

HAZOP and SIL Allocation Report

HAZOP and SIL Allocation Report

PROJECT DATE 23123I April 2023

PAGE 2 di 14

INDEX

INT	RODU	CTION 3
1	PROJ	ECT OVERVIEW
-	1.1	HAZOP and SIL allocation scope of work4
2	DEFI	NITIONS AND ACRONYMS
	2.1	Definitions5
	2.2	Acronyms7
3	REFE	RENCES
	3.1	Standards and guidelines8
	3.2	Project documentations
4	HAZC	OP AND SIL METHODOLOGY9
5	HAZC	DP NODES 10
6	HAZC	OP AND SIL TEAM AND VENUES 11
7	HAZC	DP RESULTS 12
	7.1	HAZOP Worksheet
	7.2	HAZOP Recommendations12
8	SIL A	LLOCATION RESULTS
	8.1	SIL Worksheet
	8.2	SIL Allocation Recommendations14

ATTACHMENT

Attachment 1	Attendance List
Attachment 2	Master Copy P&IDs
Attachment 3	HAZOP Worksheet
Attachment 4	HAZOP Action List
Attachment 5	SIL Worksheet
Attachment 6	SIFs List
Attachment 7	Reference HAZOP/SIL Procedures

ī.

HAZOP and SIL Allocation Report

PROJECT DATE 23123I April 2023

PAGE 23 3 di 14

INTRODUCTION

SIAD Macchine Impianti S.p.A. (the CLIENT) has been awarded by OGE (the COMPANY) for engineering services and provision of new LNG liquefaction plant to be located in Renzenhof (Germany). Within this framework, the CLIENT requested ICARO to provide support to carry out:

- HAZOP (Hazard and Operability) study;
- SIL Allocation.

HAZOP study and SIL Allocation were led by ICARO's senior consultant company, with the participation of SIAD and OGE technicians, also involving a TÜV representative, according to German regulations.

HAZOP and SIL allocation workshops ("sessions") have been held as reported here below:

- From 27th to 31st March 2023 in SIAD premises in Bergamo (Italy),
- From **3rd to 6th April 2023** in OGE premises in Essen (Germany),
- On **17**th **April 2023** via teleconference.

Present document shows the results of the HAZOP study and SIL Allocation.

HAZOP study allowed to analyse a total number of **26 nodes** and suggest a total number of **67 actions**. SIL study allowed to analyse a total number of **46 SIFs** and suggest a total number of **10 actions**. According to the final global results of this study, have been identified:

- A number of **17 SIFs not SIL rated**;
- A number of 25 SIFs rated SIL1;
- A number of **4 SIFs rated SIL2**.

bioplusLNG) OGE

LNG liquefaction plant

HAZOP and SIL Allocation Report

AD MACCHINE

PROJECT DATE 23123I April 2023

PAGE 4 di 14

1 PROJECT OVERVIEW

The project consists into design and provision of new LNG liquefaction plant to be located in Renzenhof (Germany).

Plant is composed of following units:

- natural gas fiscal metering station;
- mercury removal unit;
- CO2 absorption unit;
- amine stripping unit;
- MDEA solvent addition and removal unit;
- natural gas precooling and drying unit;
- liquefaction unit;
- LNG storage;
- LNG truck loading bay.

1.1 HAZOP and SIL allocation scope of work

HAZOP Review will involve equipment and systems under CLIENT's scope of work (main process).

The following systems have not been included in the scope of work of the present HAZOP analysis.

- Packages provide by third-party vendors: steam generation section, cooling water circuit, chillers, demi water package, thermal oxidizer, instrument air package, LIN storage tanks, hot flare.
- Auxiliaries associated to compressors and other machines.

The above listed items have been analyzed from a HAZOP perspective relatively to the interconnection points (interface approach) with main process units and the mutual interactions between the systems were reviewed.

For what concern SIL allocation, only SIFs addressed to prevent scenario with potential impact on personnel safety and/or environment (according to HAZOP outcomes) have been reviewed.

HAZOP and SIL Allocation Report

PROJECT	DATE
231231	April 2023

PAGE 023 5 di 14

2 DEFINITIONS AND ACRONYMS

2.1 Definitions

Basic Process Control System	The system that responds to input signals from the process and generates output signals to maintain operation of the process in a desired state. The system does not perform functions assessed as SIL 1 or higher.
Beta Factor	The number of Common Mode Failures (of robust Initiators or Final Elements), expressed as a fraction of all possible Failures.
Cause	Reason the occurrence of deviation. Once a deviation can be shown to have a conceivable or realistic cause, then it becomes meaningful. Only single jeopardy together with all relevant effects shall be considered during HAZOP. Deviation is meaningful only if it is physically possible.
Common Mode Failure	A Failure having the potential to affect all duplicated components in a robust configuration by virtue of common or shared characteristics.
Consequences	Results of the deviations.
Dangerous Failure	A Failure that has the potential to place the SIL/IPF in a state in which it will fail to perform its function. Dangerous Failures are usually only safe when the system has to perform a certain action or through testing. Also known as unrevealed failure.
Dangerous Failure Rate	The number of Dangerous Failures per unit time.
Dangerous Failure Robustness	A configuration in which plant integrity is not jeopardised by the Dangerous Failure of a single SIL/IPF component. Also known as unrevealed failure robustness.
Demand	A process or equipment condition or event which requires an IPF / SIF to take action to prevent a Hazardous Situation.
Demand Rate	The frequency at which a Demand occurs, i.e., the number of Demands per unit time.
Design intent	Describes the designer's desired or specific range of behaviour for elements and characteristics (operating conditions); also identified as "INTENTION".
Deviation	Departure from design intent. The variations from the intention are systematically identified by applying the "guidewords"
Diagnostic Coverage Factor	The number of Dangerous Failures that diagnostic features are capable of detecting, expressed as a fraction of all possible dangerous failures.
	(NOTE: Diagnostic features may only be recognised as such if they can trip the process to a safe state or maintain safety by different means.)
Failure	An abnormal condition that may cause a reduction or loss of capability of the IPF to perform its intended function.
Final Element	A device, or combination of devices, that manipulate a process variable or attract the attention of the operator to achieve risk reduction. The Final Element includes output cards or output relays, solenoid valves and cabling. Examples are valves, switchgear (rotating equipment stop circuits) and alarms.
Guidewords	Simple words which are used to qualify each intention in order to guide and stimulate the creative thinking process and discover deviations.
Hazard or Hazardous Situation	A situation with the potential to cause harm, including ill health and injury, damage to property, products or the environment, production losses or increased liabilities.
Hazard Rate	The frequency at which Hazardous Situations occur per unit time. Hazard Rate = Demand rate x Probability of Failure on Demand.
Initiator	A device, or combination of devices, that indicates whether a process or equipment item is operating outside the operating envelope. The Initiator includes input cards and input relays. Examples are manual switches, position switches and measurement systems (including process connections, sensors, transmitters, cabling, trip amplifiers or input cards etc.). In IEC 61508/61511 an Initiator is referred to as a Sensor.

LNG liquefaction plant							
HAZOP and SIL Allocation	n Report	PROJECT 231231	DATE April 2023	PAGE 6 di 14			
Independent Protection Layer	IPL. Device, system, or action that is capable of preventing a postulated accident sequence from proceeding to a defined, undesirable endpoint. An IPL is (1) independent of the event that initiated the accident sequence and (2) independent of any other IPLs. IPLs are normally identified during layer of protection analyses.						
Inspection Time	Time interval between proof tests						
Instrumented Protective Function							
	An IPF is intended to achieve or maintain a safe state for the process, in respect of a specific hazardous event. In IEC 61508/61511 an IPF is referred to as a SIF.						
Instrumented Protective System / Safety Instrumented System	mable electronic Logic Sc nput and output equipme						
Safeguards	Protection, detection and indication mechanisms which may be included within the selected part or parts						
Logic Solver		the application logic function. The Logic Solver excludes t cards. Examples are electromechanical relays, solid- ction of programmable electronic systems.					
Mean Time To Restoration	Time interval to repair the failing component. Includes repair time, shipping and managing time						
Mitigation	The action of making a consequence less severe or relieving consequences.						
ParametersThe team generates possible deviations applying guidewords to various process p as 'Flow', 'Level' and 'Pressure'. The selection of parameters is an important task fo devise for each individual system.							
Partial Valve Stroke Test				need to			
Probability of Failure on Demand							
Programmable electronics	Electronic component or device forming part of a Pl encompasses both hardware and software and inp	ut and output units.					
	(NOTE: This term covers micro-electronic device associated memories, etc. Examples of process se sensors; final elements; and programmable elec controllers, PLCs, DCS, loop controllers.)	ector programmable elec	ctronics include	e: smart			
Programmable Electronic System	System for control, protection or monitoring bas devices, including all elements of the system suc devices, data highways and other communication p example, an IPS or SIS could be a PES.	h as power supplies, se	ensors and othe	er input			
Proof Test	A test carried out on IPF components against requirements of the IPF are met.	an approved procedur	e to confirm	that all			
Proof Test Coverage Factor	The number of Dangerous Failures detected by the dangerous failures.	Proof Test expressed as a	a fraction of all p	oossible			
Recommendation	Additional safety measure identified by process ters specific deviation (also identified as "ACTION").	am, intended to reduce t	the risk connec	ted to a			
Risk	The frequency at which a Hazardous Situation of Hazardous Situation.	occurs multiplied by the	e consequence	of the			
Risk Reduction Factor	Is the contribute on an IPL to reduce risk allocated.						
Safe Failure	A Failure whose occurrence does not have the pot known as revealed failure.	ential to place an IPF in a	a dangerous sta	te. Also			
Safe Failure Rate The number of Safe Failures per unit time.							

LNG liquefaction plant PROJECT DATE PAGE 23123I April 2023 7 di 14

Safe Failure Fraction	The safe failure fraction (SFF) is the fraction of the overall failure rate of a device that results in either a safe fault or a diagnosed unsafe fault.	
Safety Integrity Level	Dangerous failure class 1, 2, 3 or 4 derived from the consequences of failure on demand and the frequency of demand. The definition in IEC 61511: discrete level (one out of four) for specifying the safety integrity requirements of the IPF / SIF to be allocated to the SIS (trip systems). Safety integrity level 4 has the highest level of safety integrity; safety integrity level 1 has the lowest.	
Trip	An Instrumented Protective Function action to bring the Final Element to a safe state.	
Undetected Failure	A failure that is not detected by internal diagnostics	
Validation	Confirmation that the system under consideration fully meets the integrity requirements set forth in the associated IPF Requirements Specification.	
Verification	Demonstration for a particular life-cycle phase that all deliverables (documents, software, hardware) meet the objectives set for that phase.	

2.2 Acronyms

AD MACCHINE

BOG	Boil-Off Gas
BPCS	Basic Process Control System
C&E	Cause and Effects Diagram
DCS	Distributed Control System
ESD	Emergency Shut Down
ESDV	Emergency Shut Down Valve
F&G	Fire and Gas
HAZOP	Hazard and Operability study
HC(s)	Hidrocarbon(s)
HFT	Hardware Fault Tolerance
IE	Initiating Event
IEC	International Electrotechnical Commission
IGV	Inlet guide vane
IPL	Independent Protection Layer
IPF	Instrumented Protective Function
IPS	Instrumented Protective System
LIN	Liquefied Nitrogen
LNG	Liquefied Natural Gas
MDEA	Methyl diethanolamine
MTTR	Mean Time To Restoration
NG	Natural Gas
P&ID	Piping and Instrumentation Diagram
PLC	Programmable Logic Controller
PFD	Process Flow Diagram
PFDavg	Probability of Failure on Demand (average)
PSV	Pressure Safety Valve
SDV	Shut Down Valve
SIF	Safety Instrumented Function
SIL	Safety integrity Level
SIS	Safety Instrumented System

3 REFERENCES

HAZOP and SIL Allocation Report

AD MACCHINE

PROJECT DATE 23123I April 2023

PAGE 8 di 14

3.1 Standards and guidelines

- IEC-61882 "Hazard and operability studies (HAZOP studies) Application guide, 2016.
- "HAZOP and multistage hazard study", Institution of Chemical Engineers, 1999.
- "Guidelines for Hazard Evaluation Procedures", 2nd Edition, CCPS and AIChE, 1992.
- "A Guide to Hazard and Operability Studies", Chemical Industries Association, 1990.
- IEC 61508:2010 Part 1÷7 "Functional Safety of Electrical / Electronic / Programmable Electronic Safety-Related Systems";
- IEC 61511:2016 Part 1÷3 "Functional safety Safety Instrumented Systems for the Process Industry Sector.

