Hessen Mobil – Straßen- und Verkehrsmanagement

A 44 / Verkehrskosteneinheit 11 / Station: von Bau-km 0-702,148 bis Bau-km 5+409,625 / von Bau-km 6+000,000 bis Bau-km 11+200,992

Verkehrsprojekt Deutsche Einheit Nr. 15

Neubau der BAB A 44 Kassel - Herleshausen

AD LOSSETAL - AS HELSA OST

PROJIS-Nr.: 06069901 10

FESTSTELLUNGSENTWURF

Wassertechnische Untersuchung - Entwässerungstechnische Einrichtungen -

Aufgestellt:	
Kassel, den 19.11.2020	
Hessen Mobil	
- Dezernat Planung Nordhessen -	
i. A. gez. Ralf Struif	
(Dezernent)	

ifs Ingenieurgesellschaft für Stadthydrologie mbH

erwin 4.03

System: e:\erwin40\erwin_akt\200224_kastenrigole Druckdatum: 24.02.2020

Unterlage/Blatt: 18.5.1.1 / 1 ifs Hannover Lizenz Nr. 017-400-204-000

erwin

Regenwasserbewirtschaftung

Projektdaten

Bearbeiter:

2001 20100

Datum:

30.01.2020 17:21:03

Datei:

e:\erwin40\erwin_akt\200224_kastenrigole.stm

Bemerkung:

-- erwin 4.03

Unterlage/Blatt: 18.5.1.1 / 2

ifs

Ingenieurgesellschaft für System: e:\erwin40\erwin_akt\200224_kastenrigole Hannover

Stadthydrologie mbH Druckdatum: 24.02.2020 Lizenz Nr. 017-400-204-000

Allgemeine Daten

Kurzbezeichnung und Stationsname bzw. Modellregendatei:

36O2 RM 52 T102 Wasserbeh. Lindenbe 36O2 RM 52 T102 Wasserbeh. Lindenbe

Simulationszeitraum: 01.01.1999 - 31.12.2019 23:59:00

Zeitschritt: 5 Min.

Simulationsmodus: Langzeit-Simulation

erwin 4.03

System: e:\erwin40\erwin_akt\200224_kastenrigole Druckdatum: 24.02.2020

Unterlage/Blatt: 18.5.1.1 / 3

Hannover Lizenz Nr. 017-400-204-000

Elementdaten:

Ingenieurgesellschaft für

Stadthydrologie mbH

				Teilflächen)

						- /						
				Abflussb	oildungspar	ameter			Speich	erkaskade		
			Anteil					Muldenauf-	-			
			undurchl	. Ben	Mulden-	Anf.abfl.	- Endabfl	- füllungs-				
lame	Station	Größe	Fläche	verlust	verlust	beiwert	beiwert	grad	n	k	SPL	
		[ha]	[%]	[mm]	[mm]	[-]	[-]	[-]	[-]	[min]	[min]	
EAII	3602	0,7	100	0,5	1,8	0,3	0,9	0,0	3	5	15	

Dächer

				Regenwas	sernutzung
Name	Station	Größe	Ben verlust	Speicher- volumen	Wasser- verbrauch
		[m²]	[mm]	[m³]	[l/Tag]
Dach1	3602	270	0.0	_	

Speicherelemente

Name	Typ	Zulauf von	Ablauf nach	Uberlauf nach	kf-Wert	Nutzbares Volumen	Uberflutung Rücklauf
					[m/s]	$[m^3]$	
Becken2	Becken	Becken4	Gewässer5	Gewässer3	-	75,0	nein
Becken4	Becken	EAII Dach1	Becken2	Gewässer3	-	128,0	nein

Verbindungselemente

Name	Typ	Zulauf von	Ablauf nach	Fließzeit
				[min]
Rohr8	Rohr	Becken2	Gewässer3	0
Rohr9	Rohr	Becken2	Gewässer5	0
Rohr10	Rohr	EAII	Becken4	0
Rohr11	Rohr	Becken4	Becken2	0
Rohr12	Rohr	Becken4	Gewässer3	0
Rohr6	Rohr	Dach1	Becken4	0

Wasserstandsbeziehungen

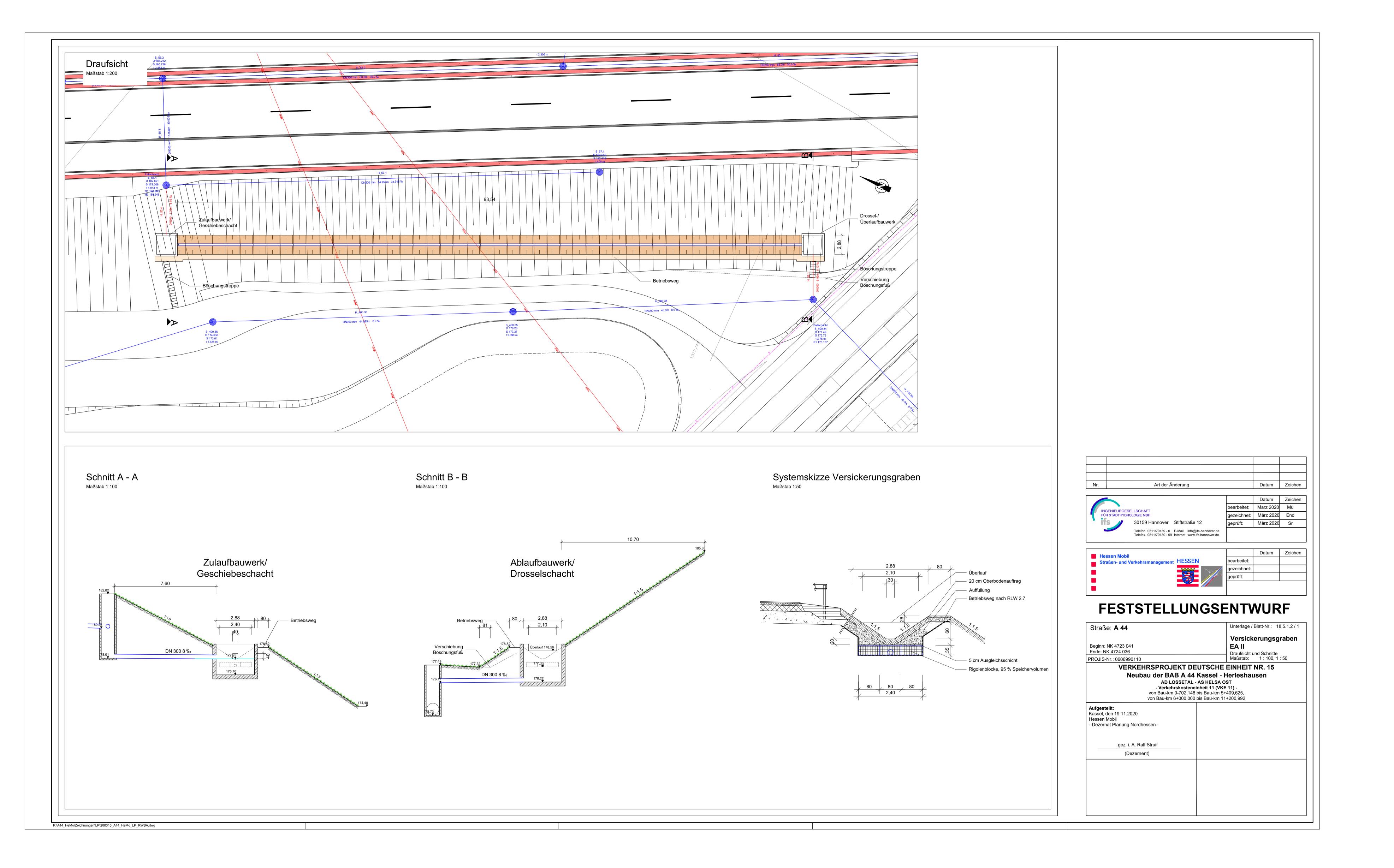
Name	Wassers	standsbe	eziehung									
Becken2	H V	[m] [m³]		0,35 75,0								
	H Qd	[m] [l/s]	0,0	0,01 3,4	0,35 3,5							
	H Qü	[m] [l/s]		0,35 999,0								
Becken4	H V	[m] [m³]		0,61 69,0	0,86 128,0							
	H Qd	[m] [l/s]		0,61 12,0	0,86 13,5							
	H Qü	[m] [l/s]		0,86 999,0								

erwin 4.03

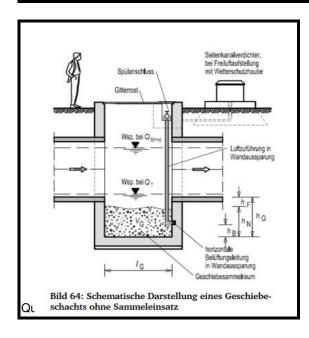
Ingenieurgesellschaft für Stadthydrologie mbH

System: e:\erwin40\erwin_akt\200224_kastenrigole Druckdatum: 24.02.2020

Unterlage/Blatt: 18.5.1.1 / 4 ifs


Hannover Lizenz Nr. 017-400-204-000

Gesamtbilanz für 1999 bis 2019 Teilsystem 1

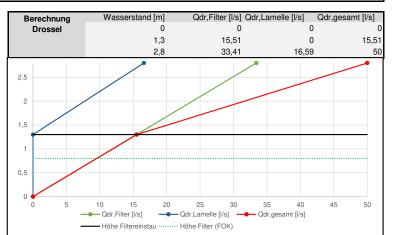

Gebiet	Station	N	ΣΟΑ	Aund	ΣQΑ	durch	ΣQ ge	s	Ψ	ΣQSW	Σ O FW		
		[mm]	[mm]	[m³]	[mm]	[m³]	[mm]	[m³]	[-]	[m³]	[m³]		
EAII	3602	10948	6685	46795	0,0	0,0	6685	46795	0,611	-	-		
Dach1	3602	10948	10948	2956	-	-	10948	2956	1,0	-	-		
Name	Zuflüsse		Σ O20	∇ Ozu P	W 7	Überlauf	- Anzahl		Mittlere Überlauf-	Einstau-	Mittlere Einstau-	max. Einstau-	Über-
Name	Zuliusse		Σ Qzu	Σ Qzu,R	vv ΣQü	dauer	Überl.	Σ Qü,m	dauer	dauer	dauer	höhe	flutung
			[m³]	[m³]	[m³]	[h]	[-]	[m³]	[h]	[h]	[h]	[m]	[m³]
Becken4	EAII Dach1		49750	49750	846,9	10,4	22	38,5	0,473	7382	2,38	0,653	0,0
Becken2	Becken4		48889	48889	418,2	31,2	10	41,8	3,12	1608	0,518	0,34	0,0
Name	Zuflüsse		Σ Qzu [m³]										
Gewässer3	Becken4 Becken2		1265										
Gewässer5	Becken2		48468										

Gesamtausgabe

N	Neff	Σ Qzu,Absc	hl. Σ Qab,offen	Σ Qab,ges	Überflutung
[m³]	$[m^3]$	[m³]	[m³]	[m³]	$[m^3]$
79591	49750	49733	0.0	49733	0.0

