immissionsort} \\ U: & \text{Umwandlungsmass aus Messung} \\ L_{\text{pA}}: & \text{A-bewerteter Schalldruckpegel} \end{array}$

 $\begin{tabular}{ll} KB_{Fmax} = & 0.271 \\ KB_{FTm} = & 0.181 \\ \end{tabular}$

 KBFTr,Tag
 0.10

 KBFTr,Nacht
 0.09
 LpA

dB(A)

	Rotbuchenstieg 28						
		MP					
	MO2	2.1			Fahrtrichtung:	Rill	
	U5/DT5						
	L_{vM}	ΔL_{VE}	ΔL_{VF}	ΔL_{VO}	L_{vl}	U	L_pA
5	32,1	0,6	-14,4	3,0	21,2	0,0	0,0
6,3	34,3	0,6	-10,6	3,0	27,4	0,0	0,0
8	36,1	1,2	-3,8	2,0	35,6	0,0	0,0
10	43,7	1,4	-7,4	2,0	39,7	0,0	0,0
12,5	55,7	1,6	-2,2	2,0	57,1	0,0	0,0
16	55,0	1,8	-3,3	2,0	55,5	0,0	0,0
20	48,5	2,2	-1,8	9,0	57,9	0,0	0,0
25	32,6	2,5	-2,0	13,0	46,1	0,0	0,0
31,5	26,9	3,1	0,6	13,0	43,6	0,0	0,0
40	30,1	3,7	0,0	10,0	43,9	0,0	0,0
50	27,5	4,5	2,0	4,0	38,0	0,0	0,0
63	38,4	5,5	-3,9	3,0	43,0	0,0	0,0
80	31,7	6,9	-4,3	5,0	39,3	0,0	0,0
100	22,6	8,4	-5,0	5,0	31,0	0,0	0,0
125	11,3	10,4	-5,1	9,0	25,5	0,0	0,0
160	12,8	9,0	-3,8	7,0	25,0	0,0	0,0
200	15,1	7,6	-5,0	7,0	24,7	0,0	0,0

L_{vM}: Messwerte Gebäudedecke

11,1

6,3

-6,8

3,0

13,5

0,0

0,0

 ΔL_{VE} : Einfluss Abstand

250

ΔL_{vO}: EinflussOberbau (Weiche)

 L_{vl} : Schwingschnelle Immissionsort U: Umwandlungsmass aus Messung L_{pA} : A-bewerteter Schalldruckpegel

 $KB_{Fmax} = 0,087$ $KB_{FTm} = 0,058$

KB_{FTr,Tag} 0,03

 $KB_{FTr,Nacht} \quad 0,03 \qquad L_{pA} \qquad \qquad - \qquad \qquad dB(A)$

	Rotbuchenstieg 42						
		MP					
	MO3	3.2			Fahrtrichtung:	Rill	
	U5/DT5						
	L_{vM}	ΔL_{VE}	ΔL_{VF}	ΔL_{VO}	L_{vl}	U	L_pA
5	53.4	-1.0	-14.4	3.0	40.9	6.5	0.0
6.3	60.3	-1.1	-10.6	3.0	51.6	-2.8	0.0
8	64.7	-2.3	-3.8	2.0	60.6	-7.8	0.0
10	75.9	-2.7	-7.4	2.0	67.8	-23.4	0.0
12.5	74.5	-3.1	-2.2	2.0	71.2	-12.8	0.0
16	58.2	-3.7	-3.3	2.0	53.2	3.9	0.4
20	48.7	-4.3	-1.8	9.0	51.6	10.7	11.7
25	51.4	-5.2	-2.0	13.0	57.2	-3.8	8.8
31.5	46.8	-6.2	0.6	13.0	54.2	5.6	20.3
40	45.2	-7.7	0.0	10.0	47.6	2.4	15.4
50	35.2	-9.3	2.0	4.0	31.8	12.1	13.7
63	31.8	-11.5	-3.9	3.0	19.4	10.5	3.8
80	32.2	-14.4	-4.3	5.0	18.5	8.6	4.5
100	29.5	-17.7	-5.0	5.0	11.8	7.9	0.6
125	18.3	-21.9	-5.1	9.0	0.3	14.4	0.0
160	11.1	-18.9	-3.8	7.0	-4.6	22.6	4.7
200	3.1	-16.0	-5.0	7.0	-10.9	31.4	9.6

L_{vM}: Messwerte Gebäudedecke

13.6

-13.1

-6.8

3.0

-3.3

16.0

4.1

 ΔL_{VE} : Einfluss Abstand

250

ΔL_{vO}: EinflussOberbau (Weiche)

 L_{vl} : Schwingschnelle Immissionsort U: Umwandlungsmass aus Messung L_{pA} : A-bewerteter Schalldruckpegel

 $KB_{Fmax} = 0.057$ $KB_{FTm} = 0.038$

KB_{FTr,Tag} 0.02

 $\mathsf{KB}_{\mathsf{FTr},\mathsf{Nacht}}$ 0.02 L_{pA} 23.2 $\mathsf{dB}(\mathsf{A})$

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.1

	ERGEBNISSE	ι	J1/DT4									
								Anzahl der	_			
_								Fahrten	Tag:	183	183	
Prognose								D	Nacht:	29	29	
					sung	VD-T	VD-	Prognose	VD		ندما.	.VD-+ **
	MO1			KBFTm	•	KBHIM	KBFmax		KBFTr Nacht	LpA	∆ L pA *	∆KBFTm** %
		MD 0.4	Ril	0.044	[dB(A)]	0.076	0.113	Tag	0.01	/.	[dB(A)]	% 71.7
	Paul-Stritter-Weg 2	MP 2.1 MP 2.1	Rill	0.044	-	0.076	0.113	0.02 0.01	0.01	-	-	-3.8
		IVIP 2. I	beide	0.043	-	0.041	0.062	0.01	0.01	-	-	-3.0
			Richtungen					0.03	0.01			
	Paul-Stritter-Weg 2	MP 2.2	Ril	0.017	36.5	0.027	0.041	0.01	0.00	53.9	17.4	61.0
		MP 2.2	Rill	0.019	35.8	0.018	0.028	0.01	0.00	34.6	-1.2	-3.0
			beide									
			Richtungen					0.01	0.01			
		Maximalwert		0.044	36.5	0.076	0.113	0.03	0.01	53.9	17.4	71.7
		* Differenzpegel Sc	halldruck "nachher -	vorher"				** Zunahme KBFTN	1 in %			
Prognose												
					sung			Prognose				
				KBFTm	•	KBFTm	KBFmax		KBFTr	LpA	∆LpA *	∆KBFTm**
	MO2				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Rotbuchenstieg 28	MP 2.1	Ril	0.078	-	0.091	0.136	0.03	0.02	-	-	16.2
		MP 2.1	RiII beide	0.041	-	0.042	0.063	0.01	0.01	-	-	2.1
			Richtungen					0.03	0.02			
	Rotbuchenstieg 28	MP 3.1	Ril	0.054	_	0.063	0.094	0.02	0.01	_	_	16.2
	r totbuorioriotiog 20	MP 3.1	Rill	0.029	_	0.030	0.044	0.01	0.01	_	_	2.0
		0	beide	0.020		0.000	0.011	0.01	0.0 .			2.0
			Richtungen					0.02	0.01			
	Rotbuchenstieg 28	MP 3.2	Ril	0.100	24.8	0.116	0.174	0.04	0.02	< 30	4.1	15.7
	_	MP 3.2	Rill	0.055	24.5	0.056	0.084	0.02	0.01	< 30	8.0	2.1
			beide									
			Richtungen					0.04	0.02			
		Maximalwert		0.100	24.8	0.116	0.174	0.04	0.02	0.0	4.1	16.2
		* Differenzpegel Sc	halldruck "nachher -	vorher"				** Zunahme KBFTN	1 in %			