3.2 Project documentations

- C&E Matrix: 140REZH690010001PFS00101-0C;
- PFD: I20784 Sh 3 21;
- P&IDs:
 - 2220698-0C-10-001 sh 2 5
 - I20784 Sh 10 Natural gas inlet
 - I20784 Sh 11 NG reduction station for steam boiler
 - I20784 Sh 15 Natural gas treatment and dryer
 - I20784 Sh 16 Steam condensation and condensate subcooling
 - I20784 Sh 20 Liquefier cold box LNG
 - I20784 Sh 22 Liquefier cold box LNG
 - I20784 Sh 23 Liquefier cold box LNG
 - I20784 Sh 25 Nitrogen recycle compressor
 - I20784 Sh 26 Nitrogen booster
 - I20784 Sh 27 Nitrogen turbine
 - I20784 Sh 30 LNG storage
 - I20784 Sh 31 LNG storage
 - I20784 Sh 32 LNG truck loading pump
 - I20784 Sh 33 LNG truck loading pump
 - I20784 Sh 34 Truck loading bay
 - I20784 Sh 35 Truck loading bay
 - I20784 Sh 36 NG regeneration cooler
 - I20784 Sh 37 NG regeneration heater
 - I20784 Sh 37A NG regeneration compressor
 - I20784 Sh 37B NG regeneration compressor
 - I20784 Sh 38 HC heater
 - I20784 Sh 38A BOG compressor

LNG liquefaction plant in Renzenhof (Germany)

DATE

April 2023

PAGE

9 di 14

PROJECT

231231

LNG liquefaction plant

HAZOP and SIL Allocation Report

AD MACCHINE

- I20784 Sh 38B BOG compressor
- I20784 Sh 39A Cold flare
- I20784 Sh 39B Hot flare
- I20784 Sh 40 Liquid nitrogen storage
- I20784 Sh 41 Liquid nitrogen storage
- I20784 Sh 42 Nitrogen distribution system

- I20784 Sh 43 Instrument air distribution system
- I20784 Sh 50 Steam boiler
- I20784 Sh 51 Chiller
- I20784 Sh 60 Instrument air package
- I20784 Sh 65 Cooling water system
- I20784 Sh 66 Cooling water system
- I20784 Sh 67 Cooling water system
- I20784 Sh 68 Demi water package
- I20784 Sh 70 Thermal oxidizer
- I20784 Sh 74 Analysis pumps
- I20784 Sh 75 Analysis room
- I20784 Sh 80 Motors control typical
- I20784 Sh 81 Heaters control typical
- I20784 Sh 82 ESD valves typical

4 HAZOP AND SIL METHODOLOGY

The procedures that define modalities and methodologies to be followed in developing the Hazard and Operability - HAZOP – study and SIL allocation are included in **Attachment 7**.

HAZOP and SIL Allocation Report

PROJECT DATE 23123I April 2023 PAGE 10 di 14

5 HAZOP NODES

An overall number of **26 nodes** has been identified for HAZOP purposes.

List of reference nodes is reported in the following table:

N	Nodes	Drawings
00	General issues	-
01A	Fiscal metering station	l20784 Sh 10
01B	Natural gas supply, preheating, HG removal and absorption	2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15
02	Natural gas supply to steam generator	I20784 Sh 10; I20784 Sh 11; I20784 Sh 50; I20784 Sh 70
03	Flash vessel	2220698-0C-10-001 Sh 2; I20784 Sh 15; I20784 Sh 36
04	NG stream to dryers and condensate separator	2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 5
05	MDEA Storage tank and dosing	2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4
06	MDEA stripping column	2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15
07	MDEA blowdown tank	2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4
08	Antifoam dosing package	2220698-0C-10-001 Sh 3
09	Natural gas precooling, drying and liquefaction	2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20
10	Natural gas dryers regeneration loop	2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; l20784 Sh 10; l20784 Sh 15; l20784 Sh 36; l20784 Sh 37; l20784 Sh 37A; l20784 Sh 37B; l20784 Sh 39B
11	LNG separator	I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70
12	LNG storage tank including BOG loop	I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B
13	LNG tank and truck loading system	120784 Sh 30; 120784 Sh 32; 120784 Sh 34; 120784 Sh 38
14	Heavy HCs KO drum	I20784 Sh 70
15	LNG drain KO drum and cold flare	120784 Sh 39A
20	Cooling water circuit	I20784 Sh 50; I20784 Sh 51; I20784 Sh 65; I20784 Sh 66; I20784 Sh 67; I20784 Sh 68
21	Steam generation	I20784 Sh 10; I20784 Sh 15; I20784 Sh 37; I20784 Sh 38; I20784 Sh 50
22	Condensate collection	I20784 Sh 10; I20784 Sh 16; I20784 Sh 37; I20784 Sh 38; I20784 Sh 50
23	Chilled water circuit	120784 Sh 15; 120784 Sh 25; 120784 Sh 36; 120784 Sh 51
24	Demi water package	I20784 Sh 68

HAZOP and SIL Allocation Report

PROJECT DATE 23123I April 2023 PAGE 11 di 14

N	Nodes	Drawings
25	Instrument air production	I20784 Sh 42; I20784 Sh 43; I20784 Sh 60
30	Liquid Nitrogen supply to cold box and nitrogen recycle compressor	I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31
31	LNG subcooler	120784 Sh 23
32	Liquid nitrogen vaporizers, nitrogen heater and distribution	120784 Sh 22; 120784 Sh 25; 120784 Sh 34; 120784 Sh 37A; 120784 Sh 38A; 120784 Sh 38B; 120784 Sh 40; 120784 Sh 41; 120784 Sh 42

Additional information regarding each node, listed above, (e.g. node intention - operating and design conditions, relevant P&IDs, equipment, specific notes, etc.) are reported in HAZOP worksheets (ref. to **Attachment 3**).

The complete set of marked-up P&IDs with the above stated nodes is reported in **Attachment 2**.

6 HAZOP AND SIL TEAM AND VENUES

HAZOP and SIL study working team was composed by technicians of SIAD Macchine Impianti S.p.A. (the CLIENT) and OGE (the COMPANY) and was led by Fabrizio Bucci, a 3rd party qualified specialist not involved in the project development, acted as HAZOP Chairperson/ SIL Facilitator.

HAZOP workshop sessions have been held:

- from 27th to 31st March 2023 in SIAD premises in Bergamo (Italy),
- from 3rd to 6th April 2023 in OGE premises in Essen (Germany),

SIL allocation workshop session has been held:

• on **17**th **April 2023** via teleconference.

Attendance lists are reported in Attachment 1.

bioplusLNG 🍎 OGE

LNG liquefaction plant

HAZOP and SIL Allocation Report

PROJECT DATE 23123I April 2023

PAGE 12 di 14

7 HAZOP RESULTS

D MACCHINE

7.1 HAZOP Worksheet

The HAZOP worksheets were shown during the recording with sharing the screen to immediately allow the team to read, comment and, at the end, to agree on the recorded minute.

The HAZOP study was recorded with the software PHA Works. The worksheets registered during the session are enclosed in **Attachment 3**.

These worksheets include:

- Node number, identification, and intention.
- List of the drawings containing the node.
- Parameter / guideword / deviations / consequences / available safeguards.
- Risk ranking.
- Recommendations/actions (when required);
- Recommendation Owner.

7.2 HAZOP Recommendations

During HAZOP an overall number of **67 recommendations** has been suggested and agreed by the team.

HAZOP Recommendation list is reported on **Attachment 4**.

Close-out of the HAZOP recommendation is part of a separate activity and therefore is not included in the present report.

bioplusLNG) OGE

LNG liquefaction plant

HAZOP and SIL Allocation Report

AD MACCHINE

PROJECT DATE 23123I April 2023

PAGE 13 di 14

8 SIL ALLOCATION RESULTS

8.1 SIL Worksheet

Starting from HAZOP results, the SIL analysis allowed the team to define the Safety Criteria and Mitigation of hazards which can lead to a significant safety or environmental consequences.

Scenario with economic consequences have not been included in this SIL Allocation study.

A total number of **46 SIFs** have been identified and analyzed, with following results:

- A number of 17 SIFs not SIL rated;
- A number of 25 SIFs rated SIL1;
- A number of **4 SIFs rated SIL2**.

The SIF List and corresponding SIL rating are listed in Attachment 6.

The analysis has been recorder in dedicated worksheet specifically defined for the application of SIL Allocation Procedure according to ICARO standards. SIL Worksheets are reported in **Attachment 5**. In the worksheet for each SIF are indicated:

SIF identification (initiator, logic solver, final elements);

- Identification of initiating events;
- Scenario description;
- Operators occupancy;
- Probability of avoiding the hazardous situation
- Available IPL;
- Scenario requiring SIF demand rate;
- SIL requirement;
- SIL selected;
- Recommendations if required.

HAZOP and SIL Allocation Report

SIAD MACCHINE

PROJECT DATE

PAGE 14 di 14

April 2023

8.2 SIL Allocation Recommendations

During the SIL analysis an overall number of **10 recommendations** has been suggested and agreed by the team; those recommendation are listed in the following table:

SIF N	SIF	Recommendation Ref.	Recommendation
10	PAHH (interlock to shut down HV-138 in case of back flow due to both P2005A/B not running)	1	Effectiveness of PSV-271 in case of back flow from TW1002 to TW2008 shall be verified considering presence of 2 check valves dissimilar type (reduced required discharge capacity according to reference standard API 521, chapter 4.4.9.3.3). If PSV is adequate, required SIL ca be derated by 1 level ensuring periodical testing on check valves. For this purpose it is suggested to install second dissimilar check valve on dedicated discharge line of each P2005A/B
15	ТАНН-466	2	Provide an additional independent temperature transmitter at H4006 outlet with high temperature alarm
18	ТАНН-535	3	Provide an additional independent temperature transmitter on NG line upstream EW5000 including high temperature alarm
27	РАНН-1960А	4	Provide an independent function (additional pressure transmitter) to trip P19000 and to close HV-1902A in case of high pressure (set point lower than PAHH-1960A)
28	PALL-1960A	5	Intervention of PALL-1961A shall also close HV-1957A and HV-1958A
29	TALL-914	6	Provide an additional independent temperature transmitter at EW9000 outlet (road tanker BOG line) with low temperature alarm
33	TALL-913	7	Provide an additional independent temperature transmitter at EW9000 outlet (storage tank BOG line) with low temperature alarm
34	TALL-915	8	Provide an additional independent temperature transmitter at EW9000 outlet (NG line) with low temperature alarm
43	PAHH-1640	9	Ensure adequate set point for PAHH-1640 to prevent overpressurization on upstream S2011 (DP=2 barg)
45	TAHH (overheating of WB41/WB42 downstream piping)	10	Investigate availability of other IPL to prevent piping overheating downstream WB41/WB42

Close-out of the SIL recommendation is part of a separate activity and therefore is not included in the present report.

LNG liquef	action plant		
UAZOD and SIL Allocation Depart	PROJECT	DATE	PAGE
HAZOP and SIL Allocation Report	231231	April 2023	1 di 7

ATTACHMENT 1

Attendance List

HAZO	P & SIL STUDY ATTENDANCE LIST	
Company:	SIAD / BIOPLUS LNG GmbH	
Plant Site:	Renzenhof (Germany)	
Project:	LNG Liquefaction Plant	- OGE
ICARO Job:	231231	2 OBE

SESSION No. #1

Name:	Company:	Expertise:	Signature:
FABRUZO BUCU	IURO	Chairperson	Bun
DEBORA D'OSTILIO	ICARO	SOUDE	Johan Mostelo
GOWARD FORTLISONS	SIAD	PM	fent
Mariano Cume 4:	SIAD MI	INSTRUMENT	June .
PAOLO ANTONELLI	SIAD MI	PROJECT ENGINEERING	1 shle
FEDERICO SORU	SI AD TI	Normoner	Sogn
(HRIDTIAN) SUANIT	CRE	PROCESS	Int
CHRISTIMN TIEIZE	OGE	ELJiner, Mary	"Chit ()
Christian Ludwiczał		Project Manager	(haliocen)
Sebashan Hänle	THU SUD	Plant Safety	S. Hail
PIERLUIGI GRITTI	SIAD MI	SERVICE TECH. MGR	Grot
DANIELE SANTUS	TPI	PROCESS ENG.	South

	HAZOP & SIL STUDY ATTENDANCE LIST		
	Company:	SIAD / BIOPLUS LNG GmbH	
ICARO	Plant Site:	Renzenhof (Germany)	S bioplusLNG
	Project:	LNG Liquefaction Plant	- OGE
	ICARO Job:	231231	

DATE: 28/03/2023 SESSION No.

Name:	Company:	Expertise:	Signature:
FABRIZIO BUCCI	ICARO	CHAIRPERSON	Bun
DEBORA D'OFTILO	ICARO	SOUBE	John Morte
MANIELE SANTUS	TPI	PROCESS	Santa
PLERLUIG GROTT	SUAD MI	TECHN, SENIOR ABV.	Greeks
FOSERICO SORU	SLADS N.	IN STUREWTHTO;	Som
MARIANO Gumet	SIADMI	SAPETY	Suget !!
Christian Ludwiczał	OGE	Project Manager	Unchasciso S
Sebastion Hönle	TÜV SÜD	Plant Safety	S.Hola
Christian Tietze	OGE	Enjineer Mary	On F M
(HRISTIAN) SCHMITT	0GE	PROCESS	d'hint
PAOLO ANTONELL	SIAD MI	PAROSECT ENCIN.	MAMA.
Klaus Thomas	OGE	Process Control	Kum

HAZOP & SIL STUDY ATTENDANCE LIST		
Company:	SIAD / BIOPLUS LNG GmbH	
Plant Site:	Renzenhof (Germany)	bioplusLNG
Project:	LNG Liquefaction Plant) OGE
ICARO Job:	231231	200L

DATE: 29103/2023

SESSION No.

Name:	Company:	Expertise:	Signature:
FABRIZIO BUCCI	CARO	CHAIR PERSON	Admi
DEBORA D'OSTI UO	ICARO	SORIBE	Deber D. Office
GARISTIAN SCHMITT	OGE	PROCESS	1. Mitt
Christian Title	OGE	Eng. haven-t	0.40
Christian Ludwiczal	OGE	Project Managecant	(Malevile)
Sabastian Klänle	TÜV SÜD	Plant Selety	S. Nerl
MARIAMO Cumedi	SIAD MI	Safety Engineer	Jun k.
GENNARO FORMISANO	SIDD RI	Pri	feert
Klaus Thomas	OGE	Process Control	Thomas
PAOLO ENTONELLI	SIAD MI	P.E.	Anton M.
FEDERUS SOW	SIAD RI	INSTRUCTION	Sou
DANIEUE SOUTUS	TPI	PROCESS	South
PIERLUG GRITTI	SIAD MI	TECHN. SENIOR ADVIS.	Guts
			/

	HAZOP & SIL STUDY ATTENDANCE LIST		
	Company:	SIAD / BIOPLUS LNG GmbH	
ICARO	Plant Site:	Renzenhof (Germany)	bioplusLNG
	Project:	LNG Liquefaction Plant) OGE
	ICARO Job:	231231	

DATE: 30/03/2023

SESSION No.