Bemessung Geschiebeschacht mit Leichtflüssigkeitsabscheider

Bemessungsregen r _{15,1} : Bemessungszufluss:	122,2 0,741	l/(s*ha) m³/s
Geschiebeschacht		_
mind. benötigtes Volumen:	2,6	m ³
<u>Maße:</u>		
Breite B _G :	7,5	m
Länge I _G :	4,5	m
Tiefe h _G :	0,6	m
Freibord h _F :	0,3	m
V_{G} :	20,3	m³
LFA		
mind. benötigtes Volumen:	10	m³


Unterlage/Blatt: 18.5.2.1 / 1

Mindesthöhe Geschiebesammelraum bis UK Tauchwand:	1,97	m
Mindestabstand Tauchwand zu Wand (vor TW und nach TW):	1,97	m
Breite B _{LFA} :	7,5	m
Dicke Tauchwand:	0,3	m
Geschiebeschacht lang genug?	ja	
Eintauchtiefe Tauchwand:	0,7	m
eff. Eintauchtiefe Tauchwand:	0,6	m
Länge LFA-Raum L _{LFA} :	2,2	m
LFA-Raum V _{LFA} :	10,0	m³

Sohle GS bis UK Tauchwand: 2,57 m Sohle GS bis UK Ablauf: 3,27 m

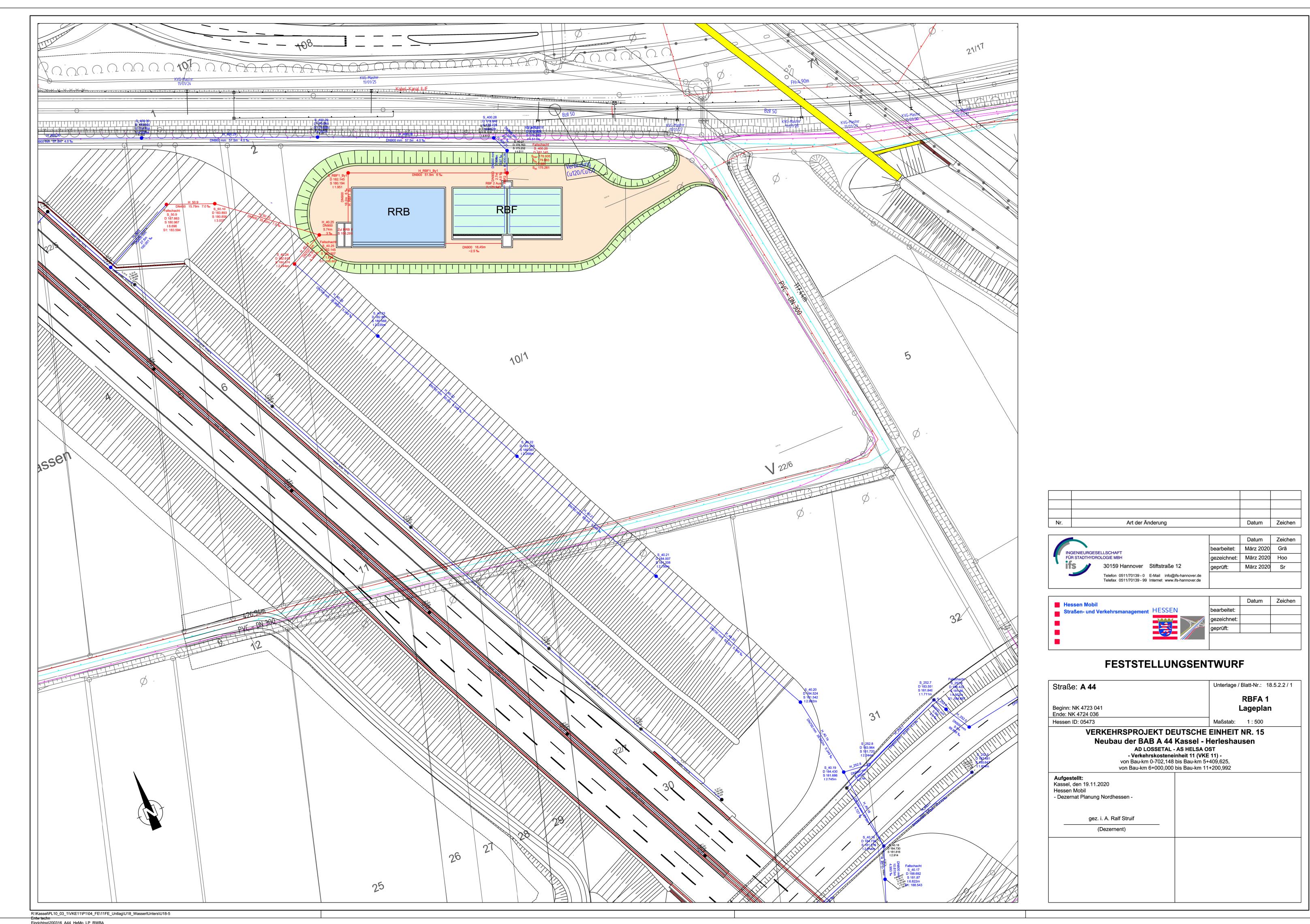
Bemessung Retentionsvolumen unter Berücksichtigung der Filter- und Lamellendrossel

<u>Ei</u>	ngangsdaten		
undurchlässige Fläche	A _u	6,06	ha
angeschlossene befestigte Fläche	$A_{E,b,a}$	5,17	ha
Drossel Soll (von AG vorgegeben)	$Q_{Dr,soll}$	50	I/s
spezifische Drosselabflussspende Filter	q _{dr,Filter}	0,03	I/(s*m²)
Filterhöhe	h _{Filter}	0,8	m
Filtereinstau	h _{Einstau}	0,5	m
Filterhöhe+Filtereinstau	h _{Filter+Einstau}	1,3	m
maximaler Einstau gesamt	h _{Einstau+Lamelle}	2	m
Max Drossel bei Filtereinstau	Q _{Dr,Filter}	15,51	I/s
Bodenfilteroberfläche	A _{RBF}	517	m²
Volumen Porenraum	V _{Poren}	62,04	m³
Volumen RBF bis Lamelle anspringt	V _{RBF,bis Lamelle}	259	m³
Volumen RBF bei Volleinstau	V _{RBF, Volleinstau}	1096	m³
Fläche RRB	A _{RRB,vorgeschaltet}	573	m²
Volumen RRB bis Lamelle anspringt	V _{RRB, bis Lamelle}	287	m³
Volumen gesamt bis Lamelle anspringt	V _{gesamt bis Lamelle}	607	m³
Volumen gesamt der Lamelle	V _{Lamelle}	1635	m³
gesamtes verfügbares Volumen	V_{ges}	2242	m³

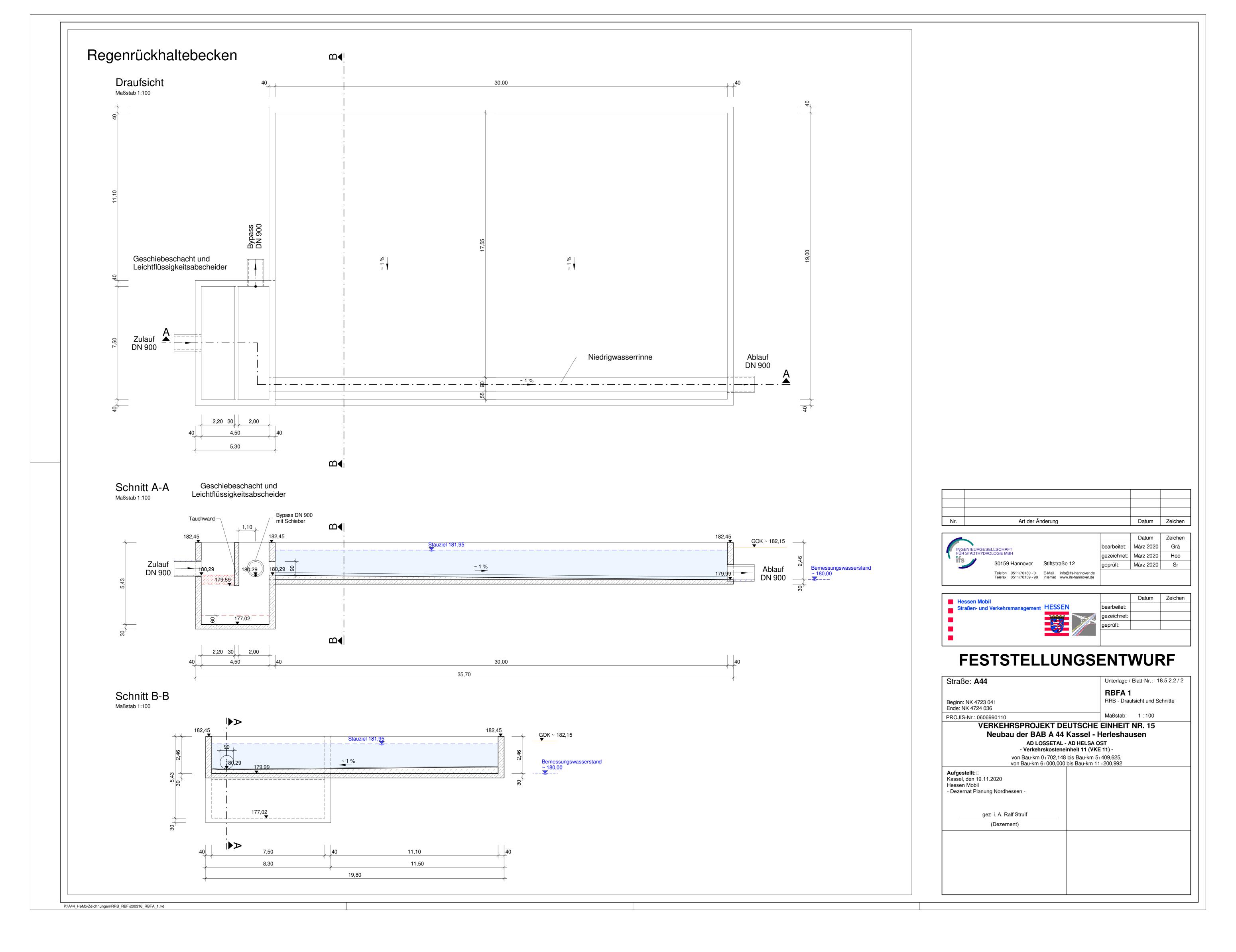
Kostra Regenspende T = 5 a [l/(s*ha)]	Kostra Regen Dauer [min]	Dauer bis FOK erreicht [sek]	Dauer bis FOK erreicht [min]	Dauer bis UK Lamelle erreicht [sek]	Dauer bis UK Lamelle erreicht [min]	Restdauer der Dauerstufe [sek]	Restdauer der Dauerstufe [min]	Erforderliches Lamellenvolumen [m³]	erforderliches Volumen + Lamelle [m³]
349,5	5	29	0,5	258	4,3	12	0,2	26	726
254,05	10	40	0,7	356	5,9	204	3,4	307	1049
205,15	15	50	0,8	441	7,4	409	6,8	495	1264
173,7			1,0	522	8,7	619	10,3	631	1421
134,65	30	76	1,3	674	11,2	1049	17,5	822	1639
102,3	45	101	1,7	890	14,8	1709	28,5	1003	1847
83,25	60	124	2,1	1097	18,3	2379	39,6	1122	1984
59,6	90	174	2,9	1542	25,7	3684	61,4	1210	2084
47,05	120	221	3,7	1965	32,7	5014	83,6	1265	2148
33,7	180	311	5,2	2774	46,2	7715	128,6	1323	2214
26,65	240	396	6,6	3545	59,1	10459	174,3	1347	2241
19,15	360	558	9,3	5033	83,9	16010	266,8	1334	2226
13,75	540	790	13,2	7212	120,2	24398	406,6	1234	2112
10,85	720	1017	17,0	9397	156,6	32785	546,4	1082	1937
7,85	1080	1450	24,2	13688	228,1	49662	827,7	736	1540
6,15	1440	1909	31,8	18466	307,8	66025	1100,4	298	1038
3,5	2880	3774	62,9	40505	675,1	128520	2142,0	0	696
2,5	4320	5978	99,6	73698	1228,3	179523	2992,1	0	696