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.2

	ERGEBNISSE		U1/DT4									
								Anzahl der				
								Fahrten	Tag:	183	183	
Prognose									Nacht:	29	29	
				Mes	sung			Prognose				
				KB FTm	LpA	KB FTm	KB Fmax	KBFTr	KB FTr	LpA	∆LpA *	$\Delta KBFTm**$
	MO3				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Rotbuchenstieg 42	MP 2.1	Ril	0.019	-	0.028	0.042	0.01	0.00	-	-	46.3
		MP 2.1	Rill	0.025	-	0.025	0.038	0.01	0.00	-	-	1.0
			beide					0.04	0.04			
			Richtungen					0.01	0.01			
	Rotbuchenstieg 42	MP 2.2	Ril	0.083	-	0.114	0.171	0.04	0.02	-	-	37.0
		MP 2.2	Rill	0.160	-	0.162	0.243	0.05	0.03	-	-	1.3
			beide									
			Richtungen					0.06	0.03			
	Rotbuchenstieg 42	MP 3.1	Ril	0.062	-	0.081	0.121	0.02	0.01	-	-	30.3
		MP 3.1	Rill	0.092	-	0.093	0.139	0.03	0.02	-	-	1.0
			beide									
			Richtungen					0.04	0.02			
	Rotbuchenstieg 42	MP 3.2	Ril	0.053	29.2	0.069	0.103	0.03	0.01	38.0	8.8	29.7
		MP 3.2	Rill	0.069	29.0	0.070	0.105	0.02	0.01	< 30	0.4	1.0
			beide									
			Richtungen					0.04	0.02			
		Maximalwert		0.160	29.2	0.162	0.243	0.06	0.03	38.0	8.8	46.3
	,	* Differenzpegel	Schalldruck "nachher	- vorher"				** Zunahme КВгти	и in %			

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.3

	ERGEBNISSE	U	1/DT5									
								Anzahl der				
								Fahrten	Tag:	183	183	
Prognose								_	Nacht:	29	29	
					sung	145	1.75	Prognose	1.65			1.5
				KBFTm	•	KBFTm	KBFmax		KBFTr	LpA	∆LpA *	∆KBFTm**
	MO1	MD 0.4	Dil	0.044	[dB(A)]	0.000	0.000	Tag	Nacht	/-	[dB(A)]	%
	Paul-Stritter-Weg 2	MP 2.1	Ril	0.044	-	0.062	0.093	0.02	0.01	-	-	40.6
		MP 2.1	Rill beide	0.043	-	0.031	0.046	0.01	0.01	-	-	-27.9
			Richtungen					0.02	0.01			
	Paul-Stritter-Weg 2	MP 2.2	Ril	0.017	36.5	0.021	0.031	0.01	0.00	49.2	12.7	23.1
	r dar Othter Weg 2	MP 2.2	Rill	0.019	35.8	0.012	0.018	0.00	0.00	30.2	-5.6	-36.9
		1411 2.2	beide	0.010	00.0	0.012	0.010	0.00	0.00	00.2	0.0	00.0
			Richtungen					0.01	0.00			
		Maximalwert	· ·	0.044	36.5	0.062	0.093	0.02	0.01	49.2	12.7	40.6
		* Differenzpegel Sch	alldruck "nachher	- vorher"				** Zunahme KBFTN	и in %			
Prognose												
				Mes	sung			Prognose				
				KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆ L pA *	$\Delta KBFTm**$
	MO2				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Rotbuchenstieg 28	MP 2.1	Ril	0.078	-	0.064	0.097	0.02	0.01	-	-	-17.4
		MP 2.1	RiII beide	0.041	-	0.031	0.046	0.01	0.01	-	-	-25.1
			Richtungen					0.02	0.01			
	Rotbuchenstieg 28	MP 3.1	Ril	0.054	-	0.046	0.070	0.01	0.01	-	-	-13.9
		MP 3.1	Rill	0.029	-	0.022	0.033	0.01	0.00	-	-	-24.6
			beide									
			Richtungen					0.02	0.01			
	Rotbuchenstieg 28	MP 3.2	Ril	0.100	24.8	0.081	0.121	0.02	0.01	< 30	0.3	-19.2
		MP 3.2	Rill	0.055	24.5	0.039	0.059	0.01	0.01	< 30	-3.8	-29.0
			beide					0.03	0.02			
		Maximalwert	Richtungen	0.100	24.8	0.081	0.121	0.03	0.02 0.02	0.0	0.3	-13.9
			allalminate Wassak From		24.0	0.001	0.121	** Zunahme KBFTN		U.U	0.3	-13.9
-		* Differenzpegel Sch	ialidruck "nachher	- vorner"				Zullalille NDFII	/1 111 70			

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.4

	ERGEBNISSE		U1/DT5									
								Anzahl der				
								Fahrten	Tag:	183	183	
Prognose									Nacht:	29	29	
				Mes	sung			Prognose				
				KBFTm	LpA	KBFTm	KB Fmax	KBFTr	KB FTr	LpA	∆ L pA *	∆KBFTm**
	MO3				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Rotbuchenstieg 42	MP 2.1	Ril	0.019	-	0.023	0.034	0.01	0.00	-	-	20.4
		MP 2.1	Rill	0.025	-	0.015	0.023	0.00	0.00	-	-	-39.1
			beide									
			Richtungen					0.01	0.00			
	Rotbuchenstieg 42	MP 2.2	Ril	0.083	-	0.084	0.126	0.03	0.01	-	-	1.6
		MP 2.2	Rill	0.160	-	0.117	0.175	0.04	0.02	-	-	-26.9
			beide									
			Richtungen					0.04	0.03			
	Rotbuchenstieg 42	MP 3.1	Ril	0.062	-	0.061	0.091	0.02	0.01	-	-	-2.4
		MP 3.1	Rill	0.092	-	0.065	0.097	0.02	0.01	-	-	-29.6
			beide									
			Richtungen					0.03	0.02			
	Rotbuchenstieg 42	MP 3.2	Ril	0.053	29.2	0.049	0.074	0.02	0.01	34.6	5.4	-7.3
		MP 3.2	Rill	0.069	29.0	0.042	0.063	0.01	0.01	< 30	-3.1	-39.5
			beide									
			Richtungen					0.02	0.01			
		Maximalwert		0.160	29.2	0.117	0.175	0.04	0.03	34.6	5.4	20.4
		* Differenzpegel	Schalldruck "nachher	- vorher"				** Zunahme KBFTN	и in %			