Name:	Company:	Expertise:	Signature:
			Λ
FABRIZIO BUCCI	ICARO	Chairperson	4 Far
DEPORAD'OFTICO	ICARO	SCRIBE	John Makie
GARISTIAN SCHMITT	OGE	PROCESS	ent
Christian Tille	OGZ	Eug. Rayl.	2FM
Christian Ludwiczal	ØGE	Project Harrage	Kelenoz
Sebastian Mönle	TÜV SUD	Plant Selety	J. Keil
Mariano Cumeli:	SIAD MI	Safetingineer	Genud:
GENNARD FORMISSIND	SISD TI	Por 1	Jent.
Klaus Thomas	OGE	Rocess Control	King
PAOLO AUTONEUN	SIAD 911	PE	MARIN
FEDERICO SOW	SLAD MI	IV STWNEITATION	Sou
MANIELE SANTUS	TPI	PROCESS	Santa
PIERLUIGI GRIM	SIAD MI	SENIOR TECH. ADVISO	e Guets
			l l
	5		

	HAZOP & SIL STUDY ATTENDANCE LIST		CIAD MACCHINE
	Company:	SIAD / BIOPLUS LNG GmbH	I IIIIII IMPIANTI
ICARC	Plant Site:	Renzenhof (Germany)	bioplusLNG
	Project:	LNG Liquefaction Plant	- OGE
	ICARO Job:	231231	J. UGE

DATE: 31 03 2023

SESSION No.

1	a
=#	2

Name:	Company:	Expertise:	Signature:
FABRIZIO BUCCI	ICARO	Charperson	Buri
NEBORA MOSTILIO	ICARO	SCLIBE	Depry Opple
(HRISTIAN BEHMITT	OGE	ROTESS	litt
CHRISTIAN TIERE	OGE	Eng. Ryl.	SAN
Obstation Luchwiczul	OGE	Project Hunger (Kolwiter
Sebastian Könle	TÜV SÜD	Plant Safety	Stal
Mariano Cumetti	SIAD MI	Sofety Engineer	Cound.
GERMARD FORMISOND	SSP RI	pn /	fent
Klaus Thomas	ÔGE	Process Control	V Cum
DANIZE AN WOND	SIAD PI	SARETY ENGINEER AUT, COORDINATOR	D. Jal
PAOLO ANTONELLI	SIAD MI	PE	PAUL
FEBERICO SOW	SUAD M	INSTAUNEMATL	Socu
PIERLUIGI GRITTI	SLAD MI	SENIOR TECHN. ADVISE	Gruby
			V

	HAZOP & SIL STUDY ATTENDANCE LIST		
	Company:	SIAD / BIOPLUS LNG GmbH	
ICARO	Plant Site:	Renzenhof (Germany)	bioplusLNG
	Project:	LNG Liquefaction Plant	- OGE
	ICARO Job:	231231	200L

SESSION No.

Name:	Company:	Expertise:	Signature:
FABRIZIO BUCY	ICARO	Chairperson	Mari
DEBORA D'ORTIÙC	ICARO	SCRIBE	Lehasp Ostre
Christian Ludwiczaf	OGE	Project Manager	Aucher 17
Schastion Hönle	TUV SUD	Plant Safety	Star
Reaus Thomas	OGE	Process Control	King
(HRISTIAN SCHMITT	OCLE	PROCESS	1. list
GENNARD FORMISSAND	SIAD M	Por .	feed
DANGER ARGONDS	SIAD HI	FUNCT. SAFETY ENGINER AUT. COORDINATER	Dale les
PAOLO ANTONELLI	SIAD MI	PE	PAthli
Mariano Cume A.	SLAD MA	FS / Instrument Engineer	termet.
FEDERIUS SO EN	STAD TU	IN STRUKENTATION	Sour
Christian Tielze	OGE	Enj. MgA.	AC
		/	

	HAZO	P & SIL STUDY ATTENDANCE LIST	CIAD MACCHINE
	Company:	SIAD / BIOPLUS LNG GmbH	
ICARO	Plant Site:	Renzenhof (Germany)	
	Project:	LNG Liquefaction Plant	- OGE
	ICARO Job:	231231	200L

SESSION No.

#7

.

Name:	Company:	Expertise:	Signature:
			$\Delta \Delta$
FABRIZIG BUG	1(120	Chairperson	(p)
Christian Ludwicza	OVE	Project Manage	Inducita
Christian Tietze	062	Eug. May-	let
Christoph-Hopp	OGE	Frenconia Operations frea	
Kians Thomas	OGE	Process Control	Yell
CHRISTIAN SCHWITT	OLE	PROCESS	1 feritt
Sebastian Häule	TÜV SÜD	Plant Safety	S. Hek
GENNARO FORMJANO	SIAO PLI	Jeur Ph	feit
ARKOND' DANIER	SIAD MI	FS alginETR (TUN) AUTOMATION COORD_ C	Shar
PAOLO ANTONEUI	SIAD MI	PE	ALLI.
FEDERIUS SOW	INSTRUMENTATION	SLAD MI	Seen
Mariano Come Hi	SIAOMI	FS Engineer Introment	Jerund.
DEBORA N'OSTILIO	ICARO	SOUBE	Debe. Opere
			~

	HAZO	P & SIL STUDY ATTENDANCE LIST				
	Company:	SIAD / BIOPLUS LNG GmbH				
ICARO	Plant Site:	Renzenhof (Germany)	bioplusLNG			
	Project:	LNG Liquefaction Plant	- OGE			
	ICARO Job:	231231	200L			

510412023

SESSION No. ± 8

Name:	Company:	Expertise:	Signature:
FABRIZIO BUCCI	ICARO	CHAIRPERSON	Bui
DEBORA D'OSTILIO	ICARO	SCRIBE	Deboro D'Ostil.
Christian Tietze	06E	Eug. Righ.	act
Christoph Hopp	OGE	Fremeania Operations Hira	- Top
Klaus Thomas	OGE	Process Control	1 cm
CHRISTIAN SHMITT	CLE	PROCESS	lint
Seberstian Monle	TUV SUD	Plant Safety	S. Ret
GENNARD FORTUNN	o Sisoni	Pr	feet
DANNER AR'HOND'	SIAD M'	AS ENOTINETR AUT, COORDINATION	D. A.
PAOLO ANTONELLI	SIAD MI	PE	Alli
FEDERIUS SOW	SIAD MI	1 Souneur	Sour
Mariano Cumetti	SIAD MI	FS Engineer In stroment	Sayfuld /
Cristian Ludeouzer	DGE	Project Mawages	Mohoci
		0 0	1

	HAZOF	% SIL STUDY ATTENDANCE LIST	
	Company:	SIAD / BIOPLUS LNG GmbH	
Plant Site		Renzenhof (Germany)	bioplusLNG
	Project:	LNG Liquefaction Plant	JOGE
	ICARO Job:	231231	

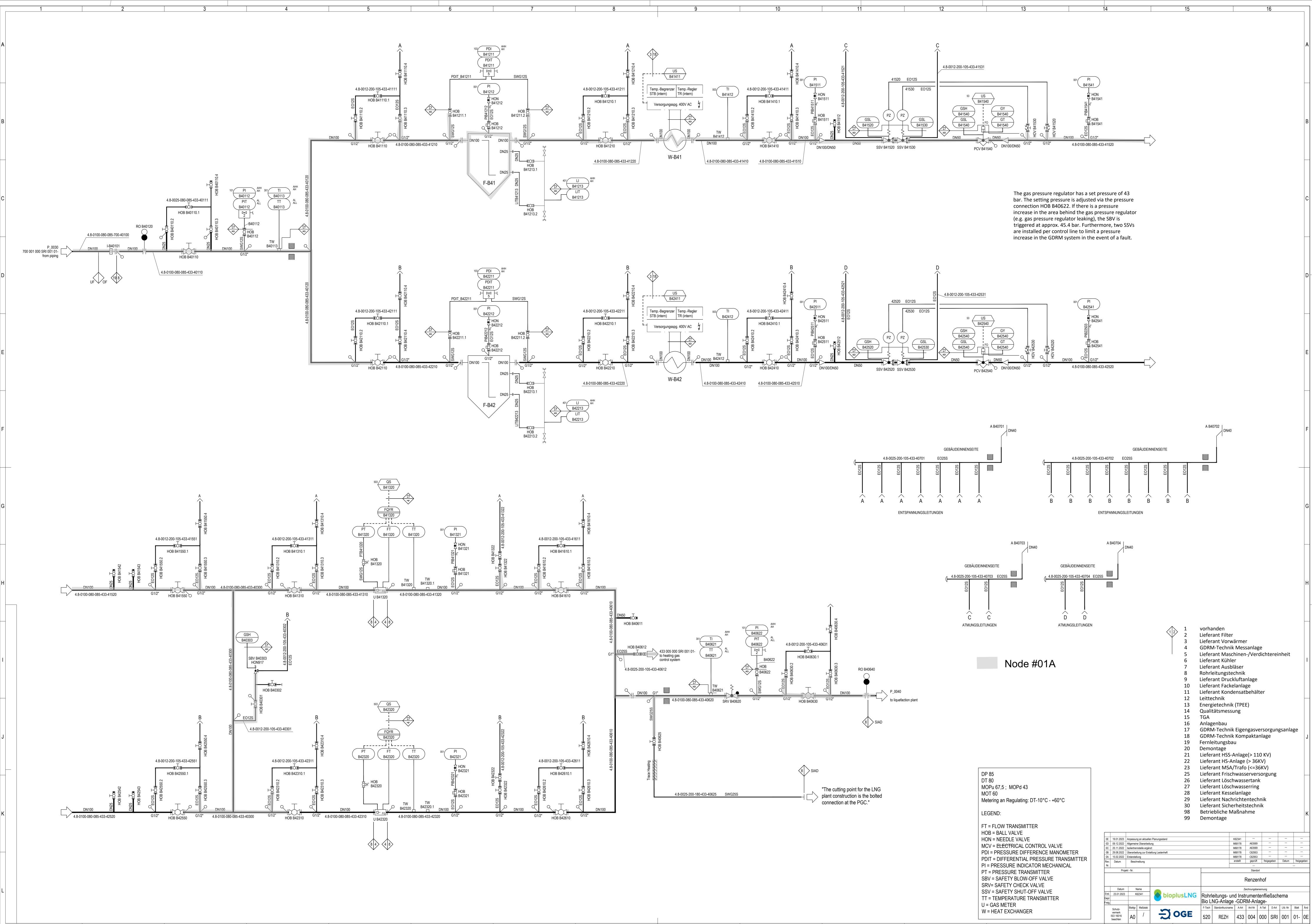
DATE: 17/04/2023

SESSION No. #9

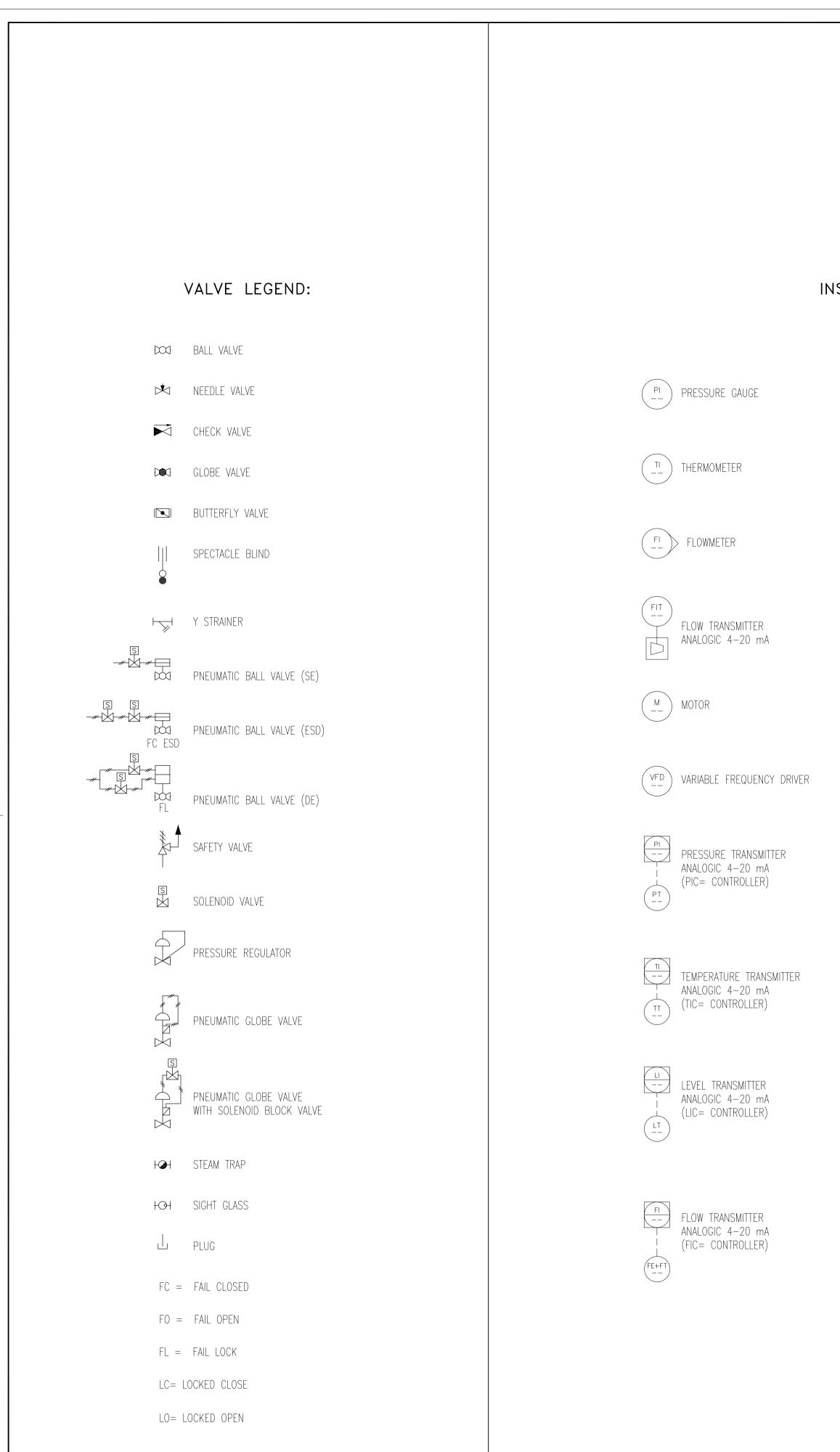
Name:	Company:	Expertise:	Signature:		
FABRIZIO BUCCI	ICARO	Chairperson	Via teleconference		
DEBORA D'OSTILIO	ICARO	Scribe	Via teleconference		
GENNARO FORMISANO	SIAD MI	PM	Via teleconference		
PAOLO ANTONELLI	SIAD MI	PE	Via teleconference		
FEDERICO SORU	SIAD MI	Instrument	Via teleconference		
MARIANO CUMETTI	SIAD MI	FS engineer instrument	Via teleconference		
DANIELE ARIMONDI	SIAD MI	FS engineer aut. coordinator	Via teleconference		
DANIELE SANTUS	ТРІ	Process	Via teleconference		
KLAUS THOMAS	OGE	Process Control	Via teleconference		
CHRISTIAN LUDWICZAK	OGE	PM	Via teleconference		
CHRISTIAN SCHMITT	OGE	Process	Via teleconference		
CHRISTIAN TIETZE	OGE	Eng Manager	Via teleconference		
SEBASTIAN HOENLE	TÜV SÜD	Plant safety	Via teleconference		