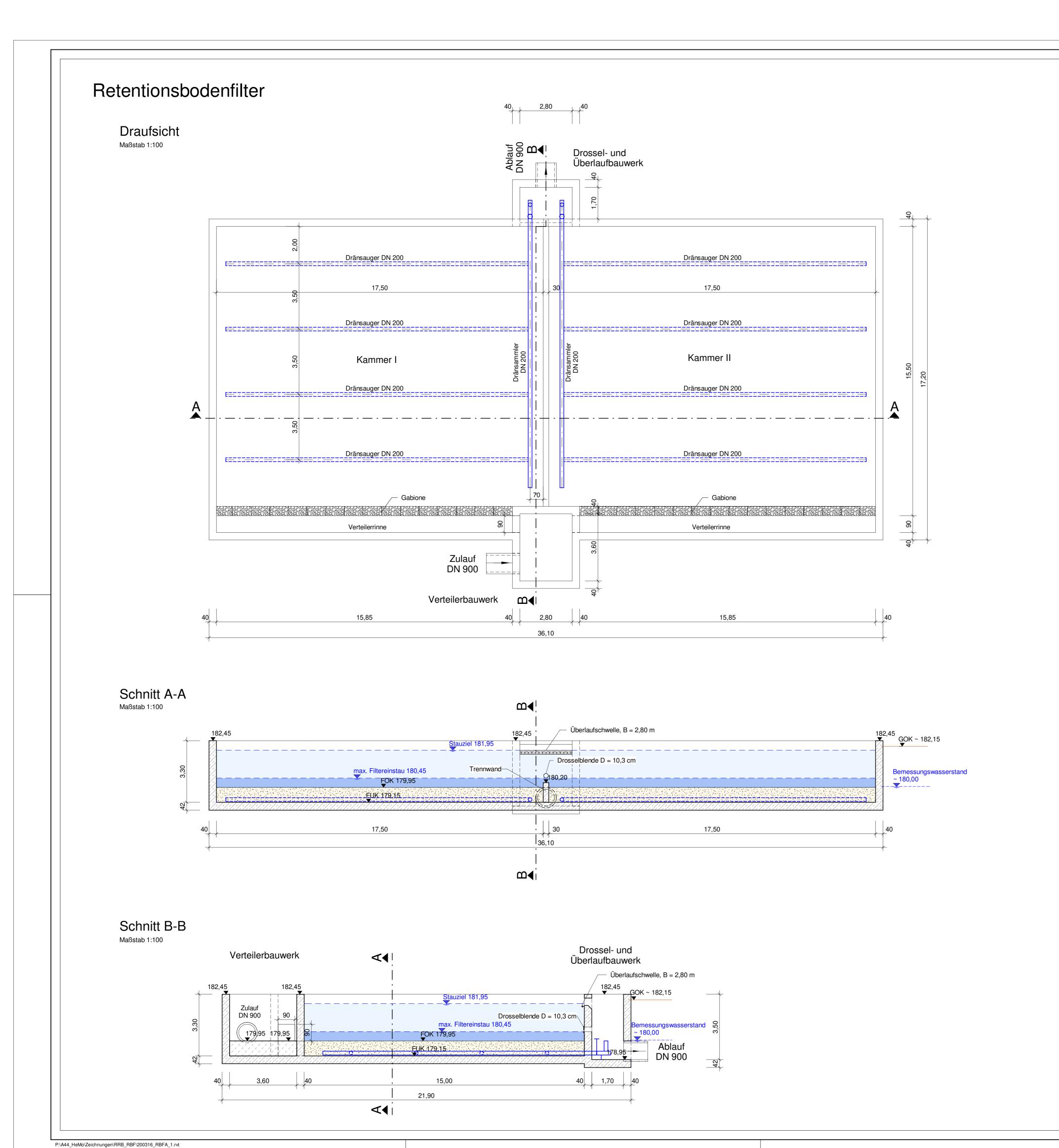
Zusammenfassung Ergebnisse		
Bodenfilteroberfläche	517 m ²	
gewählte RRB Oberfläche	573 m²	
gesamte Fläche	1090 m²	
maximaler Einstau Filter (ohne Lamelle)	0,5 m	
Höhe Lamelle RBF	1,5 m	
benötigtes Retentionsvolumen	2241 m ³	
Volumen bis Lamelle anspringt (inkl. Porenvolumen)	607 m ³	
Volumen Lamelle	1635 m³	
gesamtes Volumen	2242 m ³	
Volumen zusätzlich benötigtes RRB	0 m ³	
Bemessung ausreichend		

Sicherheitsfaktoren	
fz	1,15 [-]
Fließzeit	10 min
Wiederkehrintervall	5 a
Drosselabflussspen de bez. auf A _u 1)	4,13 l/(s*ha)
fa	0,998 [-]


Berechnung Drosseldurchmesser

Unterlage/Blatt: 18.5.2.1 / 3


Filterdrossel je Kammer								
Drosselabfluss Q _{Dr,Filte} Durchmesser Drossel Auslaufbeiwert		7,875 0,058	[l/s] [m]					
Auslaufbeiweit		0,607	[-]					
Stauhöhe Wasserstand	Stauhöhe über Sohle Drossel	Drosselabfluss	Beschreibung					
[m NHN]	[m]	[l/s]	[-]					
179,15	0,00	0,0	Sohle Drossel					
179,95	0,80	6,1	Filteroberkante					
180,45	1,30	7,9	Filtereinstau					
181,95	2,80	11,6	Stauziel Becken					

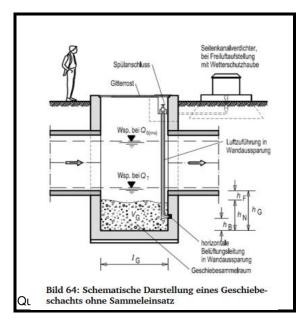

	Staulamellendrossel								
Höhe Staulamelle übe Drosselabfluss Q _{Dr, Lar}		1,3 26,75	[m] [l/s]						
Durchmesser Drossel Auslaufbeiwert		0,10 0,607	[m] [-]						
Stauhöhe Wasserstand	Stauhöhe über Sohle Drossel	Drosselabfluss	Beschreibung						
[m NHN]	[m]	[l/s]	[-]						
179,15	0,00	0,0	Sohle Drossel						
179,95	0,00	0,0	Filteroberkante						
180,45	0,00	0,0	Filtereinstau						
181,95	1,50	26,7	Stauziel Becken						

Drosselabfluss Gesamt						
Stauhöhe Wasserstand	Drosselabfluss, Gesamt	Beschreibung				
[m NN]	[l/s]	[-]				
179,15	0,00	Sohle Drossel				
179,95	12,27	Filteroberkante				
180,45	15,75	Filtereinstau				
181,95	50,00	Stauziel Becken				

Entw techn
Einrichtng\200316_A44_HeMo_LP_RWBA
- Acad
2010\200316_A44_HeMo_LP_RWBA_FE.dwg

von Bau-km 0+702,148 bis Bau-km 5+409,625, von Bau-km 6+000,000 bis Bau-km 11+200,992

Aufgestellt: Kassel, den 19.11.2020


- Dezernat Planung Nordhessen -

gez i. A. Ralf Struif

(Dezernent)

Hessen Mobil

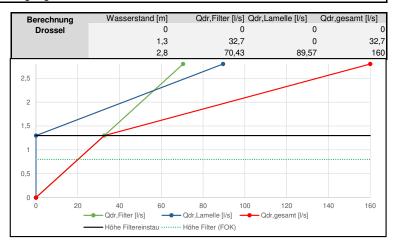
Bemessung Geschiebeschacht mit Leichtflüssigkeitsabscheider

Bemessungsregen r _{15,1} : Bemessungszufluss:	123,3 1,198	l/(s*ha) m³/s
Geschiebeschacht		
mind. benötigtes Volumen:	3,3	m³
<u>Маßе:</u>		
Breite B _G :	8	m
Länge I _G :	6,5	m
Tiefe h _G :	0,6	m
Freibord h _F :	0,3	m
V _G :	31,2	m³

Unterlage/Blatt: 18.5.3.1 / 1

LFA

mind. benötigtes Volumen: 10 m³


Maße:

Mindesthöhe Geschiebesammelraum bis UK Tauchwand:	3,00	m
Mindestabstand Tauchwand zu Wand (vor TW und nach TW):	3,00	m
Breite B _{LFA} :	8,0	m
Dicke Tauchwand:	0,3	m
Geschiebeschacht lang genug?	ja	
Eintauchtiefe Tauchwand:	0,5	m
eff. Eintauchtiefe Tauchwand:	0,4	m
Länge LFA-Raum L _{LFA} :	3,2	m
LFA-Raum V _{LFA} :	10,3	m³