AUFTRAG-NR.: S 03.1539.16/2

Neubau U 5; 1. BA City-Nord-Bramfeld

ERGEBNISSE DER PROGNOSEBERECHNUNG

ANLAGE-NR. 3.5

	ERGEBNISSE		U1/DT4									
								Anzahl der Fahrten	Tag:	640	640	
Prognose									Nacht:	256	256	
				Mess	sung			Prognose				
				KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	∆KBFTm**
	MO1				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Paul-Stritter-Weg 2	MP 2.1	Ril	0,044	-	0,076	0,113	0,04	0,04	-	-	71,7
		MP 2.1	Rill	0,043	-	0,041	0,062	0,02	0,02	-	-	-3,8
			beide Richtungen					0,05	0,04			
	Paul-Stritter-Weg 2	MP 2.2	Ril	0,017	36,5	0,027	0,041	0,02	0,01	53,9	17,4	61,0
		MP 2.2	Rill	0,019	35,8	0,018	0,028	0,01	0,01	34,6	-1,2	-3,0
			beide Richtungen					0,02	0,02			
		Maximalwert		0,044	36,5	0,076	0,113	0,05	0,04	53,9	17,4	71,7
		* Differenzpe	gel Schalldruck "na	chher - vor	her"			** Zunahme KBFTM	in %			
												_
Prognose												
-				Moss	suna			Drognoso				

			Messung			Prognose					
			KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	∆KBFTm**
MO2				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Rotbuchenstieg 28	MP 2.1	Ril	0,078	-	0,091	0,136	0,05	0,05	-	-	16,2
	MP 2.1	Rill	0,041	-	0,042	0,063	0,02	0,02	-	-	2,1
		beide Richtungen					0,06	0,05			
Rotbuchenstieg 28	MP 3.1	Ril	0,054	-	0,063	0,094	0,04	0,03	-	-	16,2
	MP 3.1	Rill	0,029	-	0,030	0,044	0,02	0,02	-	-	2,0
		beide Richtungen					0,04	0,04			
Rotbuchenstieg 28	MP 3.2	Ril	0,100	24,8	0,116	0,174	0,07	0,06	< 30	4,1	15,7
	MP 3.2	Rill	0,055	24,5	0,056	0,084	0,03	0,03	< 30	0,8	2,1
		beide Richtungen					0,07	0,07			
	Maximalwert		0,100	24,8	0,116	0,174	0,07	0,07	0,0	4,1	16,2
	* Differenzpeg	gel Schalldruck "nac	hher - vor	her"			** Zunahme KBFTM	in %			

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.6

	ERGEBNISSE		U1/DT4									
								Anzahl der				
								Fahrten	Tag:	640	640	
Prognose									Nacht:	256	256	
				Mes	sung			Prognose				
				KBFTm	LpA	KBFTm	KB Fmax	KBFTr	KBFTr	LpA	∆ L pA *	∆KBFTm**
	MO3				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Rotbuchenstieg 42	MP 2.1	Ril	0,019	-	0,028	0,042	0,02	0,01	-	-	46,3
		MP 2.1	Rill	0,025	-	0,025	0,038	0,01	0,01	-	-	1,0
			beide									
			Richtungen					0,02	0,02			
	Rotbuchenstieg 42	MP 2.2	Ril	0,083	-	0,114	0,171	0,07	0,06	-	-	37,0
		MP 2.2	Rill	0,160	-	0,162	0,243	0,09	0,08	-	-	1,3
			beide									
			Richtungen					0,11	0,10			
	Rotbuchenstieg 42	MP 3.1	Ril	0,062	-	0,081	0,121	0,05	0,04	-	-	30,3
		MP 3.1	Rill	0,092	-	0,093	0,139	0,05	0,05	-	-	1,0
			beide									
			Richtungen					0,07	0,06			
	Rotbuchenstieg 42	MP 3.2	Ril	0,053	29,2	0,069	0,103	0,05	0,04	38,0	8,8	29,7
		MP 3.2	Rill	0,069	29,0	0,070	0,105	0,04	0,04	< 30	0,4	1,0
			beide									
			Richtungen					0,07	0,05			
		Maximalwert		0,160	29,2	0,162	0,243	0,11	0,10	38,0	8,8	46,3
	: 	* Differenzpegel	Schalldruck "nachher	- vorher"				** Zunahme KBFTN	и in %			

AUFTRAG-NR.: S 03.1539.16/2

Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.7

	ERGEBNISSE		U1/DT5									
								Anzahl der Fahrten	Tag:	640	640	
Prognose									Nacht:	256	256	
				Mess	sung			Prognose				
				KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	Δ KBFTm**
	MO1				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Paul-Stritter-Weg 2	MP 2.1	Ril	0,044	-	0,062	0,093	0,04	0,03	-	-	40,6
		MP 2.1	Rill	0,043	-	0,031	0,046	0,02	0,02	-	-	-27,9
			beide Richtungen					0,04	0,04			
	Paul-Stritter-Weg 2	MP 2.2	Ril	0,017	36,5	0,021	0,031	0,01	0,01	49,2	12,7	23,1
		MP 2.2	Rill	0,019	35,8	0,012	0,018	0,01	0,01	30,2	-5,6	-36,9
			beide Richtungen					0,01	0,01			
		Maximalwert		0,044	36,5	0,062	0,093	0,04	0,04	49,2	12,7	40,6
		* Differenzpe	gel Schalldruck "na	chher - vor	her"			** Zunahme KBFTM	in %			
Prognose												
				Mess	sung			Prognose				

5	 _	

			Messung			Prognose					
			KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	Δ KBFTm**
MO2				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Rotbuchenstieg 28	MP 2.1	Ril	0,078	-	0,064	0,097	0,04	0,03	-	-	-17,4
	MP 2.1	Rill	0,041	-	0,031	0,046	0,02	0,02	-	-	-25,1
		beide Richtungen					0,04	0,04			
Rotbuchenstieg 28	MP 3.1	Ril	0,054	-	0,046	0,070	0,03	0,02	-	-	-13,9
	MP 3.1	Rill	0,029	-	0,022	0,033	0,01	0,01	-	-	-24,6
		beide Richtungen					0,03	0,03			
Rotbuchenstieg 28	MP 3.2	Ril	0,100	24,8	0,081	0,121	0,05	0,04	< 30	0,3	-19,2
	MP 3.2	Rill	0,055	24,5	0,039	0,059	0,02	0,02	< 30	-3,8	-29,0
		beide Richtungen					0,05	0,05			
	Maximalwert		0,100	24,8	0,081	0,121	0,05	0,05	0,0	0,3	-13,9
;	* Differenzpe	gel Schalldruck "nac	hher - vor	rher"			** Zunahme KBFTM	in %			