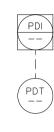
LNG liquefaction plant			
HAZOP and SIL Allocation Report	PROJECT 231231	DATE April 2023	PAGE 2 di 7
	23123	April 2023	2 di

ATTACHMENT 2

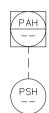

Master Copy P&IDs

I	14			15					10				
												,	A
DN100 151 Fa. LINDE	ΣEV	DN300	4	Mengenre	egela	anlage N-	-ERC	3IE					В
	<u>A</u> EV DN400/D	DN300											С
													D
													E
												_	F
													G
													H
													1
					007								J
SDORF			(1 - vorhand 	den tungs	technik (inkl.	Schnit	tstelle	Anboh	rung)			K
URG	OC 19.12.2022 A OB 29.08.2022 Ü OA 15.02.2022 P O5 28.10.2019 P	Algemeine Überarbeit Algemeine Überarbeit Überarbeitung zur Erst Projekt Bio LNG PA-16207 Rückbau VE PA-17517 Trennsteller Beschreibung	Pro ung tellung Lastenh D Renzenhof n AIS-NIS					LNG mbezeichnur M21585 C18018 C63953 S63687 C18433 geprüft Stando	ng OGE C627 C629 C184 freigeg	717 953 	[[[[freigegebe	
	Datum	Name	P	EDOC				Renzer					
1	Ochutz	M68178 Blattgr. Maßstab		~	R+ Sta	I Schema tionspiping ch Standortkurzname	A-Art	Anl-Nr	A-Teil	D-Art L	_fdNr I	Blatt Ä	nd
	vermerk ISO 16016 beachten	A0 [/]		DOGE	52 SRI001080		700 Er	001	000	SRI (001 0	01- 0	D


520REZH700SRI0010000100001-.DWG


Ers.d.: ---

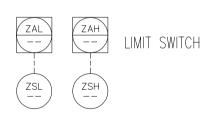
520REZH433004000SRI00101-.DWG


Urspr.: ---

INSTRUMENT LEGEND:

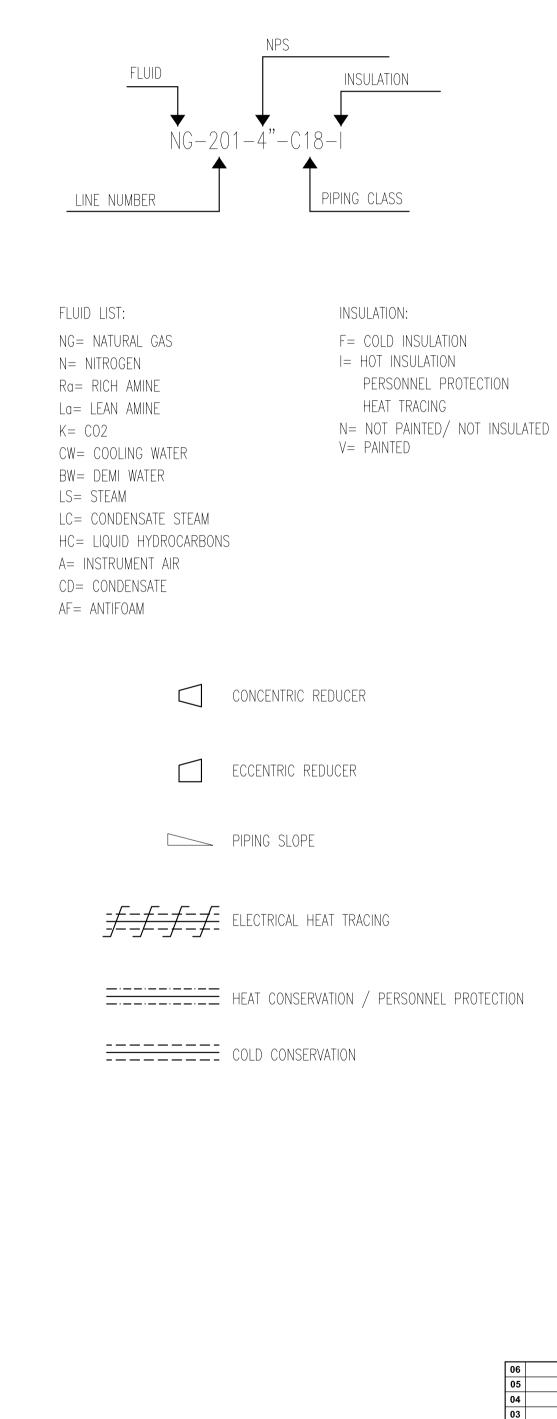
DIFFERENTIAL PRESSURE TRANSMITTER ANALOGIC 4–20 mA

PRESSURE SWITCH (HIGH)


FAL FLOW SWITCH (LOW) FSL

LAL	LAH
LSL	LSH

LAH LEVEL SWITCH (LOW/HIGH)


LSLL ---

LAHH LEVEL SWITCH (LOW LOW/HIGH HIGH)

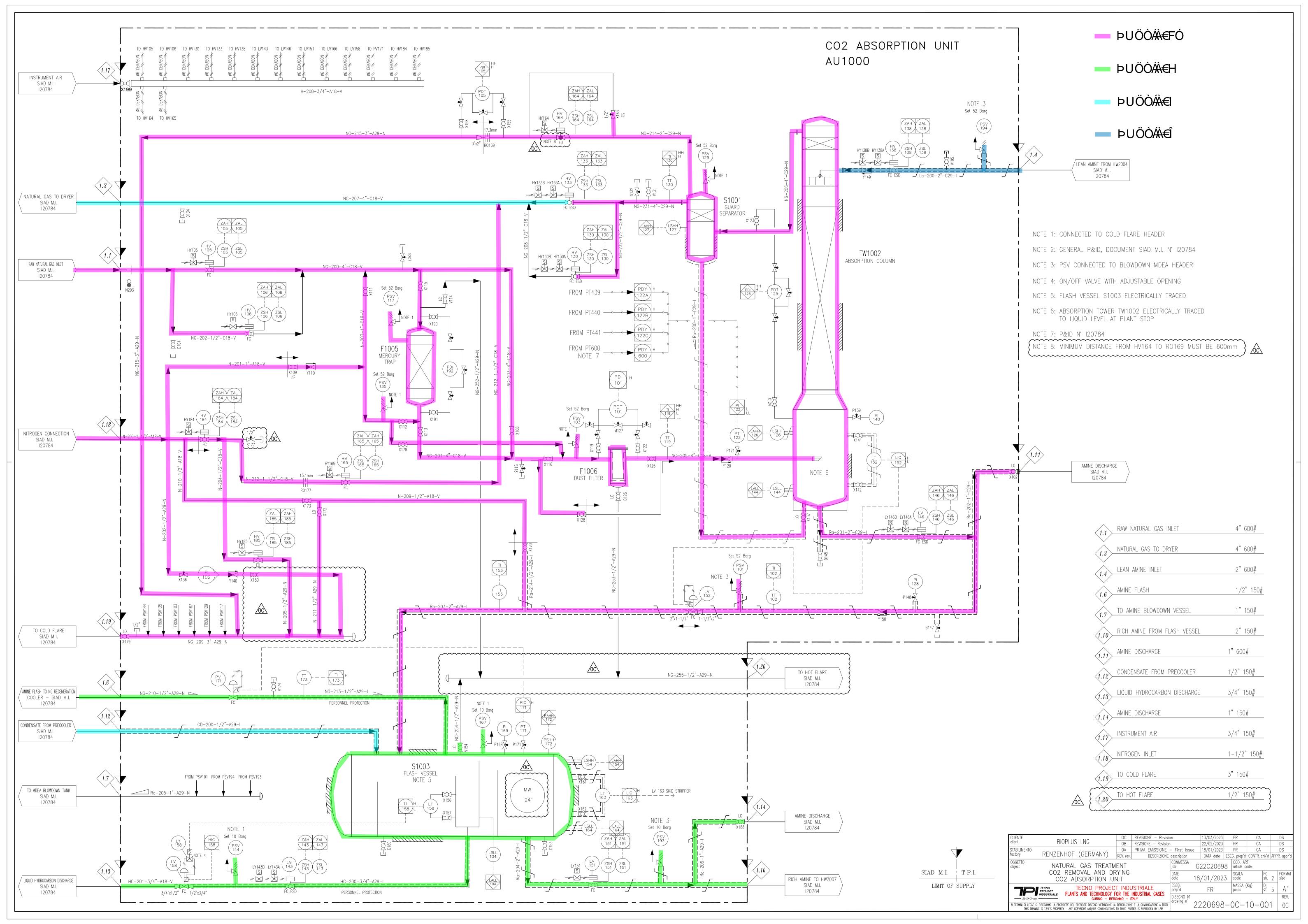
OPERATOR ACCESSIBLE WITH SAFETY FUNCTION

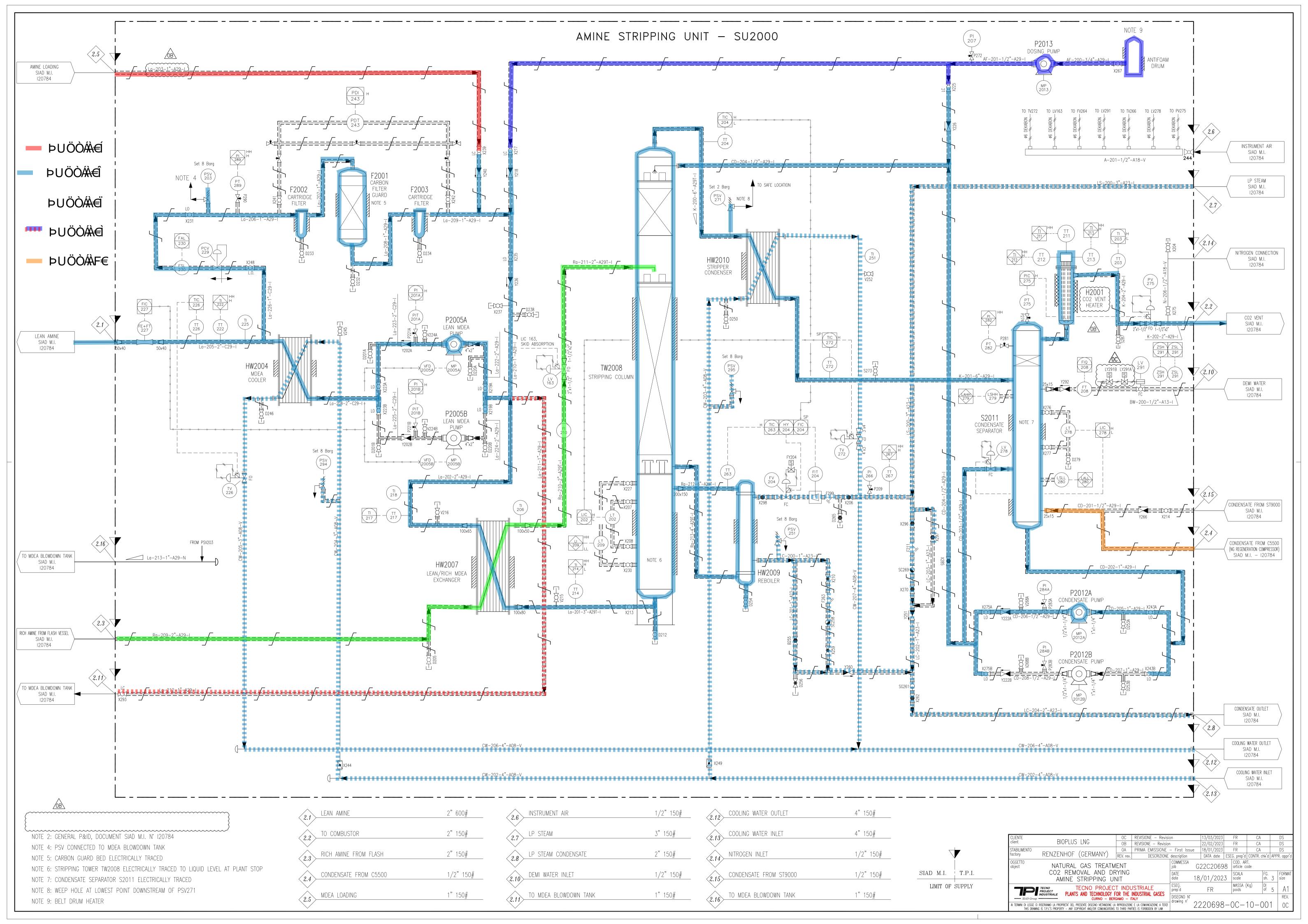
OPERATOR ACCESSIBLE WITH CONTROL FUNCTION