Sohle GS bis UK Tauchwand: 3,60 m Sohle GS bis UK Ablauf: 3,80 m

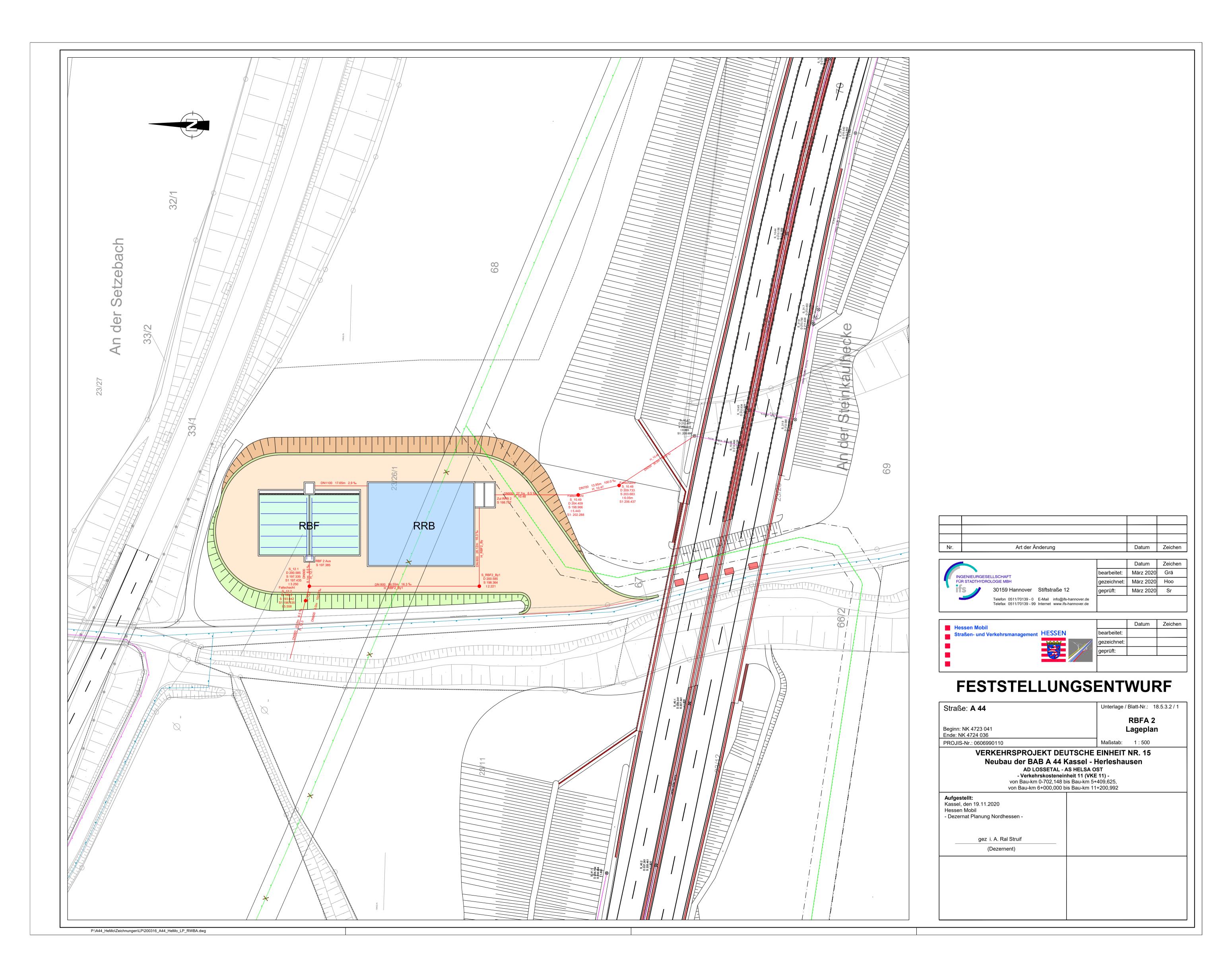
Bemessung Retentionsvolumen unter Berücksichtigung der Filter- und Lamellendrossel

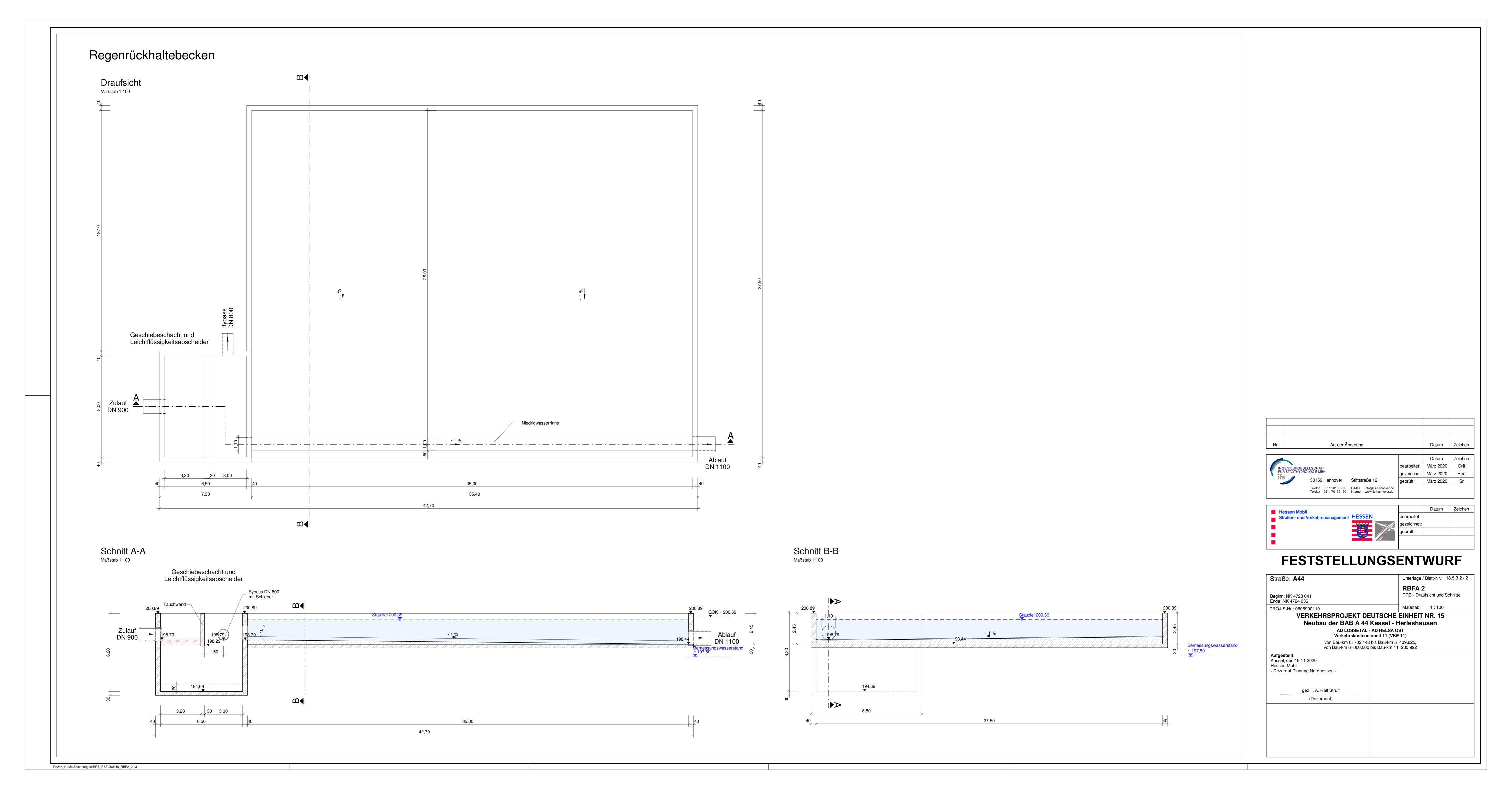
<u>Ei</u>	ngangsdaten		
undurchlässige Fläche	A_u	9,72	ha
angeschlossene befestigte Fläche	$A_{E,b,a}$	6,54	ha
Drossel Soll (von AG vorgegeben)	$Q_{Dr,soll}$	160	I/s
spezifische Drosselabflussspende Filter	Q _{dr,Filter}	0,05	I/(s*m²)
Filterhöhe	h _{Filter}	0,8	m
Filtereinstau	h _{Einstau}	0,5	m
Filterhöhe+Filtereinstau	h _{Filter+Einstau}	1,3	m
maximaler Einstau gesamt	h _{Einstau+Lamelle}	2	m
Max Drossel bei Filtereinstau	Q _{Dr,Filter}	32,70	I/s
Bodenfilteroberfläche	A _{RBF}	654	m²
Volumen Porenraum	V _{Poren}	78,48	m³
Volumen RBF bis Lamelle anspringt	V _{RBF,bis Lamelle}	327	m³
Volumen RBF bei Volleinstau	V _{RBF, Volleinstau}	1386	m³
Fläche RRB	A _{RRB,vorgeschaltet}	899	m²
Volumen RRB bis Lamelle anspringt	V _{RRB, bis Lamelle}	450	m³
Volumen gesamt bis Lamelle anspringt	V _{gesamt bis Lamelle}	855	m³
Volumen gesamt der Lamelle	V _{Lamelle}	2330	m³
gesamtes verfügbares Volumen	V _{ges}	3184	m³

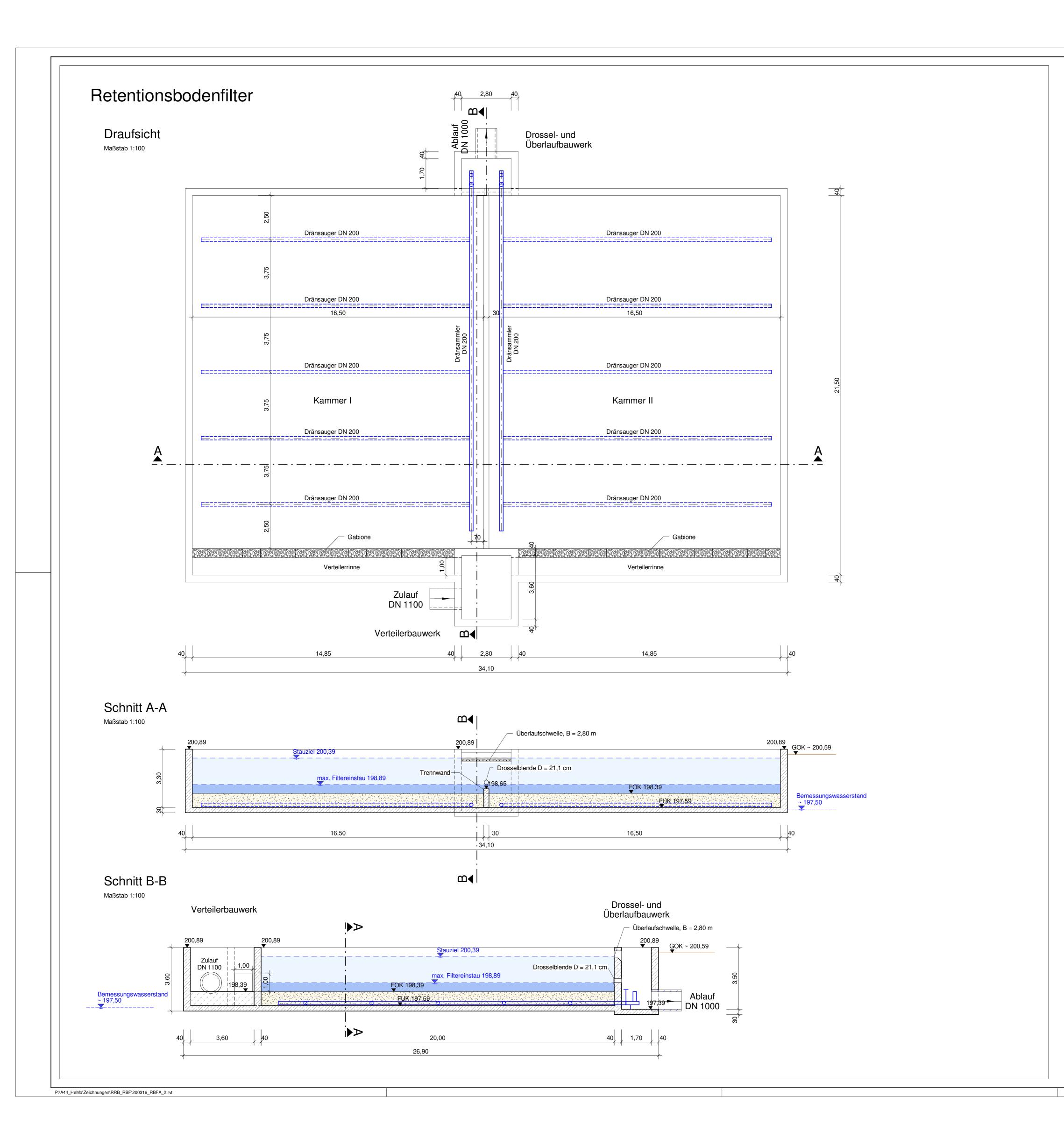
Kostra Regenspende T = 5 a [l/(s*ha)]	Kostra Reger Dauer [min]	Dauer bis FOK erreicht [sek]	Dauer bis FOK erreicht [min]	Dauer bis UK Lamelle erreicht [sek]	Dauer bis UK Lamelle erreicht [min]	Restdauer der Dauerstufe [sek]	Restdauer der Dauerstufe [min]	Erforderliches Lamellenvolumen [m³]	erforderliches Volumen + Lamelle [m³]
	352	5 23	0,4	228	3,8	49	0,8	164	1164
25	56,9	10 32	0,5	313	5,2	255	4,3	613	1679
	208	15 39	0,7	387	6,5	474	7,9	912	2020
17	76,5	20 46	0,8	457	7,6	697	11,6	1129	2268
13	37,2	59	1,0	589	9,8	1151	19,2	1424	2606
10	04,5	15 78	1,3	777	12,9	1845	30,7	1696	2917
8	85,2	96	1,6	957	15,9	2548	42,5	1864	3109
6	50,5	136	2,3	1358	22,6	3906	65,1	1921	3173
4	47,5 12	20 174	2,9	1744	29,1	5283	88,0	1930	3184
\$	33,7 18	30 247	4,1	2495	41,6	8058	134,3	1863	3107
2	26,5 24	10 317	5,3	3219	53,6	10864	181,1	1752	2980
1	18,9 30	452	7,5	4640	77,3	16508	275,1	1442	2626
1	13,5 54	648	10,8	6760	112,7	24992	416,5	871	1974
	10,6 72	20 844	14,1	8958	149,3	33398	556,6	223	1233
	7,6 108	1230	20,5	13499	225,0	50071	834,5	0	977
	5,9 144	1660	27,7	18940	315,7	65800	1096,7	0	977
	3,5 288			43945	732,4	125580	2093,0	0	977
	2,5 432			97673	1627,9	156015	2600,3		977