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.8

	ERGEBNISSE		U1/DT5									
								Anzahl der				
								Fahrten	Tag:	640	640	
Prognose									Nacht:	256	256	
				Mes	sung			Prognose				
				KBFTm	LpA	KBFTm	KB Fmax	KBFTr	KBFTr	LpA	∆ L pA *	Δ KBFTm**
	MO3				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Rotbuchenstieg 42	MP 2.1	Ril	0,019	-	0,023	0,034	0,01	0,01	-	-	20,4
		MP 2.1	Rill	0,025	-	0,015	0,023	0,01	0,01	-	-	-39,1
			beide									
			Richtungen					0,02	0,01			
	Rotbuchenstieg 42	MP 2.2	Ril	0,083	-	0,084	0,126	0,05	0,04	-	-	1,6
		MP 2.2	Rill	0,160	-	0,117	0,175	0,07	0,06	-	-	-26,9
			beide									
			Richtungen					0,08	0,07			
	Rotbuchenstieg 42	MP 3.1	Ril	0,062	-	0,061	0,091	0,03	0,03	-	-	-2,4
		MP 3.1	Rill	0,092	-	0,065	0,097	0,04	0,03	-	-	-29,6
			beide									
			Richtungen					0,05	0,05			
	Rotbuchenstieg 42	MP 3.2	Ril	0,053	29,2	0,049	0,074	0,04	0,03	34,6	5,4	-7,3
		MP 3.2	Rill	0,069	29,0	0,042	0,063	0,02	0,02	< 30	-3,1	-39,5
			beide									
			Richtungen					0,04	0,03			
		Maximalwert		0,160	29,2	0,117	0,175	0,08	0,07	34,6	5,4	20,4
		* Differenzpegel S	Schalldruck "nachher -	vorher"				** Zunahme KBFTN	и in %			

AUFTRAG-NR.: S 03.1539.16/2

Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.9

	ERGEBNISSE		U5/DT4									
								Anzahl der Fahrten	Tag:	640	640	
Prognose									Nacht:	256	256	
				Mess	•			Prognose				
				KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	∆KBFTm**
	MO1				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Paul-Stritter-Weg 2	MP 2.1	Ril	0,044	-	0,066	0,100	0,04	0,03	-	-	51,0
		MP 2.1	Rill	0,043	-	0,051	0,077	0,03	0,03	-	-	19,3
			beide Richtungen					0,05	0,04			
	Paul-Stritter-Weg 2	MP 2.2	Ril	0,017	36,5	0,024	0,037	0,01	0,01	50,0	13,5	43,3
		MP 2.2	Rill	0,019	35,8	0,022	0,033	0,01	0,01	41,4	5,6	15,3
			beide Richtungen					0,02	0,02			
		Maximalwert		0,044	36,5	0,066	0,100	0,05	0,04	50,0	13,5	51,0
		* Differenzpe	gel Schalldruck "nac	hher - vor	her"			** Zunahme KBFTM	in %			
Prognose				Mess	suna			Prognose				
				KBFTm	•	KBFTm	KBFmax		KBFTr	LpA	∆LpA *	∆KBFTm**
	MO2				[dB(A)]	1131 1111	rtBi max	Tag	Nacht	[dB(A)]	[dB(A)]	%
	Rotbuchenstieg 28	MP 2.1	Ril	0,078	-	0,072	0,108	0,04	0,04	-	-	-7,4
		MP 2.1	Rill	0,041	_	0,053	0,079	0,03	0,03	_	_	28,1
			beide Richtungen	-,		-,	-,	0,05	0,05			,
	Rotbuchenstieg 28	MP 3.1	Ril	0,054	_	0,050	0,075	0,03	0,03	-	_	-7,5
	· ·	MP 3.1	Rill	0,029	_	0,037	0,055	0,02	0,02	_	_	27,2
			beide Richtungen	,		,	•	0,04	0,03			,
	Rotbuchenstieg 28	MP 3.2	Ril	0,100	24,8	0,093	0,139	0,05	0,05	< 30	-2,2	-7,3
	· ·	MP 3.2	Rill	0,055	24,5	0,071	0,106	0,04	0,04	33,6	9,1	28,3
			beide Richtungen	•	•	•	•	0,07	0,06	•	•	
		Maximalwert		0,100	24,8	0,093	0,139	0,07	0,06	33,6	9,1	28,3
		* Differenzpe	gel Schalldruck "nac	hher - vor	her"			** Zunahme KBFTM	in %			

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.10

	ERGEBNISSE		U5/DT4									
								Anzahl der				
								Fahrten	Tag:	640	640	
Prognose									Nacht:	256	256	
				Mes	sung			Prognose				
				KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆ L pA *	$\Delta KBFTm**$
	MO3				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Rotbuchenstieg 42	MP 2.1	Ril	0,019	-	0,021	0,031	0,01	0,01	-	-	8,8
		MP 2.1	Rill	0,025	-	0,030	0,046	0,02	0,02	-	-	21,6
			beide									
			Richtungen					0,02	0,02			
	Rotbuchenstieg 42	MP 2.2	Ril	0,083	-	0,089	0,134	0,05	0,05	-	-	7,4
		MP 2.2	Rill	0,160	-	0,203	0,304	0,12	0,10	-	-	26,9
			beide									
			Richtungen					0,13	0,11			
	Rotbuchenstieg 42	MP 3.1	Ril	0,062	-	0,066	0,099	0,04	0,03	-	-	6,2
		MP 3.1	Rill	0,092	-	0,112	0,168	0,06	0,06	-	-	21,4
			beide									
			Richtungen					0,07	0,07			
	Rotbuchenstieg 42	MP 3.2	Ril	0,053	29,2	0,056	0,084	0,06	0,03	31,2	2,0	6,1
		MP 3.2	Rill	0,069	29,0	0,083	0,125	0,05	0,04	37,3	8,3	20,7
			beide									
			Richtungen					0,08	0,05			
		Maximalwert		0,160	29,2	0,203	0,304	0,13	0,11	37,3	8,3	26,9
	,	* Differenzpegel	Schalldruck "nachher	- vorher"				** Zunahme KBFTN	и in %			