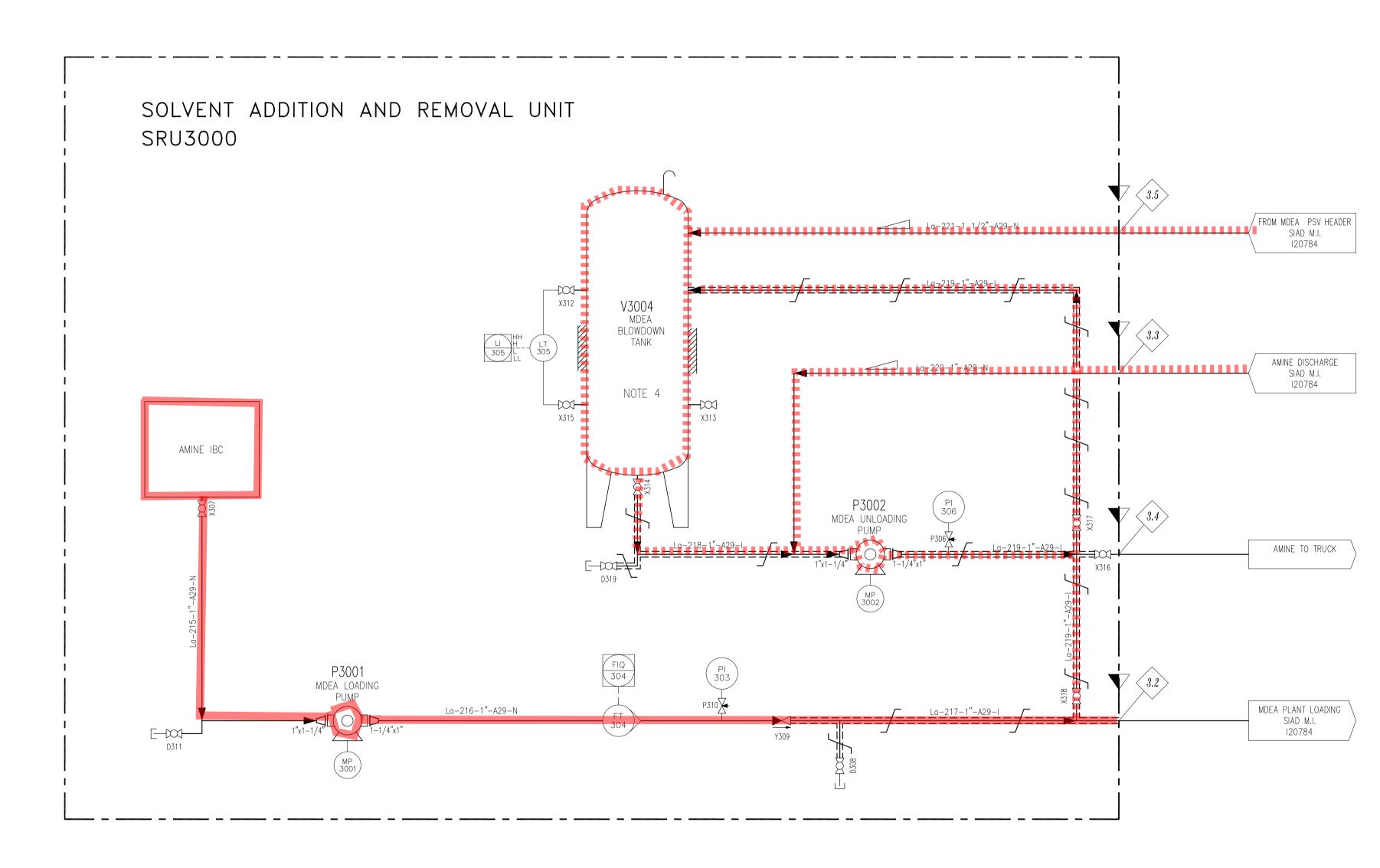
Projektnummer OGE	Maßnahmenbezeichnung OGE

erstellt geprüft freigegeben Datum freigegeben Rev. Datum Beschreibung ---Standort / Projektname Projekt - Nr bioplusLNG DG-001115 LNG LIQUEFACTION PLANT
 Datum
 Name

 Erst.
 13/03/2023
 FR


 Gepr.
 13/03/2023
 CA

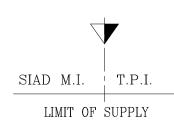

 Freig.
 13/03/2023
 DS
 Zeichnungsbenennung TPI MOABET **NG TREATMENT UNIT - PIPING AND INSTRUMENTATION DIAGRAM** NG BEHANDLUNGSEINHEIT - ROHRLEITTUNGEN UND INSTRUMENTIERINGS DIAGRAMM


 F-Tech
 Standortkurzname
 A-Art
 Anl-Nr
 A-Teil
 D-Art
 Lfd.-Nr
 Blatt
 Ånd

 520
 REZH
 598
 004
 003
 SRI
 001
 01+
 0C

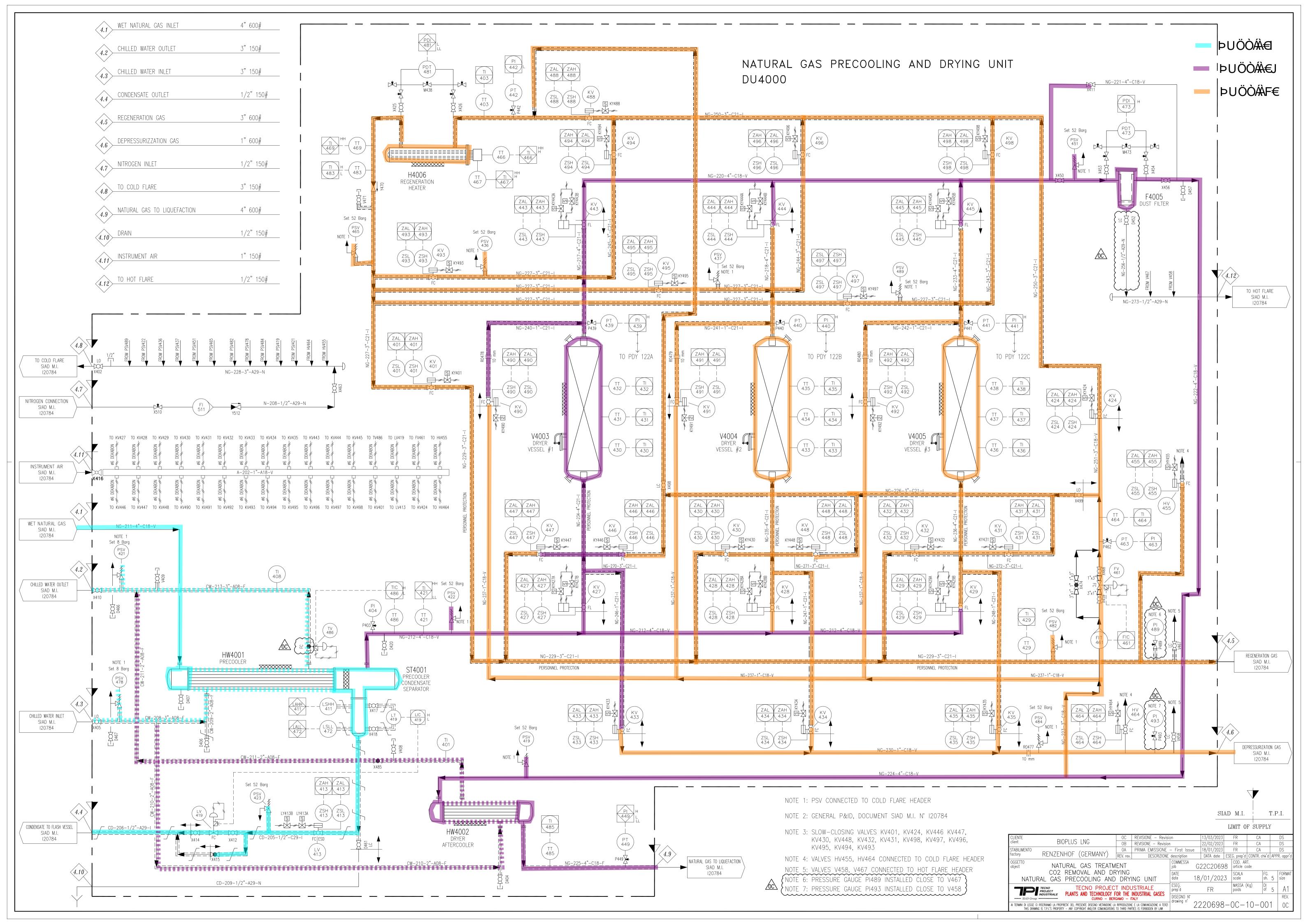
 Schutz-Normark Blattgr. Maßst. 1/ JOGE vermerk ISO 16016 A1 beachten Urspr.: 2220698-0C-10-001 / EST105704 Ers.f.: Ers.d.:

3.2>	MDEA PLANT LOADING	1"	150‡
0.2			
3.3	AMINE DISCHARGE	1"	150 _†
\sim			
$\langle 3.4 \rangle$	AMINE TO TRUCK	1"	150 _†
\sim			
$\langle 3.5 \rangle$	FROM MDEA PSV HEADER	1-	1/2"
\sim			


)#

)#

)#


⁷2"150#

NOTE 1: GENERAL P&ID, DOCUMENT SIAD M.I. N° 120784 NOTE 4: MDEA BLOWDOWN TANK V3004 ELECTRICALLY TRACED

► ÞUÖÒǼ

CLIENTE		00	REVISIONE - Revisio	on		13/03/2023	FR		CA		DS
client	BIOPLUS LNG	0B	REVISIONE - Revisior	۱		22/02/2023	FR		CA		DS
STABILIMENTO		0A	PRIMA EMISSIONE	– First Issu	е	18/01/2023	FR		CA		DS
factory	RENZENHOF (GERMANY)	REV. rev.	DESCRIZIONE	description		DATA date	ESEG. pre	p'd CC)NTR. chk	'd APF	PR. appr'd
OGGETTO object					G22C20698		8 COD. article	ART. e code			
	CO2 REMOVAL AND DF SOLVENT ADDITION AND REM		UNIT	DATE date	18	/01/202	3 SCAL/ scale		F(sł		FORMAT size
						FR	MASS poids	A (Kg)) Di of	5	A1
SLAD G				DISEGNO N° drawing n'							REV.
	SGE CI RISERVIAMO LA PROPRIETA' DEL PRESENTE DISEGNO VIETANDONE LA DRAWING IS T.P.I.'S PROPERTY – ANY COPYRIGHT AND/OR COMUNICATIONS			arawing n	22	220698	-0C-	-1()-0()1	00

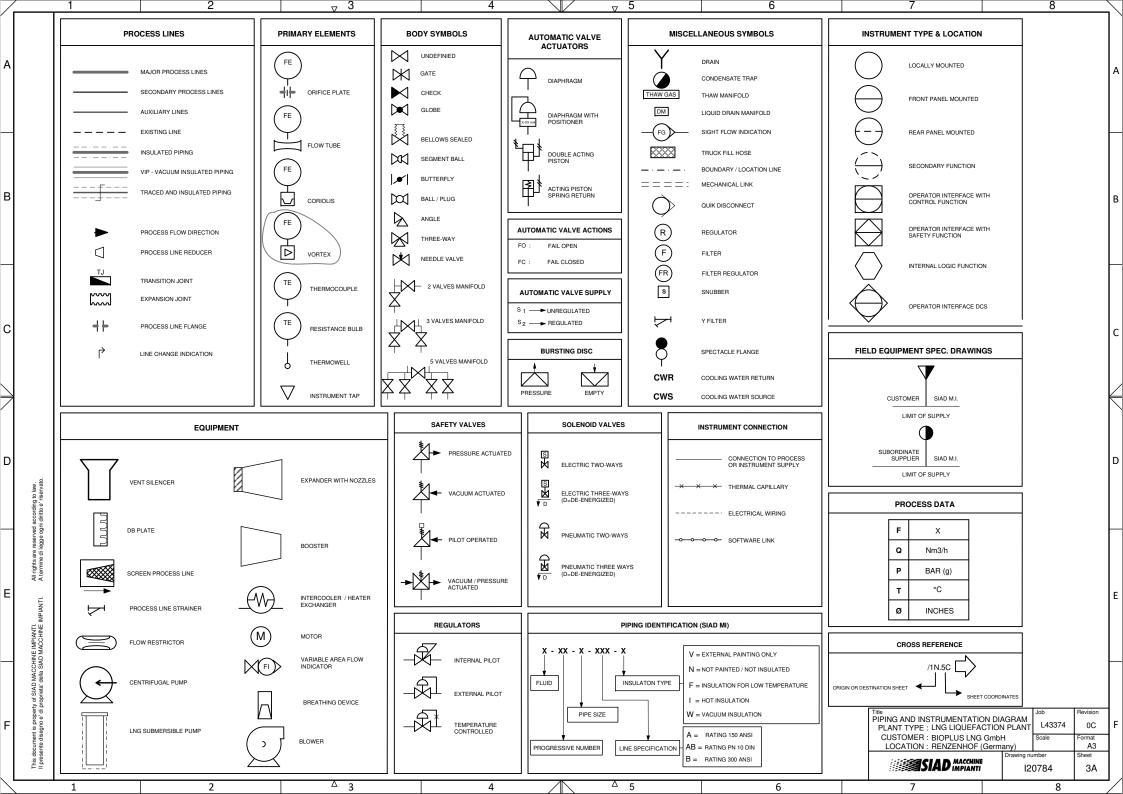
PROJE	L433/4		PLANT TYPE : LNG LIQUEFACTION PLANT TIPO IMPIANTO : IMPIANTO LIQUEFAZIONE LI CUSTOMER : BIOPLUS LNG GmbH CLIENTE :								
	TION : RENZENHOF (Germany) LITA' : RENZENHOF (Germania)	С									
SHEET	DESCRIPTION	SHEET			DESCRIPTION						
1A	Cover sheet	39A	Cold flare								
2A	Instrument and valve legend	39B	Hot flare								
3A	Symbols sheet	40	Liquid nitrog	gen storage)						
4A	Revisions	41	Liquid nitrog	gen storage)						
10	Natural gas inlet	42	Nitrogen dis	stribution sy	vstem						
11	NG reduction station for steam boiler	43	Instrument a	air distribut	ion system						
15	Natural gas treatment and dryer	50	Steam boile	er							
16	Steam condensation and condensate subcooling	51	Chiller								
20	Liquefier cold box LNG	60	Instrument a	air package)						
22	Liquefier cold box LNG	65	Cooling wat	er system							
23	Liquefier cold box LNG	66	Cooling wat	er system							
25	Nitrogen recycle compressor	67	Cooling wat	er system							
26	Nitrogen booster	68	Demi water	package							
27	Nitrogen turbine	70	Thermal oxi	dizer							
30	LNG storage	74	Analysis pu	mps							
31	LNG storage	75	Analysis roo	om							
32	LNG truck loading pump	80	Motors cont	rol typical							
33	LNG truck loading pump	81	Heaters cor	ntrol typical							
34	Truck loading bay	82	ESD valves	typical							
35	Truck loading bay										
36	NG regeneration cooler		Projekt	- Nr.			Standor	t / Projektname			
37	NG regeneration heater		DG-00	1115	SIAD MACCHINE	LN	NG LIQUEF	ACTION	PLANT		
37A	NG regeneration compressor		Datum	Name				ingsbenennung			
37B	NG regeneration compressor		Erst. 13.03.2023	CAGLIONI	bioplusLNG						
38	HC heater	7	Gepr. 13.03.2023 Freig. 13.03.2023	SORU ANTONELLI	Unicipiedante		IGEN UND INST				
38A	BOG compressor	7	Schutz- vermerk	Blattgr. Maßst. 1/	700-	F-Tech Standortku	urzname A-Art An	I-Nr A-Teil D	-Art LfdNr Bla		
38B	BOG compressor	7	ISO 16016 beachten		DGE	520 RE	ZH 70000	01 000 S	RI 002 01		