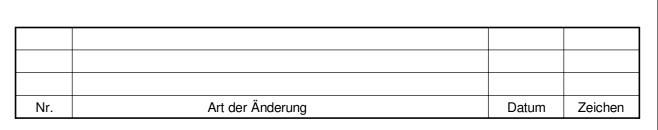
Zusammenfassung Ergebniss	<u>se</u>	
Bodenfilteroberfläche	654	m²
gewählte RRB Oberfläche	899	m²
gesamte Fläche	1553	m²
maximaler Einstau Filter (ohne Lamelle)	0,5	m
Höhe Lamelle RBF	1,5	m
benötigtes Retentionsvolumen	3184	m ³
Volumen bis Lamelle anspringt (inkl. Porenvolumen)	855	m³
Volumen Lamelle	2330	m ³
gesamtes Volumen	3184	m ³
Volumen zusätzlich benötigtes RRB	0	m³
Bemessung ausreichend		

Sicherheitsfaktoren	
fz	1,15 [-]
Fließzeit	10 min
Wiederkehrintervall	5 a
Drosselabflussspen de bez. auf A _u 1)	8,23 l/(s*ha)
fa	0,994 [-]

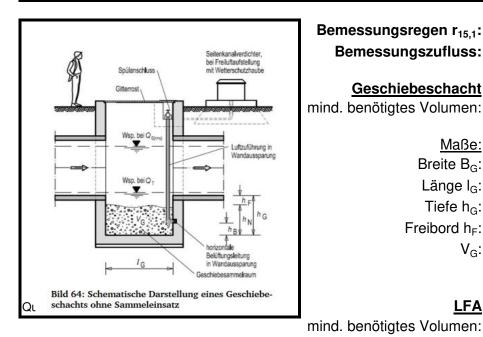

Berechnung Drosseldurchmesser


Unterlage/Blatt: 18.5.3.1 / 3


Filterdrossel je Kammer							
Drosselabfluss Q _{Dr,Filte} Durchmesser Drossel Auslaufbeiwert		16,50 0,083 0.607	[l/s] [m] [-]				
		0,007					
Stauhöhe Wasserstand	Stauhöhe über Sohle Drossel	Drosselabfluss	Beschreibung				
[m NHN]	[m]	[l/s]	[-]				
197,59	0,00	0,0	Sohle Drossel				
198,39	0,80	12,8	Filteroberkante				
198,89	1,30	16,5	Filtereinstau				
200,39	2,80	24,4	Stauziel Becken				


Staulamellendrossel								
Höhe Staulamelle übe Drosselabfluss Q _{Dr, Lar}		1,3 111,1	[m] [l/s]					
Durchmesser Drossel Auslaufbeiwert		0,21 0,607	[m] [-]					
Stauhöhe	Stauhöhe über	Drosselabfluss	Beschreibung					
Wasserstand [m NHN]	Sohle Drossel [m]	[l/s]	[-]					
197,59 198,39	0,00	0,0	Sohle Drossel Filteroberkante					
198,89 200,39	0,00 1,50	0,0 111,1	Filtereinstau Stauziel Becken					

	Drosselabfluss Gesamt						
Stauhöhe Wasserstand	Drosselabfluss, Gesamt	Beschreibung					
[m NN]	[l/s]	[-]					
197,59	0,0	Sohle Drossel					
198,39	25,6	Filteroberkante					
198,89	33,0	Filtereinstau					
200,39	160,0	Stauziel Becken					


				Datum	Zeichen
INGENIEURGESE	ELLSCHAFT		bearbeitet:	März 2020	Grä
FÜR STADTHYDRO	DLOGIE MBH		gezeichnet:	März 2020	Hoo
its	30159 Hannover	Stiftstraße 12	geprüft:	März 2020	Sr
	Telefon 0511/70139 - 0 Telefax 0511/70139 - 99	E-Mail info@ifs-hannover.de Internet www.ifs-hannover.de			

Hessen Mobil			Datum	Zeichen
Straßen- und Verkehrsmanagement	smanagement HESSEN			
		gezeichnet:		
		geprüft:		
•				

FESTSTELLUNGSENTWURF

Straße: A44	Unterlage / Blatt-Nr.: 15.5.3.2 /
	RBFA 2
Beginn: NK 4723 041	RBF - Draufsicht und Schnitte
Ende: NK 4724 036	
PROJIS-Nr.: 0606990110	Maßstab: 1:100
VERKEHRSPROJEKT DEUTS	CHE EINHEIT NR. 15
Neubau der BAB A 44 Kass	sel - Herleshausen
AD LOSSETAL - AD HE	ELSA OST
- Verkehrskosteneinheit 1	` ,
von Bau-km 0+702,148 bis Bau von Bau-km 6+000,000 bis Bau	
- Dezernat Planung Nordhessen - gez i. A. Ralf Struif	
(Dezernent)	

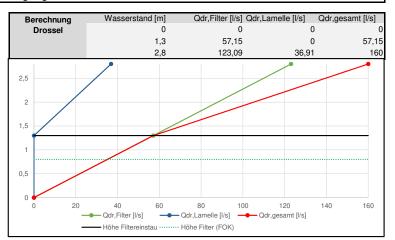
Bemessung Geschiebeschacht mit Leichtflüssigkeitsabscheider

Bemessungsregen r _{15,1} : Bemessungszufluss:	123,3 1,284	I/(s*ha) m³/s
<u>Geschiebeschacht</u>		
mind. benötigtes Volumen:	5,7	m³
<u>Маßе:</u>		
Breite B _G :	8,5	m
Länge I _G :	6,5	m
Tiefe h _G :	0,6	m
Freibord h _F :	0,3	m
V_G :	33,2	m³

LFA

10 m³

Unterlage/Blatt: 18.5.4.1 / 1


Maße:

m	3,02	Mindesthöhe Geschiebesammelraum bis UK Tauchwand:
m	3,02	Mindestabstand Tauchwand zu Wand (vor TW und nach TW):
m	8,5	Breite B_{LFA} :
m	0,3	Dicke Tauchwand:
	ja	Geschiebeschacht lang genug?
m	0,5	Eintauchtiefe Tauchwand:
m	0,4	eff. Eintauchtiefe Tauchwand:
m	3,2	Länge LFA-Raum L _{LFA} :
m^3	10.8	LFA-Raum V _{LFA} :

Sohle GS bis UK Tauchwand: 3,62 m Sohle GS bis UK Ablauf: 3,82 m

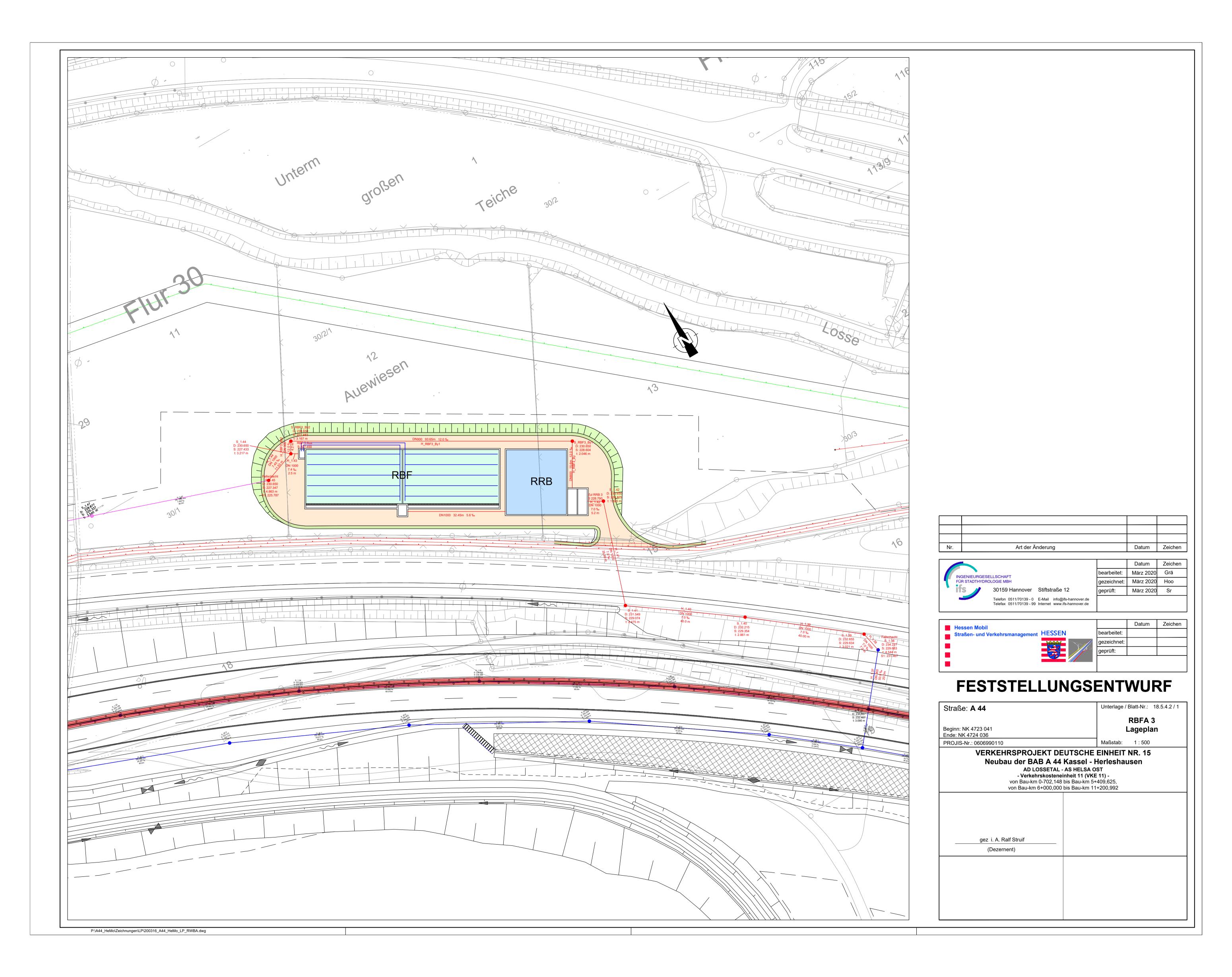
Bemessung Retentionsvolumen unter Berücksichtigung der Filter- und Lamellendrossel