AUFTRAG-NR.: S 03.1539.16/2

Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.11

	ERGEBNISSE		U5/DT5									
								Anzahl der Fahrten	Tag:	640	640	
Prognose									Nacht:	256	256	
				Mess	ung			Prognose				
				KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	∆KBFTm**
	MO1				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Paul-Stritter-Weg 2	MP 2.1	Ril	0,044	-	0,054	0,081	0,03	0,03	-	-	22,1
		MP 2.1	Rill	0,043	-	0,040	0,059	0,02	0,02	-	-	-8,1
			beide Richtungen					0,04	0,03			
	Paul-Stritter-Weg 2	MP 2.2	Ril	0,017	36,5	0,018	0,027	0,01	0,01	45,4	8,9	7,7
		MP 2.2	Rill	0,019	35,8	0,015	0,022	0,01	0,01	36,9	1,1	-21,5
			beide Richtungen					0,01	0,01			
		Maximalwert		0,044	36,5	0,054	0,081	0,04	0,03	45,4	8,9	22,1
		* Differenzpe	gel Schalldruck "nac	hher - vor	her"			** Zunahme KBFTM	in %			
Prognose												
				Mess	•			Prognose				
				Mess KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	ΔLpA *	ΔKBFTm**
	MO2			KBFTm	•			KBFTr Tag	Nacht	LpA [dB(A)]	∆LpA * [dB(A)]	%
	MO2 Rotbuchenstieg 28	MP 2.1	Ril	0,078	LpA	0,051	0,077	KBFTr Tag 0,03	Nacht 0,03	•		% -34,3
		MP 2.1 MP 2.1	Rill	KBFTm	LpA [dB(A)]			KBFTr Tag 0,03 0,02	Nacht 0,03 0,02	•		%
	Rotbuchenstieg 28	MP 2.1	RiII beide Richtungen	0,078 0,041	LpA [dB(A)]	0,051 0,039	0,077 0,058	KBFTr Tag 0,03 0,02 0,04	Nacht 0,03 0,02 0,03	•		% -34,3 -6,1
		MP 2.1	Rill beide Richtungen Ril	0,078 0,041 0,054	LpA [dB(A)]	0,051 0,039 0,037	0,077 0,058 0,055	KBFTr Tag 0,03 0,02 0,04 0,02	Nacht 0,03 0,02 0,03 0,02	•		% -34,3 -6,1 -32,1
	Rotbuchenstieg 28	MP 2.1	RiII beide Richtungen RiI RiII	0,078 0,041	LpA [dB(A)] - -	0,051 0,039	0,077 0,058	Tag 0,03 0,02 0,04 0,02 0,02	Nacht 0,03 0,02 0,03 0,02 0,01	[dB(A)] - -	[dB(A)] - -	% -34,3 -6,1
	Rotbuchenstieg 28 Rotbuchenstieg 28	MP 2.1 MP 3.1 MP 3.1	RiII beide Richtungen RiI RiII beide Richtungen	0,078 0,041 0,054	LpA [dB(A)] - - - -	0,051 0,039 0,037	0,077 0,058 0,055 0,041	Tag 0,03 0,02 0,04 0,02 0,02 0,02 0,03	Nacht 0,03 0,02 0,03 0,02 0,01 0,02	[dB(A)] - -	[dB(A)] - - - -	% -34,3 -6,1 -32,1 -4,9
	Rotbuchenstieg 28	MP 2.1 MP 3.1 MP 3.1 MP 3.2	Rill beide Richtungen Ril Rill beide Richtungen Ril	0,078 0,041 0,054 0,029 0,100	LpA [dB(A)] - - - - 24,8	0,051 0,039 0,037	0,077 0,058 0,055 0,041 0,097	Tag 0,03 0,02 0,04 0,02 0,02 0,03 0,04	Nacht 0,03 0,02 0,03 0,02 0,01 0,02 0,03	[dB(A)] - -	[dB(A)]5,1	% -34,3 -6,1 -32,1 -4,9
	Rotbuchenstieg 28 Rotbuchenstieg 28	MP 2.1 MP 3.1 MP 3.1	Rill beide Richtungen Ril Rill beide Richtungen Ril Rill	0,078 0,041 0,054 0,029	LpA [dB(A)] - - - -	0,051 0,039 0,037 0,028	0,077 0,058 0,055 0,041	Tag 0,03 0,02 0,04 0,02 0,02 0,03 0,04 0,03	Nacht 0,03 0,02 0,03 0,02 0,01 0,02 0,03 0,03	[dB(A)] - - - -	[dB(A)] - - - -	% -34,3 -6,1 -32,1 -4,9
	Rotbuchenstieg 28 Rotbuchenstieg 28	MP 2.1 MP 3.1 MP 3.1 MP 3.2 MP 3.2	Rill beide Richtungen Ril Rill beide Richtungen Ril	0,078 0,041 0,054 0,029 0,100 0,055	LpA [dB(A)] - - - 24,8 24,5	0,051 0,039 0,037 0,028 0,065 0,049	0,077 0,058 0,055 0,041 0,097 0,074	Tag 0,03 0,02 0,04 0,02 0,02 0,03 0,04 0,03 0,04 0,03 0,05	Nacht 0,03 0,02 0,03 0,02 0,01 0,02 0,03 0,03 0,04	[dB(A)] < 30 < 30	[dB(A)]5,1 4,3	% -34,3 -6,1 -32,1 -4,9 -35,3 -10,7
	Rotbuchenstieg 28 Rotbuchenstieg 28	MP 2.1 MP 3.1 MP 3.1 MP 3.2 MP 3.2 MP 3.2	Rill beide Richtungen Ril Rill beide Richtungen Ril Rill	0,078 0,041 0,054 0,029 0,100 0,055	LpA [dB(A)] - - - 24,8 24,5	0,051 0,039 0,037 0,028 0,065	0,077 0,058 0,055 0,041 0,097	Tag 0,03 0,02 0,04 0,02 0,02 0,03 0,04 0,03	Nacht 0,03 0,02 0,03 0,02 0,01 0,02 0,03 0,03 0,04 0,04	[dB(A)] < 30	[dB(A)]5,1	% -34,3 -6,1 -32,1 -4,9