А

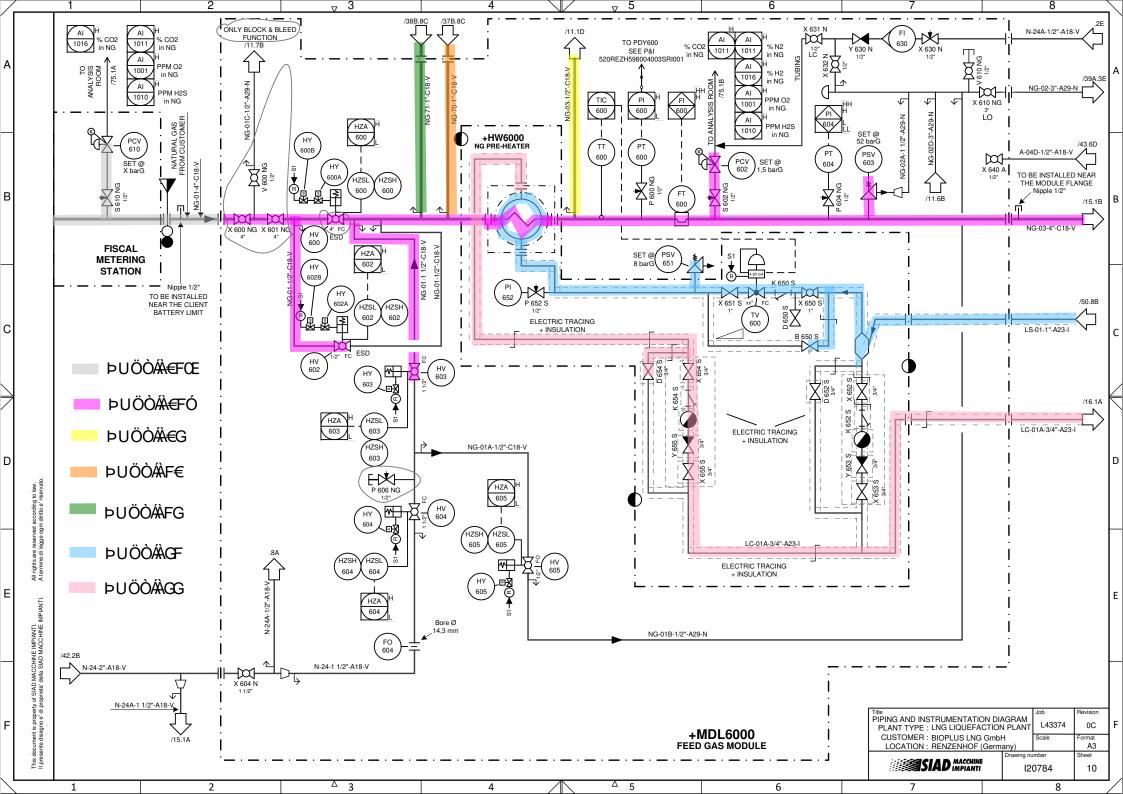
В

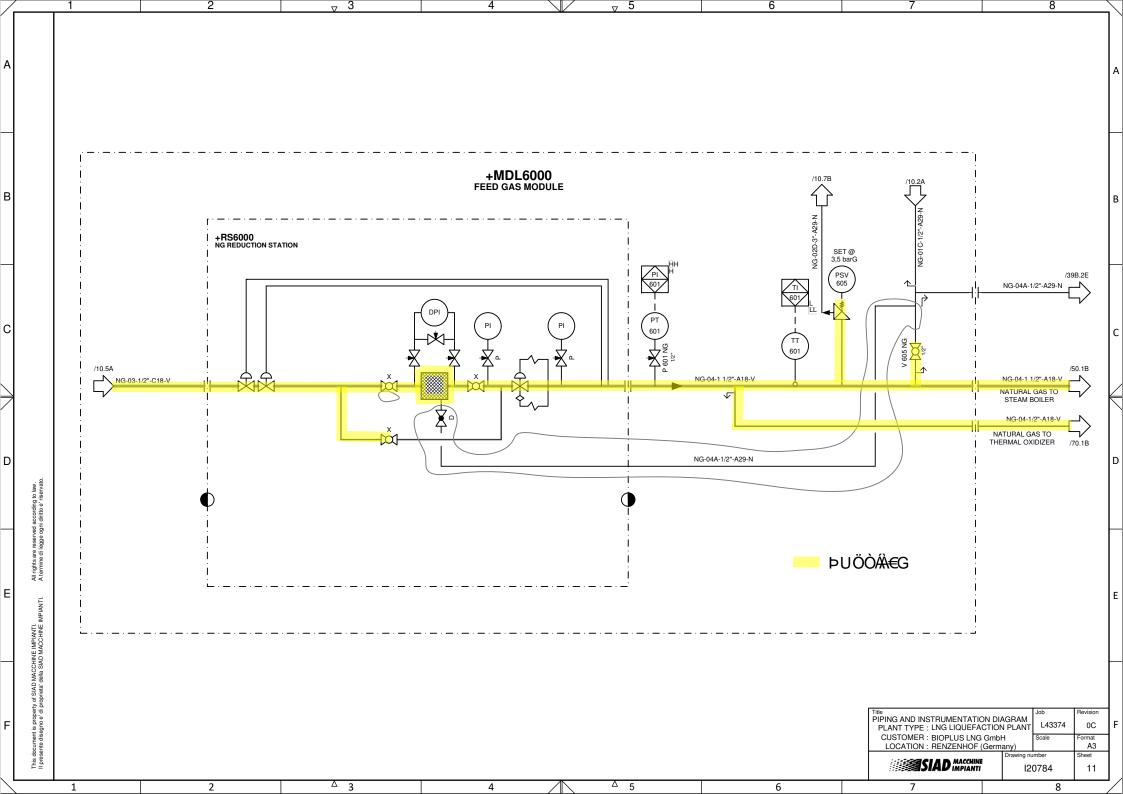
С

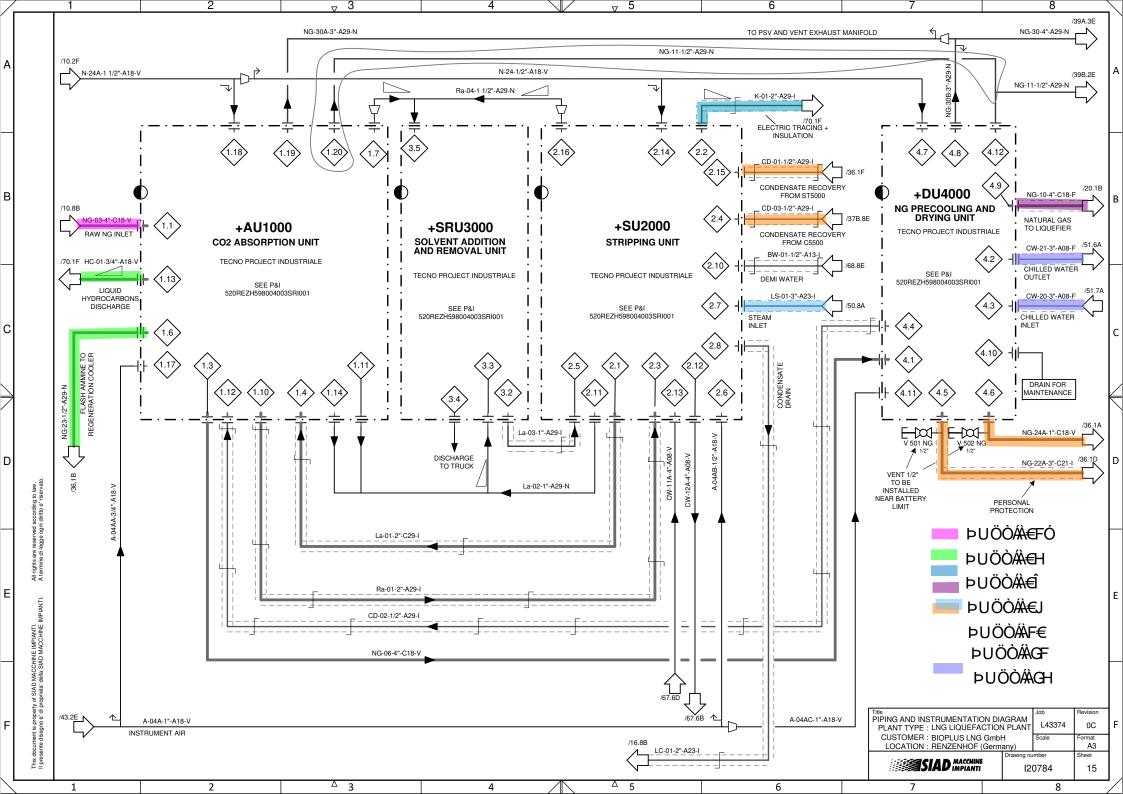
D

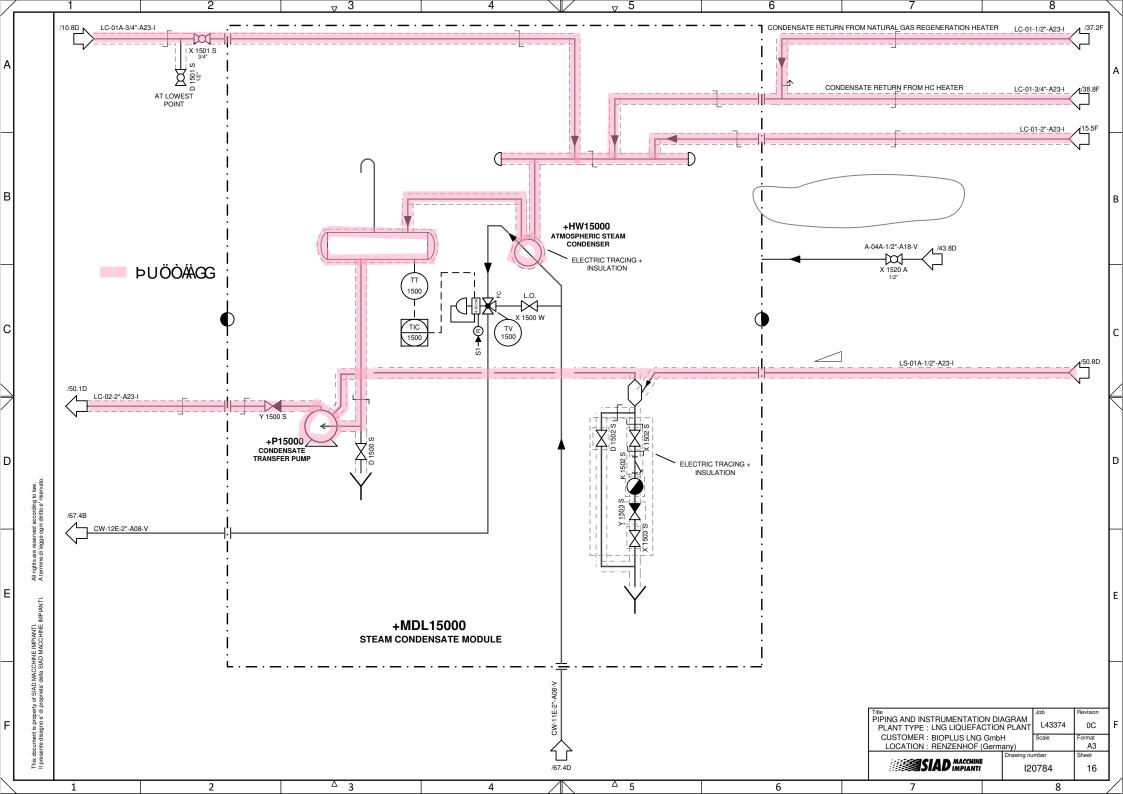

Е

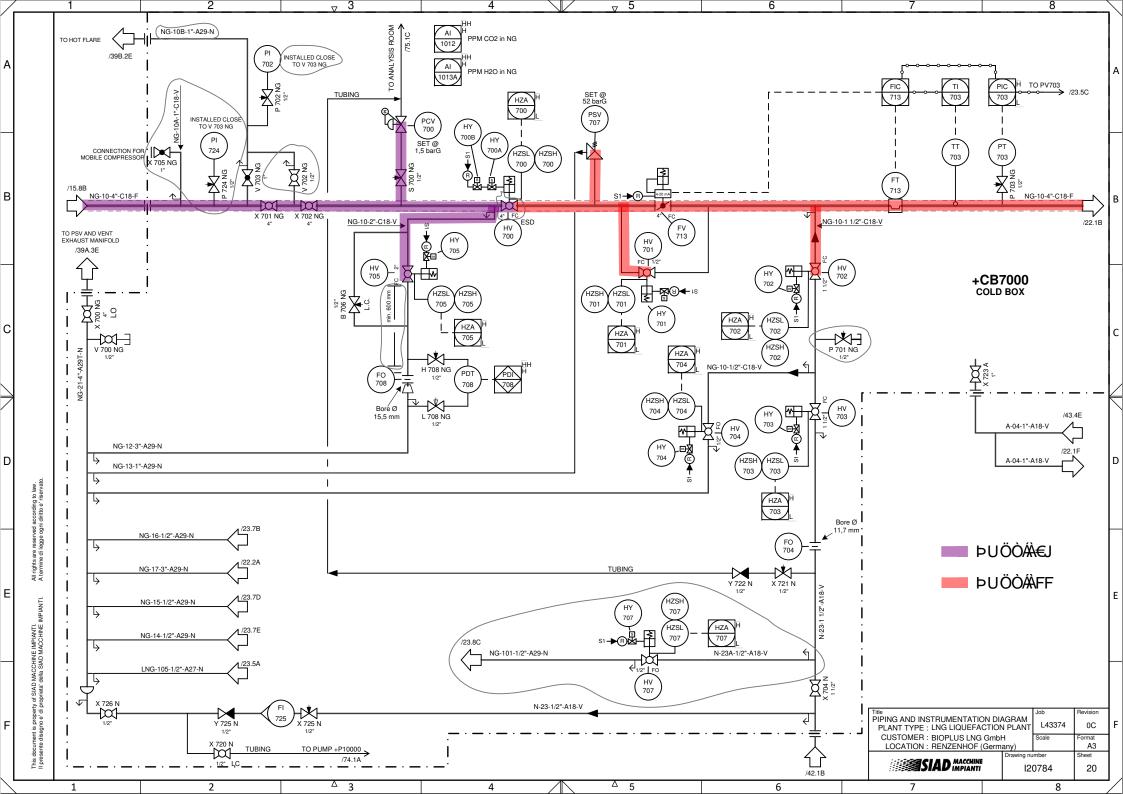
F

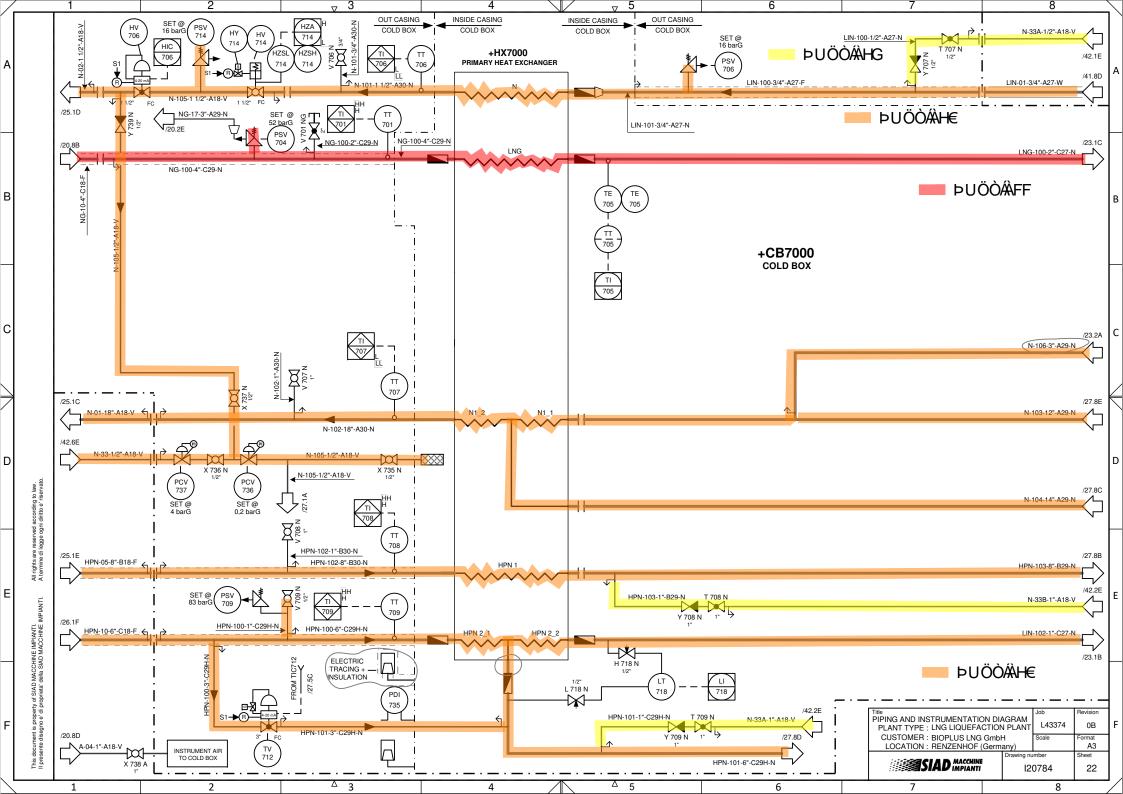

/		1			2		√ 3		4			∇	5		6		7		8		< -
	VALVE LEGEND CODE] [INSTR											
	FIRST LETTER / FUNCTION TAG NUMBER LAST LETTER				AST LETTERS / FLUID	1			IDEN	TIFICATIONS LETTE	RS										
^			MANUAL VALVE		AUTOMATIC VALVE	N	MANUAL OR AUTOMATIC VALVE		MANUAL VALVE	11	FIRST L	ETTER / FUNCTIO	N		SUCCEDING LETTERS	s					
^		А								1	MEASURED VARIA	ABLE MOD	IFIER	PASSIVE FUNCTION	OUTPUT FUNCTION	MODIFIER					
		B C	BYPASS CONTROL		SEE INSTRUMENT LEGEND CODE	SI	EE INSTRUMENT LEGEND CODE		SEE FLUID LEGEND CODE	A	ANALYSYS			ALARM							
		D	DRAINS		IDENTIFICATIONS LETTERS	A	AREA IDENTIFICATION NUMBERS			В	FLAME DETECTOR	3									
		E								C	CONDUCIVITY				CONTROL						
_		G H	HIGH PRESSURE DIFFERENTIAL TA	AP						DE	DENSITY VOLTAGE (E.F.M.)	DIFFEREN	IIIAL	PRIMARY ELEMENT							
		I.									FLOW RATE	RATIO									
			SIGHT GLASS FILTER							G	GAUGING			GLASS							
			LOW PRESSURE DIFFERENTIAL TA	AP						н	HAND CONTROL					HIGH					
в		м								I	CURRENT (ELECT	R.)		INDICATE							
		N O								J	POWER	SCAN									
		P	PRESSURE TAP							К	TIME				CONTROL STATION						
		R	SAMPLE								LEVEL			LIGHT		LOW					
			THAW							M	MOISTURE			PNEUMATIC	PNEUMATIC	MIDDLE OR INTERM.					
		U									INCOWATIC			ORIFICE	TREOWATIG	T NEOWATIC					
			VENT							P	PRESSURE OR VA	сиим		POINT							
		w x	SHUTOFF							Q	QUANTITY OR EVE		R TOTALIZE	E							
		Y	CHECK VALVE							R	RADIOACTIVITY			RECORD							
c		z								S	SPEED OR FREQU	ENCY SAFETY			SWITCH						
-										Т	TEMPERATURE				TRANSMITTER						
										ין	MULTIVARIABLE			MULTIFUNCTION	MULTIFUNCTION	MULTIFUNCTION					
					FLUID LEC	GEN	ND CODE			V	VIBRATION				VALVE						
		ITEM	FLUID	ITEM	FLUID	ITEM	FLUID	ITEM	FLUID	W	WEIGHT OR FORC			WELL							
\rightarrow					1 2010		. 20.0			X	UNCLASSIFIED	AXIS X AXIS Y		UNCLASSIFIED	UNCLASSIFIED RELAY OR COMPUTE	UNCLASSIFIED					
			OILS		WATER		PROCESS GAS AND LIQUID		CRYOGENIC GAS AND LIQUID	Z	POSITION	AXIS Z			UNCLASSIFIED FINAL						
		GO		HW	HOT WATER	со		RL	LIQUID ARGON						CONTROL ELEMENT						
		DO	DIATERMIC OIL	SW	SALT WATER	к	CARBON DIOXIDE	HPN	HIGH PRESSURE NITROGEN				ARE	A IDENTIFICATION	NUMBERS]				
D		LO		τw	TREATED WATER	NO	NITROGEN OXIDE	HPO	HIGH PRESSURE OXYGEN			NUMBER			AREA]				