<u>Ei</u>	ngangsdaten		
undurchlässige Fläche	A _u	10,41	ha
angeschlossene befestigte Fläche	$A_{E,b,a}$	11,43	ha
Drossel Soll (von AG vorgegeben)	$Q_{Dr,soll}$	160	I/s
spezifische Drosselabflussspende Filter	q _{dr,Filter}	0,05	I/(s*m²)
Filterhöhe	h _{Filter}	0,8	m
Filtereinstau	h _{Einstau}	0,5	m
Filterhöhe+Filtereinstau	h _{Filter+Einstau}	1,3	m
maximaler Einstau gesamt	h _{Einstau+Lamelle}	2	m
Max Drossel bei Filtereinstau	Q _{Dr,Filter}	57,15	I/s
Bodenfilteroberfläche	A _{RBF}	1143	m²
Volumen Porenraum	V _{Poren}	137,16	m³
Volumen RBF bis Lamelle anspringt	V _{RBF,bis Lamelle}	572	m³
Volumen RBF bei Volleinstau	V _{RBF, Volleinstau}	2423	m³
Fläche RRB	A _{RRB,vorgeschaltet}	472	m²
Volumen RRB bis Lamelle anspringt	V _{RRB, bis Lamelle}	236	m³
Volumen gesamt bis Lamelle anspringt	V _{gesamt bis Lamelle}	945	m³
Volumen gesamt der Lamelle	V _{Lamelle}	2423	m³
gesamtes verfügbares Volumen	V_{ges}	3367	m³

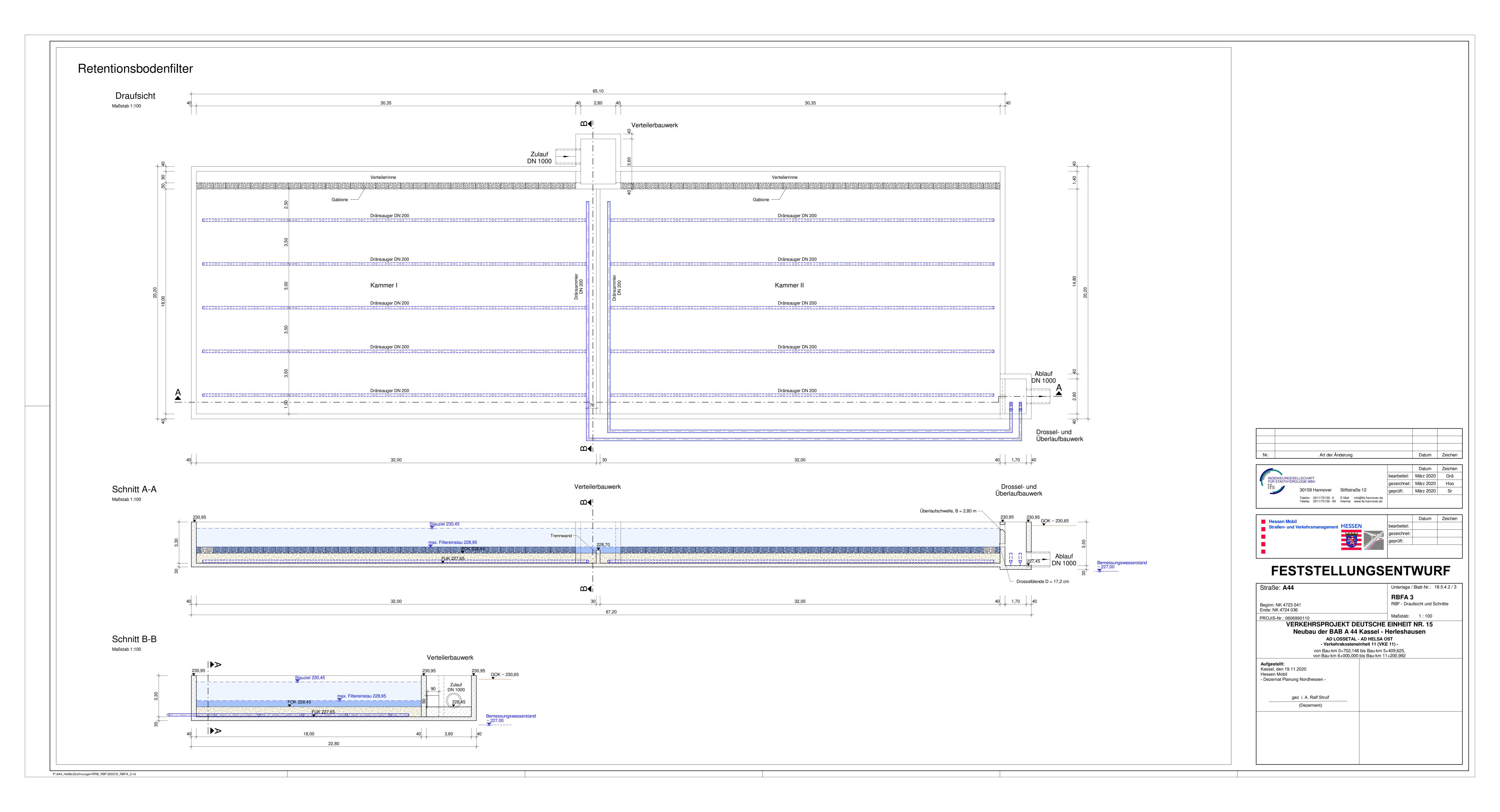
Kostra Regenspende T = 5 a [l/(s*ha)]		Kostra Regen Dauer [min]	Dauer bis FOK erreicht [sek]	Dauer bis FOK erreicht [min]	Dauer bis UK Lamelle erreicht [sek]	Dauer bis UK Lamelle erreicht [min]	Restdauer der Dauerstufe [sek]	Restdauer der Dauerstufe [min]	Erforderliches Lamellenvolumen [m³]	erforderliches Volumen + Lamelle [m³]
	352	5	38	0,6	222	3,7	40	0,7	144	1246
	256,9	10	52	0,9	305	5,1	243	4,1	624	1794
	208	15	64	1,1	378	6,3	458	7,6	942	2158
:	176,5	20	75	1,3	446	7,4	678	11,3	1172	2422
:	137,2	30	97	1,6	577	9,6	1126	18,8	1486	2780
:	104,5	45	128	2,1	762	12,7	1810	30,2	1772	3107
	85,2	60	158	2,6	941	15,7	2501	41,7	1947	3308
	60,5	90	224	3,7	1343	22,4	3833	63,9	1998	3366
	47,5	120	288	4,8	1733	28,9	5179	86,3	1999	3367
	33,7	180	412	6,9	2506	41,8	7883	131,4	1909	3265
	26,5	240	531	8,9	3265	54,4	10604	176,7	1774	3110
	18,9	360	766	12,8	4802	80,0	16033	267,2	1414	2698
	13,5	540	1116	18,6	7212	120,2	24072	401,2	769	1961
	10,6	720	1479	24,6	9875	164,6	31846	530,8	56	1145
	7,6	1080	2229	37,2	15977	266,3	46594	776,6	0	1081
	5,9	1440	3129	52,2	24586	409,8	58685	978,1	0	1081
	3,5	2880	7276	121,3	102735	1712,3	62788	1046,5	0	1081
	2,5	4320	16250	270,8	-316667	-5277,8	559616	9326,9	0	1081

Zusammenfassung Ergebnisse	
Bodenfilteroberfläche	1143 m²
gewählte RRB Oberfläche	472 m²
gesamte Fläche	1615 m²
maximaler Einstau Filter (ohne Lamelle)	0,5 m
Höhe Lamelle RBF	1,5 m
benötigtes Retentionsvolumen	3367 m³
Volumen bis Lamelle anspringt (inkl. Porenvolumen)	945 m³
Volumen Lamelle	2423 m³
gesamtes Volumen	3367 m³
Volumen zusätzlich benötigtes RRB	0 m³
Bemessung ausreichend	

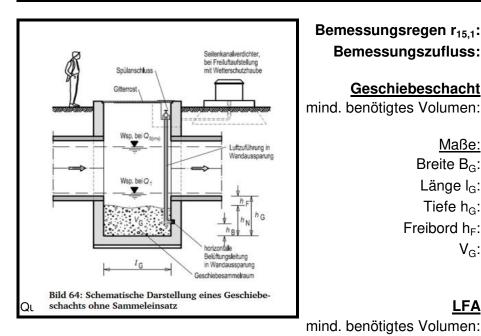
Sicherheitsfaktoren					
fz	1,15 [-]				
Fließzeit Wiederkehrintervall	10 min 5 a				
Drosselabflussspen de bez. auf A _u 1)	7,68 l/(s*ha)				
fa	0,995 [-]				


Berechnung Drosseldurchmesser


Unterlage/Blatt: 18.5.4.1 / 3


Filterdrossel je Kammer							
Drosselabfluss Q _{Dr,Filte}	er, je Kammer	28,80	[l/s]				
Durchmesser Drossel		0,111	[m]				
Auslaufbeiwert		0,607	[-]				
Stauhöhe Wasserstand	Stauhöhe über Sohle Drossel	Drosselabfluss	Beschreibung				
[m NHN]	[m]	[l/s]	[-]				
227,65	0,00	0,0	Sohle Drossel				
228,45	0,80	22,3	Filteroberkante				
228,95	1,30	28,8	Filtereinstau				
230,45	2,80	42,8	Stauziel Becken				

Staulamellendrossel								
Höhe Staulamelle über Filtersohle 1,3 [m]								
Drosselabfluss Q _{Dr, Lar}		74,5	[l/s]					
Durchmesser Drossel		0,17	[m]					
Auslaufbeiwert		0,607 [-]						
		1						
Stauhöhe	Stauhöhe über	Drosselabfluss	Beschreibung					
Wasserstand	Sohle Drossel	Brooddiabilado	Boodinoibang					
[m NHN]	[m]	[l/s]	[-]					
227,65	0,00	0,0	Sohle Drossel					
228,45	0,00 0,0 Filt		Filteroberkante					
228,95	0,00	0,0	Filtereinstau					
230,45	1,50	74,5	Stauziel Becken					