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.12

	ERGEBNISSE		U5/DT5									
								Anzahl der				
								Fahrten	Tag:	640	640	
Prognose									Nacht:	256	256	
				Mes	sung			Prognose				
				KBFTm	LpA	KBFTm	KB Fmax	KBFTr	KBFTr	LpA	∆ L pA *	∆KBFTm**
	MO3				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Rotbuchenstieg 42	MP 2.1	Ril	0,019	-	0,017	0,025	0,01	0,01	-	-	-13,0
		MP 2.1	Rill	0,025	-	0,019	0,029	0,01	0,01	-	-	-22,3
			beide									
			Richtungen					0,01	0,01			
	Rotbuchenstieg 42	MP 2.2	Ril	0,083	-	0,065	0,098	0,04	0,03	-	-	-21,3
		MP 2.2	Rill	0,160	-	0,148	0,222	0,09	0,08	-	-	-7,6
			beide									
			Richtungen					0,09	0,08			
	Rotbuchenstieg 42	MP 3.1	Ril	0,062	-	0,049	0,074	0,03	0,03	-	-	-20,9
		MP 3.1	Rill	0,092	-	0,079	0,118	0,05	0,04	-	-	-14,3
			beide									
			Richtungen					0,05	0,05			
	Rotbuchenstieg 42	MP 3.2	Ril	0,053	29,2	0,040	0,060	0,05	0,02	< 30	-0,5	-24,7
		MP 3.2	Rill	0,069	29,0	0,050	0,075	0,03	0,03	33,1	4,1	-27,1
			beide									
			Richtungen					0,05	0,03			
		Maximalwert		0,160	29,2	0,148	0,222	0,09	0,08	33,1	4,1	-7,6
		* Differenzpegel	Schalldruck "nachher	- vorher"				** Zunahme KBFTN	1 in %			

AUFTRAG-NR.: S 03.1539.16/2

Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.13

	ERGEBNISSE		U1/DT4									
								Anzahl der Fahrten	Tag:	640	640	
Prognose									Nacht:	256	256	
				Mess	sung			Prognose				
				KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	Δ KBFTm**
	MO1				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Paul-Stritter-Weg 2	MP 2.1	Ril	0,044	-	0,076	0,113	0,04	0,04	-	-	71,7
		MP 2.1	Rill	0,043	-	0,041	0,062	0,02	0,02	-	-	-3,8
			beide Richtunge	n				0,05	0,04			
	Paul-Stritter-Weg 2	MP 2.2	Ril	0,017	36,5	0,027	0,041	0,02	0,01	53,9	17,4	61,0
		MP 2.2	Rill	0,019	35,8	0,018	0,028	0,01	0,01	34,6	-1,2	-3,0
			beide Richtunge	n				0,02	0,02			
		Maximalwert		0,044	36,5	0,076	0,113	0,05	0,04	53,9	17,4	71,7
		* Differenzpe	gel Schalldruck "na	achher - vor	her"			** Zunahme KBFTM	in %			

mit Weiche Gleis 4			Mes	sung			Prognose				
			KBFTm	LpA	KBFTm	KBFmax	-	KBFTr	LpA	∆LpA *	∆KBFTm**
MO2				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Rotbuchenstieg 28	MP 2.1	Ril	0,078	-	0,091	0,136	0,05	0,05	-	-	16,2
	MP 2.1	Rill	0,041	-	0,058	0,088	0,03	0,03	-	-	42,4
		beide Richtungen					0,06	0,06			
Rotbuchenstieg 28	MP 3.1	Ril	0,054	-	0,063	0,094	0,04	0,03	-	-	16,2
	MP 3.1	Rill	0,029	-	0,044	0,066	0,03	0,02	-	-	52,9
		beide Richtungen					0,04	0,04			
Rotbuchenstieg 28	MP 3.2	Ril	0,100	24,8	0,116	0,174	0,07	0,06	< 30	4,1	15,7
	MP 3.2	Rill	0,055	24,5	0,071	0,107	0,04	0,04	< 30	5,0	29,2
		beide Richtungen					0,08	0,07			
	Maximalwert		0,100	24,8	0,116	0,174	0,08	0,07	0,0	5,0	52,9
	* Differenzped	el Schalldruck "nac	hher - vo	rher"			** Zunahme KBFT	M in %			

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.14

ERGEBNISSE		U1/DT4									
							Anzahl der				
							Fahrten	Tag:	640	640	
Prognose								Nacht:	256	256	
mit Weiche Gleis 4			Mes	sung			Prognose				
			KBFTm	LpA	KB FTm	KB Fmax	KBFTr	KB FTr	LpA	∆ L pA *	Δ KBFTm**
MO3				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Rotbuchenstieg 42	MP 2.1	Ril	0,019	-	0,028	0,042	0,02	0,01	-	-	46,3
	MP 2.1	Rill	0,025	-	0,027	0,040	0,02	0,01	-	-	7,9
		beide									
		Richtungen					0,02	0,02			
Rotbuchenstieg 42	MP 2.2	Ril	0,083	-	0,114	0,171	0,07	0,06	-	-	37,0
	MP 2.2	Rill	0,160	-	0,150	0,225	0,09	0,08	-	-	-6,2
		beide									
		Richtungen					0,11	0,10			
Rotbuchenstieg 42	MP 3.1	Ril	0,062	-	0,081	0,121	0,05	0,04	-	-	30,3
	MP 3.1	Rill	0,092	-	0,085	0,128	0,05	0,04	-	-	-7,1
		beide									
		Richtungen					0,07	0,06			
Rotbuchenstieg 42	MP 3.2	Ril	0,053	29,2	0,069	0,103	0,05	0,04	38,0	8,8	29,7
	MP 3.2	Rill	0,069	29,0	0,062	0,092	0,04	0,03	< 30	-6,1	-10,7
		beide									
		Richtungen					0,06	0,05			
	Maximalwert		0,160	29,2	0,150	0,225	0,11	0,10	38,0	8,8	46,3
	* Differenzpegel	Schalldruck "nachher	- vorher"				** Zunahme KBFTN	и in %			

AUFTRAG-NR.: S 03.1539.16/2

Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.15

	ERGEBNISSE		U1/DT5									
								Anzahl der Fahrten	Tag:	640	640	
Prognose									Nacht:	256	256	
				Mess	sung			Prognose				
				KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	∆KBFTm**
	MO1				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
	Paul-Stritter-Weg 2	MP 2.1	Ril	0,044	-	0,062	0,093	0,04	0,03	-	-	40,6
		MP 2.1	Rill	0,043	-	0,031	0,046	0,02	0,02	-	-	-27,9
			beide Richtungen	1				0,04	0,04			
	Paul-Stritter-Weg 2	MP 2.2	Ril	0,017	36,5	0,021	0,031	0,01	0,01	49,2	12,7	23,1
		MP 2.2	Rill	0,019	35,8	0,012	0,018	0,01	0,01	30,2	-5,6	-36,9
			beide Richtungen	1				0,01	0,01			
		Maximalwert		0,044	36,5	0,062	0,093	0,04	0,04	49,2	12,7	40,6
		* Differenzpe	gel Schalldruck "na	chher - vor	rher"			** Zunahme KBFTM	in %			