	ö		AIR AND GAS GENERAL USE	UW	UTILITIES WATER	FF	FIRE FOAM	HPR	HIGH PRESSURE ARGON		FISCAL METER 433	-		SCAL METER			_				
	o law. servat	G	GAS (GENERAL)	BW	BOILER FEED WATER / DEMI	FL	FOAMING LIQUID	LA	LIQUID AIR			100 - 19		AILABLE FOR GAS TREAT			-				
	rding t to e' ri	IG	INSTRUMENT GAS	IW	SERVICE WATER	СН	CHEMICAL	KL	KETTLE			200 - 29	_	AILABLE FOR GAS TREAT							
	acco ni dirit	NG	BIOMETHANE		CONDENSATE AND STEAM	GY	GLYCOL				GAS TREATMENT 598	300 - 399 400 - 499		AILABLE FOR GAS TREAT							
	ge og:	PG	PURGE GAS	s	STEAM (GENERAL)	во	BLOW DOWN	E	HELIUM		0.00	500 - 59		AILABLE FOR GAS TREAT		OMPRESSOR	-				
	di leg	FG		кs		SG	SLUDGES	х	OXYGEN			600 - 69		TURAL GAS INLET			1				
	ights	GF		ws		DR	DRAINS	LOX	LIQUID OXYGEN			700 - 73		DLD BOX LNG			1				
	Allr	TG		LS	LOW PRESSURE STEAM	v	ATMOSPHERE DISCHARGED	GOX	GAS OXYGEN		LIQUEFACTION	740 - 749		CYCLE COMPRESSOR							
E	≓	RG	REGENERATION GAS	кс		Р	PROPANE/PROPYLENE	KG	ENRICHED GAS		599	750 - 759		ARM TURBINE							
	IPIAN	GR	REFRIGERATING GAS	wc		GV		CL	CRYOGENIC LIQUID			760 - 769		DLD TURBINE							
	₩ N	LR	REFRIGERATING LIQUID	LC		нс		LNG	NATURAL GAS / METHANE / BIOMETHANE LIQUID			770 - 79		R DISTRIBUTION SYSTEM							
	MPIAN	А	AIR (GENERAL)		CONDENSATE DISCHARGE	Ra	AMINE RICH					800 - 899		TER AND DEMI WATER CI			-				
	INE II	CA	COMPRESSED AIR	00	SUNDENGATE DISCHARGE	La	AMINE POOR	NGL	NGL NATURAL GAS LIQUID		UTILITIES	1000 - 109		ALYZERS	000n						
	ACCHIN Ila SIAD	UA	UTILITIES AIR				CRYOGENIC GAS AND LIQUID		BIOGAS		tbd	1100 -129		HILLED WATER CIRCUIT			1				
	IAD M sta' de		WATED		PROCESS GAS AND LIQUID	LIN	LIQUID NITROGEN	BGLP	BIOGAS LOW PRESSURE < 0.5 bar			1300 -149		AILABLE			1				
	y of SI propric		WATER			WLIN	LIQUID NITROGEN IMPURE	BGHP	BIOGAS HIGH PRESSURE			1500 -159		EAM SYSTEM			1				
	roperty e' di p	w	WATER (GENERAL)	D		N	NITROGEN				VENT 730	1600 -169	99 co	DLD FLARE AND THERMAL	OXIDIZER		Title PIPING AND INSTRUMENTA		Job	Revision	
F	nt is pr segno	cw	COOLING WATER	NH3	AMMONIA	WN						1700 -179		QUID NITROGEN STORAGE	, NITROGEN DISTRIB	UTION SYSTEM	PLANT TYPE : LNG LIQUE	ACTION P	LANT L43374		
	cumer nte di	DW	DRINKING WATER	Q	ETHYLENE	R	ARGON				STORAGE	1800 - 18		AILABLE			CUSTOMER : BIOPLUS LN LOCATION : RENZENHO		/) Scale	Format A3	
	his do prese.	FW	FIRE FIGHTING WATER	н	HYDROGEN	RR RP	WASTE ARGON PURE ARGON				646	1900 - 199		G STORAGE AND TRUCK	OADING		SIAD MACCH	Dra	awing number	Sheet	
Ĺ	⊢ =								-	」└──	<u> </u>	2000 -229		AILABLE				m	I20784	2A	
		1		_	2	_	Δ3		4			Δ	5		6		7		8		