Drosselabfluss Gesamt					
Stauhöhe Wasserstand	Drosselabfluss, Gesamt	Beschreibung			
[m NN]	[l/s]	[-]			
227,65	0,0	Sohle Drossel			
228,45	44,6	Filteroberkante			
228,95	57,6	Filtereinstau			
230,45	160,0	Stauziel Becken			

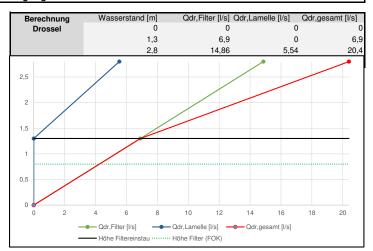
Bemessung Geschiebeschacht mit Leichtflüssigkeitsabscheider

Bemessungsregen $r_{15,1}$: **123,3** l/(s*ha) 0,249 m³/s Bemessungszufluss: **Geschiebeschacht** mind. benötigtes Volumen: **0,7** m³ Maße: Breite B_G: **5** m Länge I_G: **4,7** m Tiefe h_G: **0,6** m Freibord h_F: **0,3** m V_G : 14,1 m³

LFA

10 m³

Unterlage/Blatt: 18.5.5.1 / 1


Maße:

00 m	1,00	Mindesthöhe Geschiebesammelraum bis UK Tauchwand:
00 m	1,00	Mindestabstand Tauchwand zu Wand (vor TW und nach TW):
,0 m	5,0	Breite B _{LFA} :
,3 m	0,3	Dicke Tauchwand:
	ja	Geschiebeschacht lang genug?
,7 m	0,7	Eintauchtiefe Tauchwand:
,6 m	0,6	eff. Eintauchtiefe Tauchwand:
3,4 m	3,4	Länge LFA-Raum L _{LFA} :
).2 m ³	10.2	LFA-Raum V _{LFA} :

Sohle GS bis UK Tauchwand: 1,60 m Sohle GS bis UK Ablauf: 2,00 m

Bemessung Retentionsvolumen unter Berücksichtigung der Filter- und Lamellendrossel

<u>Eir</u>	ngangsdaten		
undurchlässige Fläche	A_u	2,02	ha
angeschlossene befestigte Fläche	$A_{E,b,a}$	1,38	ha
kanalisierte Fläche	$A_{E,k}$	4,08	ha
Drosselabflussspende	q _{Dr,soll}	5	l/(s*ha)
Drossel Soll	$Q_{Dr,soll}$	20,4	l/s
spezifische Drosselabflussspende Filter	q _{dr,Filter}	0,05	I/(s*m²)
Filterhöhe	h _{Filter}	0,8	m
Filtereinstau	h _{Einstau}	0,5	m
Filterhöhe+Filtereinstau	h _{Filter+Einstau}	1,3	m
maximaler Einstau gesamt	h _{Einstau+Lamelle}	2	m
Max Drossel bei Filtereinstau	Q _{Dr,Filter}	6,90	l/s
Bodenfilteroberfläche	A _{RBF}	138	m²
Volumen Porenraum	V _{Poren}	16,56	m³
Volumen RBF bis Lamelle anspringt	V _{RBF,bis Lamelle}	69	m³
Volumen RBF bei Volleinstau	V _{RBF, Volleinstau}	293	m³
Fläche RRB	A _{RRB,vorgeschaltet}	208	m²
Volumen RRB bis Lamelle anspringt	V _{RRB, bis Lamelle}	104	m³
Volumen gesamt bis Lamelle anspringt	V _{gesamt bis Lamelle}	190	m³
Volumen gesamt der Lamelle	V _{Lamelle}	519	m ³
gesamtes verfügbares Volumen	V_{ges}	709	m³

Kostra Regenspende T = 5 a [$l/(s^*ha)$]	Kostra Regen Dauer [min]	Dauer bis FOK erreicht [sek]	Dauer bis FOK erreicht [min]	Dauer bis UK Lamelle erreicht [sek]	Dauer bis UK Lamelle erreicht [min]	Restdauer der Dauerstufe [sek]	Restdauer der Dauerstufe [min]	Erforderliches Lamellenvolumen [m³]	erforderliches Volumen + Lamelle [m³]
35	2 5	23	0,4	244	4,1	32	0,5	23	243
256,	9 10	32	0,5	336	5,6	232	3,9	117	352
20	8 15	40	0,7	415	6,9	445	7,4	181	425
176,	5 20	47	0,8	490	8,2	663	11,1	227	478
137,	2 30	60	1,0	632	10,5	1108	18,5	292	552
104,	5 45	79	1,3	833	13,9	1788	29,8	353	622
85,	2 60	97	1,6	1026	17,1	2477	41,3	392	667
60,	5 90	138	2,3	1457	24,3	3805	63,4	413	691
47,	5 120	176	2,9	1870	31,2	5153	85,9	424	704
33,	7 180	251	4,2	2677	44,6	7872	131,2	428	708
26,	5 240	322	5,4	3454	57,6	10623	177,1	424	703
18,	9 360	459	7,7	4982	83,0	16159	269,3	396	672
13,	5 540	659	11,0	7263	121,0	24479	408,0	333	600
10,	6 720	859	14,3	9631	160,5	32710	545,2	254	508
7,	6 1080	1252	20,9	14535	242,3	49013	816,9	83	313
5,	9 1440	1691	28,2	20430	340,5	64279	1071,3	0	217
3,	5 2880	3348	55,8	47790	796,5	121662	2027,7	0	217
2,	5 4320	5658	94,3	108125	1802,1	145417	2423,6	0	217

Zusammenfassung Ergebnisse					
Bodenfilteroberfläche	138 m²				
gewählte RRB Oberfläche	208 m²				
gesamte Fläche	346 m²				
maximaler Einstau Filter (ohne Lamelle)	0,5 m				
Höhe Lamelle RBF	1,5 m				
benötigtes Retentionsvolumen	708 m³				
Volumen bis Lamelle anspringt (inkl. Porenvolumen)	190 m³				
Volumen Lamelle	519 m³				
gesamtes Volumen	709 m³				
Volumen zusätzlich benötigtes RRB	0 m ³				
Bemessung ausreichend					

Sicherheitsfaktoren	
fz	1,15 [-]
Fließzeit	10 min
Wiederkehrintervall	5 a
Drosselabflussspen	5,05 l/(s*ha)
de bez. auf A _u 1)	3,00 I/(S IIA)
fa	0,997 [-]

Arbeitsblatt DWA-A 138

VersickerungsExpert

Version 2016

Deutsche Vereingung für Wasserwirtschaft, Abwasser und Abfall e.V.

Dimensionierung von Versickerungsanlagen

500-0619-0999

Seite 1

Projekt

Bezeichnung: Hessen Mobil - A44 - VKE 11 Datum: 21.01.2020

Bearbeiter: Schröder / Gräfe / Müller

Bemerkung: VA 01 - Variante 3

Ange	Angeschlossene Flächen						
Nr.	angeschlossene Teilfläche A_E [ha]	mittlerer Abfluss- beiwert Psi,m [-]	undurchlässige Fläche A_u [ha]	Beschreibung der Fläche			
1 2 3 4 5 6	2,03	1,00	2,03	Au			
7 8 9 10 11							
12 13 14 15 16							
17 18 19 20							
Gesamt	2,03	1,00	2,03				

						_
ப	10	ıレ	1	m	\mathbf{a}	1
1.	1.7	IN	u		\boldsymbol{a}	I.7

Verwendeter Zuschlagsfaktor f_z

1,15

Arbeitsblatt DWA-A 138

VersickerungsExpert

Version 2016

Deutsche Vereingung für Wasserwirtschaft, Abwasser und Abfall e.V.

Dimensionierung von Versickerungsanlagen

500-0619-0999

Seite 2

Projekt

Bezeichnung: Hessen Mobil - A44 - VKE 11 Datum: 21.01.2020

Bearbeiter: Schröder / Gräfe / Müller
Bemerkung: VA 01 - Variante 3

Eingangsdaten			
angeschlossene undurchlässige Fläche	A_u	2,03	ha
spezifische Versickerungsrate	q_s	6	I/(s·ha)
Zuschlagsfaktor	f_z	1,15	
wassergesättigte Bodendurchlässigkeit			
Sohle	k_f,Sohle	5.0e - 5	m/s
Böschung	k_f,Böschun	k_f,Böschung 5.0e-5	
Niederschlagsbelastung	Station	Raster 32/52	
	n	0,20	1/a
Sohle: RinnenBreite / Länge	b_S/I_S	12,0 / 34,0	m
Geländeoberkante: RinnenBreite / Länge	b_O / I_ O	16,2 / 38,2	m
Beckentiefe	Z	1,4	m
Böschungsneigung 1:m	m	1,5	

Bemes	Bemessung des Versickerungsbeckens					
D [min]	r_D(n) [l/(s·ha)]	V [m³]	Erforderliche Größe der Anlage			
5	352,0	242,3	gew. Versickerungsrate			
10	256,9	351,4	$Q_S = A_u \cdot q_S = 0.01 \text{ m}^3/\text{s}$			
15	208,0	424,4	erforderliches Speichervolumen			
20	176,5	477,6	V = 698,4 m ³ $V = A_u \cdot 10^{-3} \cdot r_{D(n)} - Q_S \cdot D \cdot 60 \cdot f_Z$			
30	137,2	551,3				
45	104,5	620,9	gewähltes Beckenvolumen			
60	85,2	665,6	Vgew. = 713,7 m ³			
90	60,5	687,0	rechnerische Entleerungszeit			
120	47,5	697,5	t_E = 15,17 h			
180	33,7	698,4	Nachweis der Entleerungszeit für n=1/a			
240	26,5	689,1	vorh. t_E = 8,96 h < erf. t_E = 24 h			
360	18,9	650,5	Voin. t_L = 0,90 ii < en. t_L = 24 ii			
540	13,5	567,3				
720	10,6	463,9	Nachweis der Versickerungsrate			
1080	7,6	242,0	$Q_S,m = 0.013 \text{ m}^3/\text{s} \le 6.3 \text{ l}/(\text{s}\cdot\text{ha}) = q_S,m$			
1440	5,9	0,0	vorh. q_S,m = 6,3 l/(s·ha) > gew. q_S,m = 6 l/(s·ha)			
2880	3,5	0,0				

Arbeitsblatt DWA-A 138

Version 2016

Deutsche Vereingung für Wasserwirtschaft, Abwasser und Abfall e.V.