Prognose			Maa				Duarina				
mit Weiche Gleis 4			KBFTm	sung LpA	KBFTm	KBFmax	Prognose KBFTr	KBFTr	LpA	∆LpA *	∆KBFTm**
MO2				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Rotbuchenstieg 28	MP 2.1	Ril	0,078	-	0,064	0,097	0,04	0,03	-	-	-17,4
	MP 2.1	Rill	0,041	-	0,044	0,066	0,03	0,02	-	-	8,1
		beide Richtungen					0,05	0,04			
Rotbuchenstieg 28	MP 3.1	Ril	0,054	-	0,046	0,070	0,03	0,02	-	-	-13,9
	MP 3.1	Rill	0,029	-	0,034	0,052	0,02	0,02	-	-	18,7
		beide Richtungen					0,03	0,03			
Rotbuchenstieg 28	MP 3.2	Ril	0,100	24,8	0,081	0,121	0,05	0,04	< 30	0,3	-19,2
	MP 3.2	Rill	0,055	24,5	0,051	0,076	0,03	0,03	< 30	1,3	-7,8
		beide Richtungen					0,06	0,05			
	Maximalwert		0,100	24,8	0,081	0,121	0,06	0,05	0,0	1,3	18,7
	* Differenzpe	gel Schalldruck "nac	chher - vo	rher"			** Zunahme KBFT	M in %			

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.16

ERGEBNISSE		U1/DT5									
							Anzahl der				
							Fahrten	Tag:	640	640	
Prognose								Nacht:	256	256	
mit Weiche Gleis 4			Mes	sung			Prognose				
			KB FTm	LpA	KB FTm	KB Fmax	KBFTr	KB FTr	LpA	∆ L pA *	$\Delta KBFTm**$
MO3				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Rotbuchenstieg 42	MP 2.1	Ril	0,019	-	0,023	0,034	0,01	0,01	-	-	20,4
	MP 2.1	Rill	0,025	-	0,018	0,027	0,01	0,01	-	-	-29,2
		beide									
		Richtunger					0,02	0,01			
Rotbuchenstieg 42	MP 2.2	Ril	0,083	-	0,084	0,126	0,05	0,04	-	-	1,6
	MP 2.2	Rill	0,160	-	0,114	0,171	0,07	0,06	-	-	-28,6
		beide									
		Richtunger					0,08	0,07			
Rotbuchenstieg 42	MP 3.1	Ril	0,062	-	0,061	0,091	0,03	0,03	-	-	-2,4
	MP 3.1	Rill	0,092	-	0,059	0,088	0,03	0,03	-	-	-36,3
		beide									
		Richtunger	1				0,05	0,04			
Rotbuchenstieg 42	MP 3.2	Ril	0,053	29,2	0,049	0,074	0,03	0,03	34,6	5,4	-7,3
	MP 3.2	Rill	0,069	29,0	0,036	0,055	0,02	0,02	< 30	-6,7	-47,2
		beide									
		Richtunger	1				0,04	0,03			
	Maximalwert		0,160	29,2	0,114	0,171	0,08	0,07	34,6	5,4	20,4
	* Differenzpegel	Schalldruck "nachhei	- vorher"				** Zunahme KBFTN	и in %			

AUFTRAG-NR.: S 03.1539.16/2

Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.17

ERGEBNISSE		U5/DT4									
							Anzahl der Fahrten	Tag:	640	640	
Prognose								Nacht:	256	256	
mit Weiche Gleis 2+3			Mess	sung			Prognose				
			KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	Δ KBFTm**
MO1				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Paul-Stritter-Weg 2	MP 2.1	Ril	0,044	-	0,203	0,305	0,12	0,10	-	-	361,8
	MP 2.1	Rill	0,043	-	0,150	0,224	0,09	0,08	-	-	247,7
		beide Richtungen					0,15	0,13			
Paul-Stritter-Weg 2	MP 2.2	Ril	0,017	36,5	0,063	0,094	0,04	0,03	57,4	20,9	270,4
	MP 2.2	Rill	0,019	35,8	0,049	0,074	0,03	0,03	47,4	11,6	158,5
		beide Richtungen					0,05	0,04			
	Maximalwert		0,044	36,5	0,203	0,305	0,15	0,13	57,4	20,9	361,8
	* Differenzpe	gel Schalldruck "nad	chher - vor	her"			** Zunahme KBFTM	in %			

Prognose											
mit Weiche Gleis 2+3	mit Weiche Gleis 2+3			sung			Prognose				
			KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	∆KBFTm**
MO2				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Rotbuchenstieg 28	MP 2.1	Ril	0,078	-	0,100	0,151	0,06	0,05	-	-	28,7
	MP 2.1	Rill	0,041	-	0,076	0,115	0,04	0,04	-	-	86,5
		beide Richtungen					0,07	0,07			
Rotbuchenstieg 28	MP 3.1	Ril	0,054	-	0,088	0,132	0,05	0,05	-	-	62,4
	MP 3.1	Rill	0,029	-	0,059	0,088	0,03	0,03	-	-	102,9
		beide Richtungen					0,06	0,05			
Rotbuchenstieg 28	MP 3.2	Ril	0,100	24,8	0,118	0,177	0,07	0,06	< 30	3,0	17,9
	MP 3.2	Rill	0,055	24,5	0,092	0,138	0,05	0,05	38,9	14,4	67,8
		beide Richtungen					0,09	0,08			
	Maximalwert		0,100	24,8	0,118	0,177	0,09	0,08	38,9	14,4	102,9
	* Differenzpegel Schalldruck "nachher - vorher"							l in %			

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.18

ı	ERGEBNISSE		U5/DT4									
								Anzahl der				
								Fahrten	Tag:	640	640	
Prognose									Nacht:	256	256	
mit Weiche Gleis 2	2+3			Mes	sung			Prognose				
				KBFTm	LpA	KB FTm	KB Fmax	KBFTr	KB FTr	LpA	∆ L pA *	Δ KBFTm**
	MO3				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Rotb	uchenstieg 42	MP 2.1	Ril	0,019	-	0,019	0,029	0,01	0,01	-	-	2,3
		MP 2.1	Rill	0,025	-	0,028	0,042	0,02	0,01	-	-	12,4
			beide									
			Richtungen					0,02	0,02			
Rotb	ouchenstieg 42	MP 2.2	Ril	0,083	-	0,063	0,095	0,04	0,03	-	-	-23,8
		MP 2.2	Rill	0,160	-	0,158	0,237	0,09	0,08	-	-	-1,2
			beide									
			Richtungen					0,10	0,09			
Rotb	ouchenstieg 42	MP 3.1	Ril	0,062	-	0,049	0,073	0,03	0,03	-	-	-21,4
		MP 3.1	Rill	0,092	-	0,089	0,133	0,05	0,05	-	-	-3,5
			beide									
			Richtungen					0,06	0,05			
Rotb	ouchenstieg 42	MP 3.2	Ril	0,053	29,2	0,041	0,061	0,05	0,02	< 30	-8,0	-23,0
		MP 3.2	Rill	0,069	29,0	0,064	0,096	0,04	0,03	< 30	-5,0	-7,4
			beide									
			Richtungen					0,06	0,04			
		Maximalwert		0,160	29,2	0,158	0,237	0,10	0,09	0,0	-5,0	12,4
	; 	* Differenzpegel	Schalldruck "nachher	- vorher"				** Zunahme KBFTN	и in %			