Dimensionierung von Versickerungsanlagen

500-0619-0999

Seite 1

Projekt

Bezeichnung: Hessen Mobil - A44 - VKE 11 Datum: 21.01.2020

Bearbeiter: Schröder / Gräfe / Müller

Bemerkung: VA 01 - Variante 3

Ange	eschlossene	e Flächen		
Nr.	angeschlossene Teilfläche A_E [ha]	mittlerer Abfluss- beiwert Psi,m [-]	undurchlässige Fläche A_u [ha]	Beschreibung der Fläche
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	2,03	1,00	2,03	Au
19 20				
Gesamt	2,03	1,00	2,03	

						\sim
к	15	П	k۲	m	าลเ	Iζ

Verwendeter Zuschlagsfaktor f_z 1,15

Arbeitsblatt DWA-A 138

VersickerungsExpert

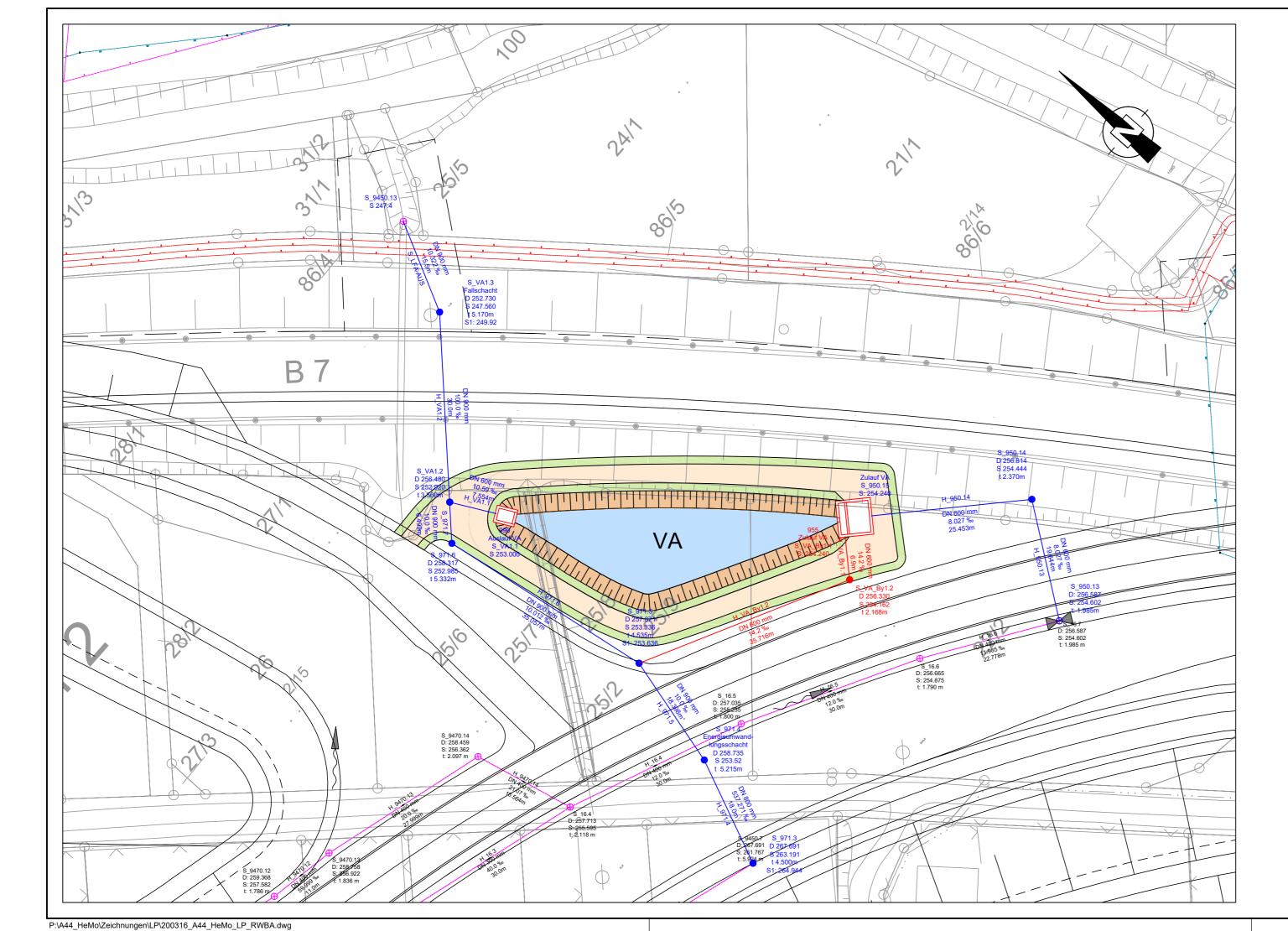
Version 2016

Deutsche Vereingung für Wasserwirtschaft, Abwasser und Abfall e.V.

Dimensionierung von Versickerungsanlagen

500-0619-0999

Seite 2


Projekt

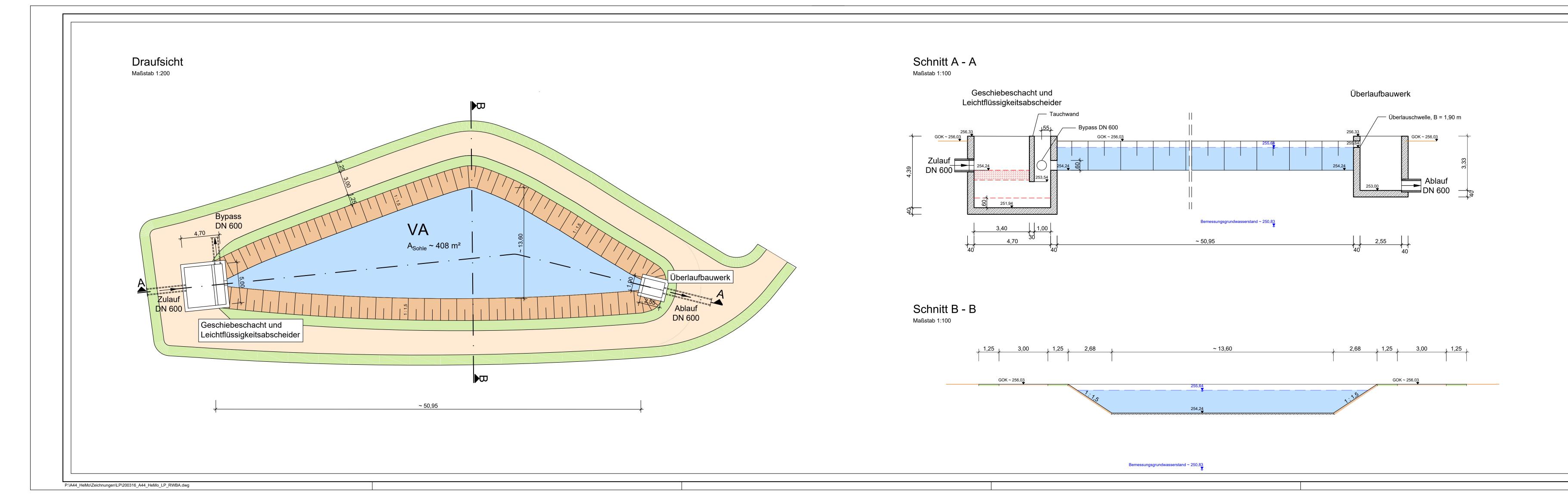
Bezeichnung: Hessen Mobil - A44 - VKE 11 Datum: 21.01.2020

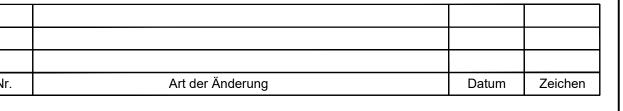
Bearbeiter: Schröder / Gräfe / Müller
Bemerkung: VA 01 - Variante 3

Eingangsdaten			
angeschlossene undurchlässige Fläche	A_u	2,03	ha
spezifische Versickerungsrate	q_s	6	I/(s·ha)
Zuschlagsfaktor	f_z	1,15	
wassergesättigte Bodendurchlässigkeit			
Sohle	k_f,Sohle	5.0e - 5	m/s
Böschung	k_f,Böschun	g 5.0e - 5	m/s
Niederschlagsbelastung	Station	Raster 32/52	
	n	0,20	1/a
Sohle: RinnenBreite / Länge	b_S/I_S	12,0 / 34,0	m
Geländeoberkante: RinnenBreite / Länge	b_O / I _O	16,2 / 38,2	m
Beckentiefe	Z	1,4	m
Böschungsneigung 1:m	m	1,5	

Bemes	Bemessung des Versickerungsbeckens		
D [min]	r_D(n) [l/(s·ha)]	V [m³]	Erforderliche Größe der Anlage
5	352,0	242,3	gew. Versickerungsrate
10	256,9	351,4	$Q_S = A_u \cdot q_S = 0.01 \text{ m}^3/\text{s}$
15	208,0	424,4	erforderliches Speichervolumen
20	176,5	477,6	V = 698,4 m ³ $V = A_u \cdot 10^{-3} \cdot r_{D(n)} - Q_S \cdot D \cdot 60 \cdot f_Z$
30	137,2	551,3	
45	104,5	620,9	gewähltes Beckenvolumen
60	85,2	665,6	Vgew. = 713,7 m ³
90	60,5	687,0	rechnerische Entleerungszeit
120	47,5	697,5	t_E = 15,17 h
180	33,7	698,4	Nachweis der Entleerungszeit für n=1/a
240	26,5	689,1	vorh. t_E = 8,96 h < erf. t_E = 24 h
360	18,9	650,5	Voin. t_L = 0,90 ii < en. t_L = 24 ii
540	13,5	567,3	
720	10,6	463,9	Nachweis der Versickerungsrate
1080	7,6	242,0	$Q_S,m = 0.013 \text{ m}^3/\text{s} \le 6.3 \text{ l}/(\text{s}\cdot\text{ha}) = q_S,m$
1440	5,9	0,0	vorh. q_S,m = 6,3 l/(s·ha) > gew. q_S,m = 6 l/(s·ha)
2880	3,5	0,0	

Nr.	Art der Änderung	Datum	Zeichen


		Datum	Zeichen
	bearbeitet:	März 2020	Mü
	gezeichnet:	März 2020	Ноо
	geprüft:	März 2020	Sr
- do			


Zeichen

FESTSTELLUNGSENTWURF

Straße: A 44	Unterlage / Blatt-Nr.: 18.5.5.2 / 1
	VA01 - Variante 3
Beginn: NK 4723 041 Ende: NK 4724 036	Lageplan
PROJIS-Nr.: 0606990110	Maßstab: 1 : 500
VERKEHRSPROJEKT DE	UTSCHE EINHEIT NR. 15
Neubau der BAB A 44	Kassel - Herleshausen
AD LOSSETAL Verkehrskostenei von Bau-km 0-702,148 von Bau-km 6+000,000	nheit 11 (VKE 11) - bis Bau-km 5+409,625,
Aufgestellt: Kassel, den 19.11.2020 Hessen Mobil - Dezernat Planung Nordhessen -	
gez i. A. Ralf Struif	
(Dezernent)	

FESTSTELLUNGSENTWURF

Straße: A 44	Unterlage / Blatt-Nr.: 18.5.5.2 / 2
	VA01 - Variante 3
Beginn: NK 4723 041	Draufsicht und Schnitte
Ende: NK 4724 036 PROJIS-Nr.: 0606990110	Maßstab: 1 : 200, 1 : 100
VERKEHRSPROJEKT DEUTSO	CHE EINHEIT NR. 15
Neubau der BAB A 44 Kasse	
AD LOSSETAL - AS HEL	
- Verkehrskosteneinheit 11	
von Bau-km 0-702,148 bis Bau- von Bau-km 6+000,000 bis Bau-	
Voli Bau-kili 0 1000,000 bis Bau-	
Aufgestellt:	
Kassel, den 19.11.2020 Hessen Mobil	
- Dezernat Planung Nordhessen -	
Bozomat Handing Hordinoscom	
gez i. A. Ralf Struif	
(Dezernent)	
(Dezement)	