AUFTRAG-NR.: S 03.1539.16/2

Neubau U 5; 1. BA City-Nord-Bramfeld

ERGEBNISSE DER PROGNOSEBERECHNUNG

ANLAGE-NR. 3.19

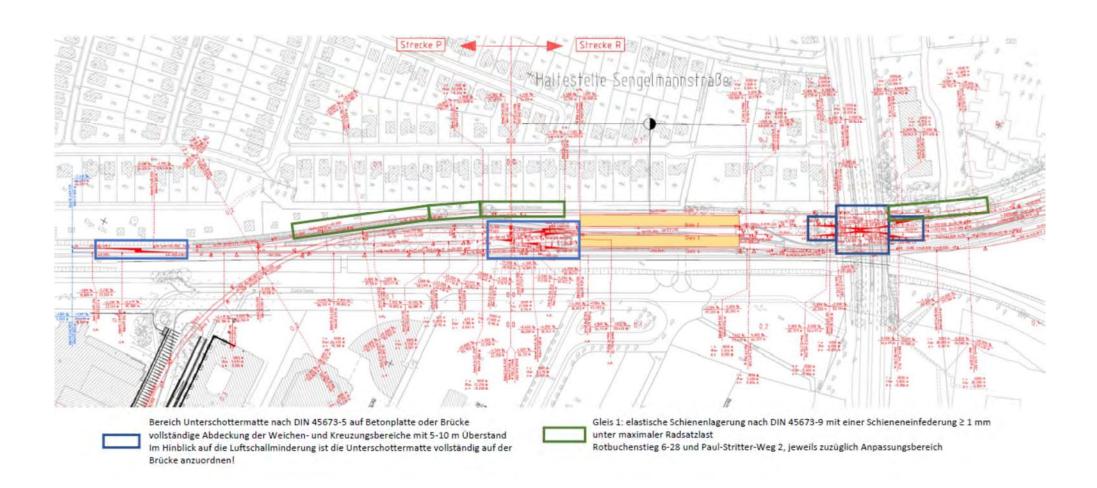
ERGEBNISSE		U5/DT5									
							Anzahl der Fahrten	Tag:	640	640	
Prognose								Nacht:	256	256	
mit Weiche Gleis 2+3			Mess	Messung			Prognose				
			KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	Δ KBFTm**
MO1				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Paul-Stritter-Weg 2	MP 2.1	Ril	0,044	-	0,181	0,271	0,10	0,09	-	-	311,1
	MP 2.1	Rill	0,043	-	0,129	0,194	0,07	0,07	-	-	200,4
		beide Richtunger	า				0,13	0,11			
Paul-Stritter-Weg 2	MP 2.2	Ril	0,017	36,5	0,054	0,080	0,03	0,03	52,8	16,3	215,1
	MP 2.2	Rill	0,019	35,8	0,041	0,061	0,02	0,02	43,3	7,5	113,6
		beide Richtunger	า				0,04	0,03			
	Maximalwert		0,044	36,5	0,181	0,271	0,13	0,11	52,8	16,3	311,1
		** Zunahme KBFTM in %									

Prognose											
mit Weiche Gleis 2+3			Mess	sung			Prognose				
			KBFTm	LpA	KBFTm	KBFmax	KBFTr	KBFTr	LpA	∆LpA *	∆KBFTm**
MO2				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Rotbuchenstieg 28	MP 2.1	Ril	0,078	-	0,076	0,113	0,04	0,04	-	-	-3,1
	MP 2.1	Rill	0,041	-	0,058	0,087	0,03	0,03	-	-	42,1
		beide Richtungen					0,06	0,05			
Rotbuchenstieg 28	MP 3.1	Ril	0,054	-	0,069	0,103	0,04	0,04	-	-	27,4
	MP 3.1	Rill	0,029	-	0,047	0,070	0,03	0,02	-	-	60,6
		beide Richtungen					0,05	0,04			
Rotbuchenstieg 28	MP 3.2	Ril	0,100	24,8	0,086	0,129	0,05	0,04	< 30	1,7	-14,0
	MP 3.2	Rill	0,055	24,5	0,066	0,099	0,04	0,03	34,4	9,9	20,5
		beide Richtungen					0,06	0,06			
	Maximalwert		0,100	24,8	0,086	0,129	0,06	0,06	34,4	9,9	60,6
	* Differenzpeg	el Schalldruck "nac	hher - vor	rher"			** Zunahme KBFTI	M in %			

AUFTRAG-NR.: S 03.1539.16/2 Neubau U 5; 1. BA City-Nord-Bramfeld

ANLAGE-NR. 3.20

ERGEBNISSE		U5/DT5									
							Anzahl der				
							Fahrten	Tag:	640	640	
Prognose								Nacht:	256	256	
mit Weiche Gleis 2+3			Mes	sung			Prognose				
			KB FTm	LpA	KB FTm	KB Fmax	KBFTr	KB FTr	LpA	∆ L pA *	∆KBFTm**
MO3				[dB(A)]			Tag	Nacht	[dB(A)]	[dB(A)]	%
Rotbuchenstieg 42	MP 2.1	Ril	0,019	-	0,016	0,023	0,01	0,01	-	-	-17,8
	MP 2.1	Rill	0,025	-	0,019	0,028	0,01	0,01	-	-	-24,8
		beide									
		Richtungen					0,01	0,01			
Rotbuchenstieg 42	MP 2.2	Ril	0,083	-	0,050	0,076	0,03	0,03	-	-	-39,3
	MP 2.2	Rill	0,160	-	0,121	0,181	0,07	0,06	-	-	-24,4
		beide									
		Richtungen					0,08	0,07			
Rotbuchenstieg 42	MP 3.1	Ril	0,062	-	0,036	0,055	0,02	0,02	-	-	-41,3
	MP 3.1	Rill	0,092	-	0,061	0,092	0,04	0,03	-	-	-33,4
		beide									
		Richtungen					0,04	0,04			
Rotbuchenstieg 42	MP 3.2	Ril	0,053	29,2	0,029	0,044	0,04	0,02	< 30	-7,9	-44,9
	MP 3.2	Rill	0,069	29,0	0,038	0,057	0,02	0,02	< 30	-5,8	-45,0
		beide									
		Richtungen					0,04	0,02			
	Maximalwert		0,160	29,2	0,121	0,181	0,08	0,07	0,0	-5,8	-17,8
,	* Differenzpegel	Schalldruck "nachher	- vorher"				** Zunahme KBFTN	₁ in %			


AUFTRAGGEBER: ZPP INGENIEURE GMBH BERATENDE INGENIEURE 20457 HAMBURG

AUFTRAG-NR.: S 03.1539.16/2

Neubau U 5

ANLAGE-NR.

SCHUTZBEREICH MIT EMPFOHLENEN MAßNAHMEN