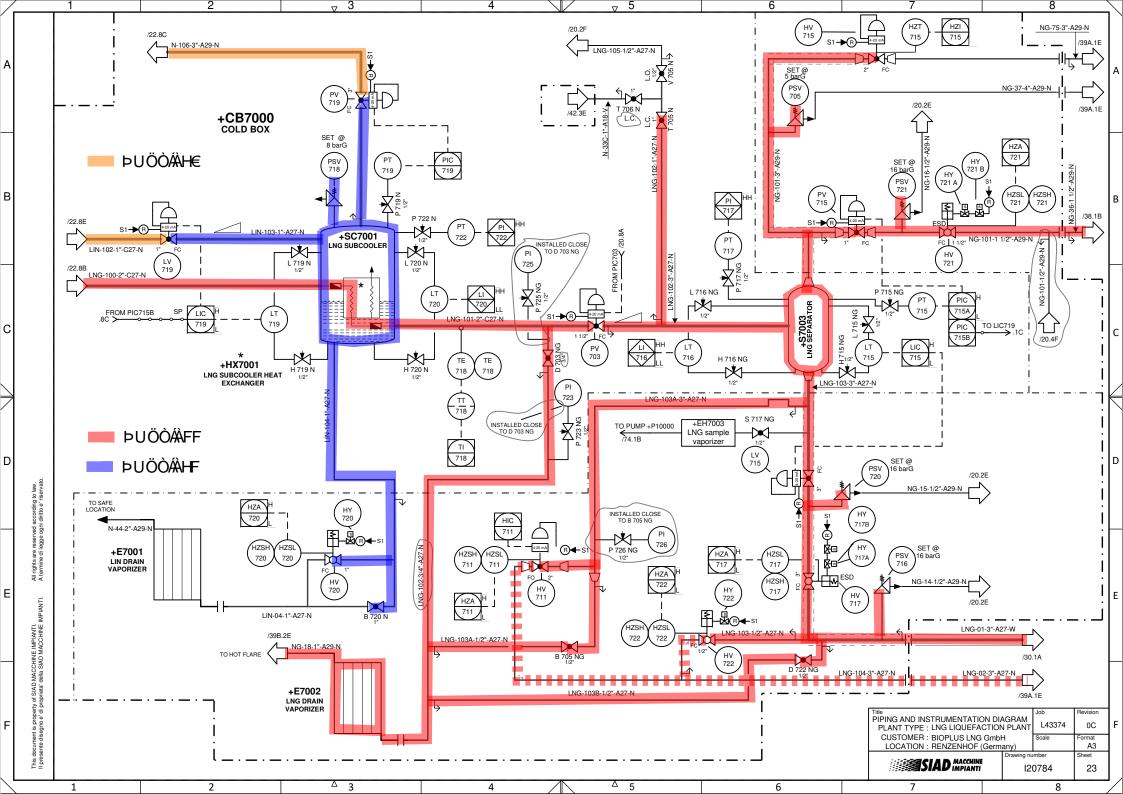

R

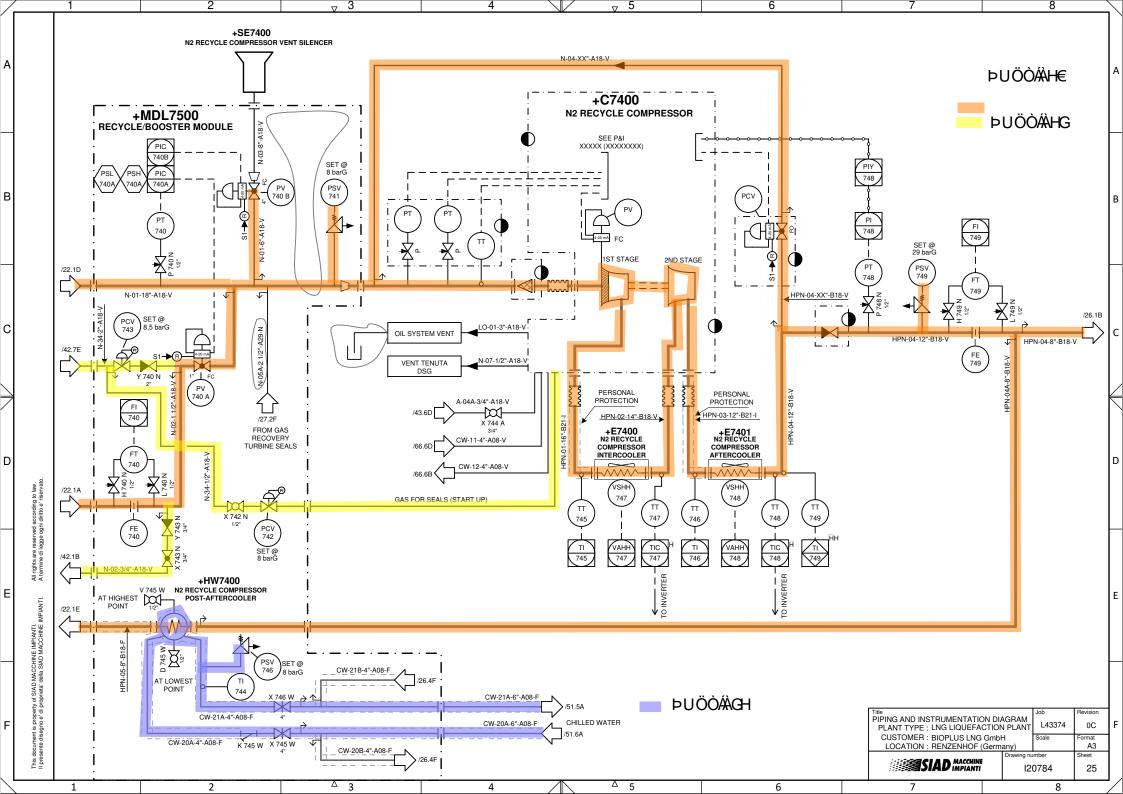

D

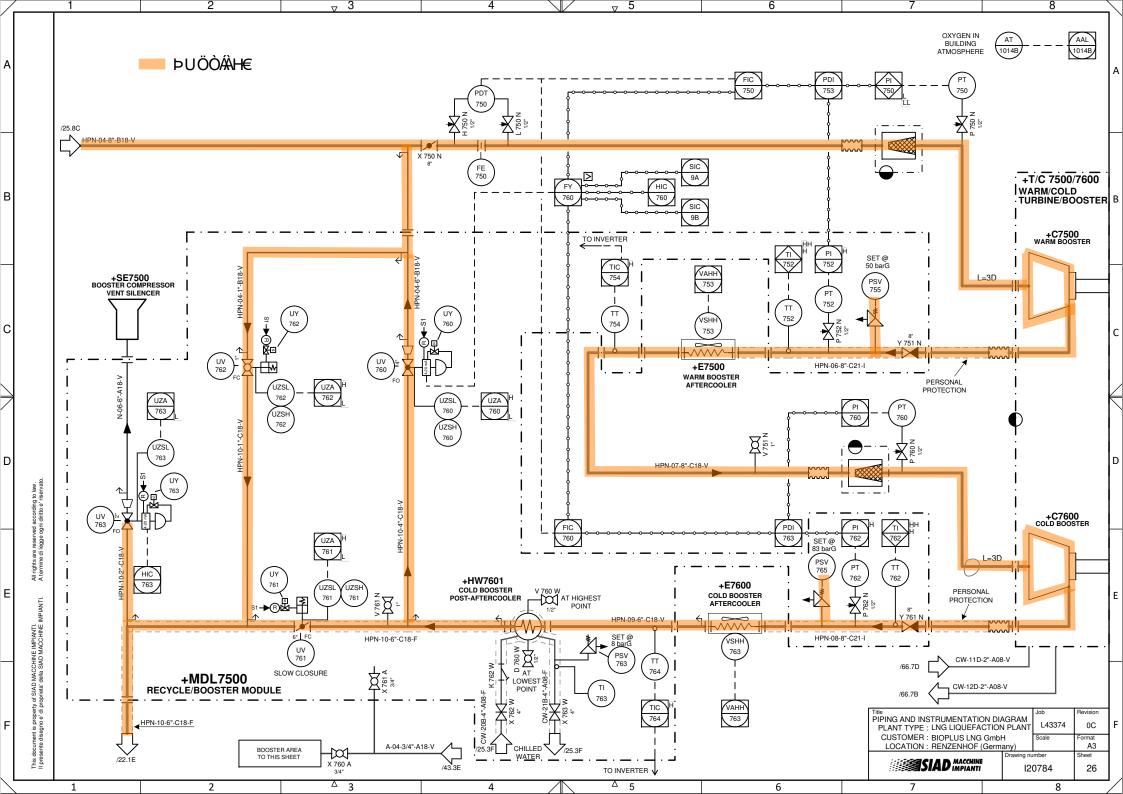


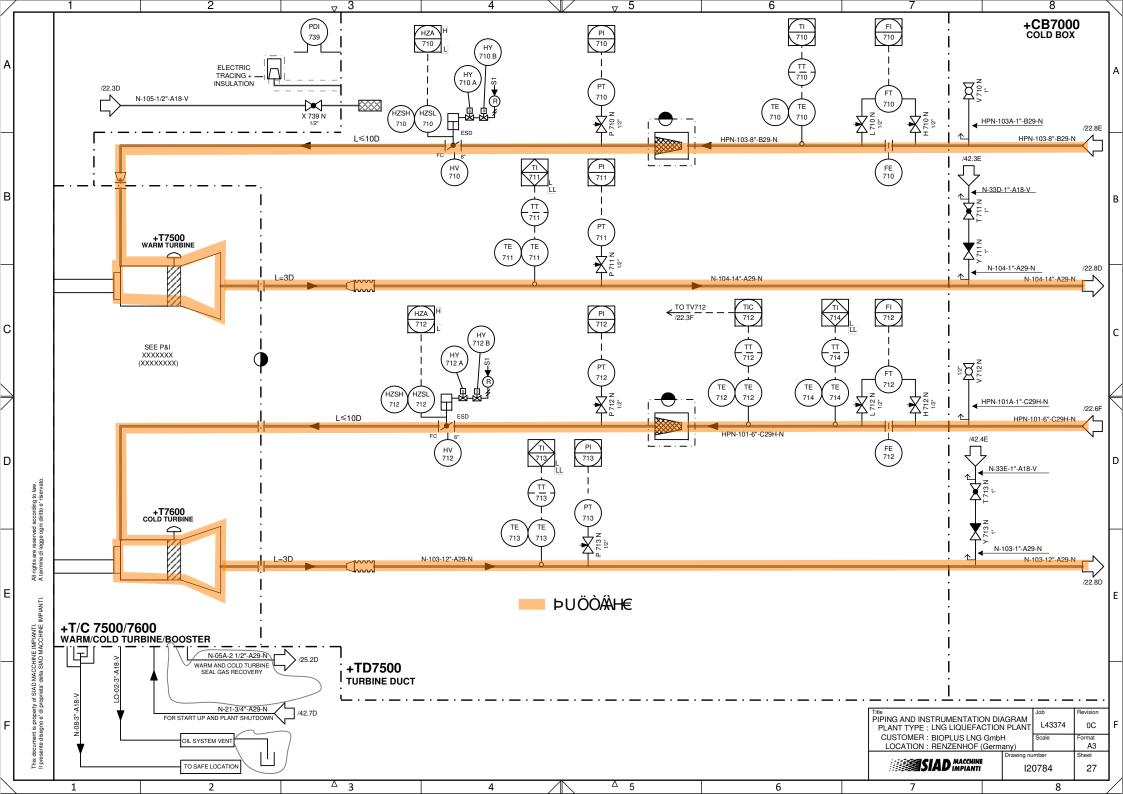

	1		2	-		√ 3			4		√ 5		6	7	8	
	REVIS	ION SHEET	ALTERATIONS	DATE	DRAWN	CHECKED	REVISION	SHEET	ALTERATIONS	DATE	DRAWN	CHECKED				
	0A		Issue for approval	03/02/2023	M. Caglioni	F. Soru	0C	1A	Issue for approval	13/03/2023	M. Caglioni	F. Soru				
А	08	8 1A 2A	Issue for approval	23/02/2023	M. Caglioni	F. Soru		3A 4A								
		3A						10								
		4A						11								
		11 15						15 16								
		20						20								
		22 23						23 25								
		23						26								
в		27						27								
		30 31						30 31								
		31						32								
		33						33								
		34 35						34 35								ŀ
		36						36								
		37						37								
с		37A 37B						37A 37B								
		38						38								
		38A						38A 38B								
		38B 39A						38B 39A								
\geq		39B						39B								ŧ
		40 41						42 43								
		41						50								
		50						68								
D		51 65						70								
	ervato.			1	I	<u> </u>										
	ang to o e' rist															
	Au rughts are reserved according to taw. A termine di legge ogni diritto e 'riservato.															
	o e d d e o d															Γ
	nine di l															
	Attern															
Е	Ę.															
	MPIAN															
E																
	MACC															
	la SIAC															ŀ
	eta' del.															
	i propri													T:0-	İ • •	Devision
F	occurrent is property of a proprieta della SIAD MACC'HINE IMPAN'TI.													Title PIPING AND INSTRUMENTATIO PLANT TYPE : LNG LIQUEFA	ON DIAGRAM	Revision 0C
	te dise													CUSTOMER : BIOPLUS LNG LOCATION : RENZENHOF	Germany)	Format A3
	II present														Drawing number	Sheet
			-			^				- AN			1			4A
\sum	1		2	2		Δ3			4		Δ 5		6	7	8	/

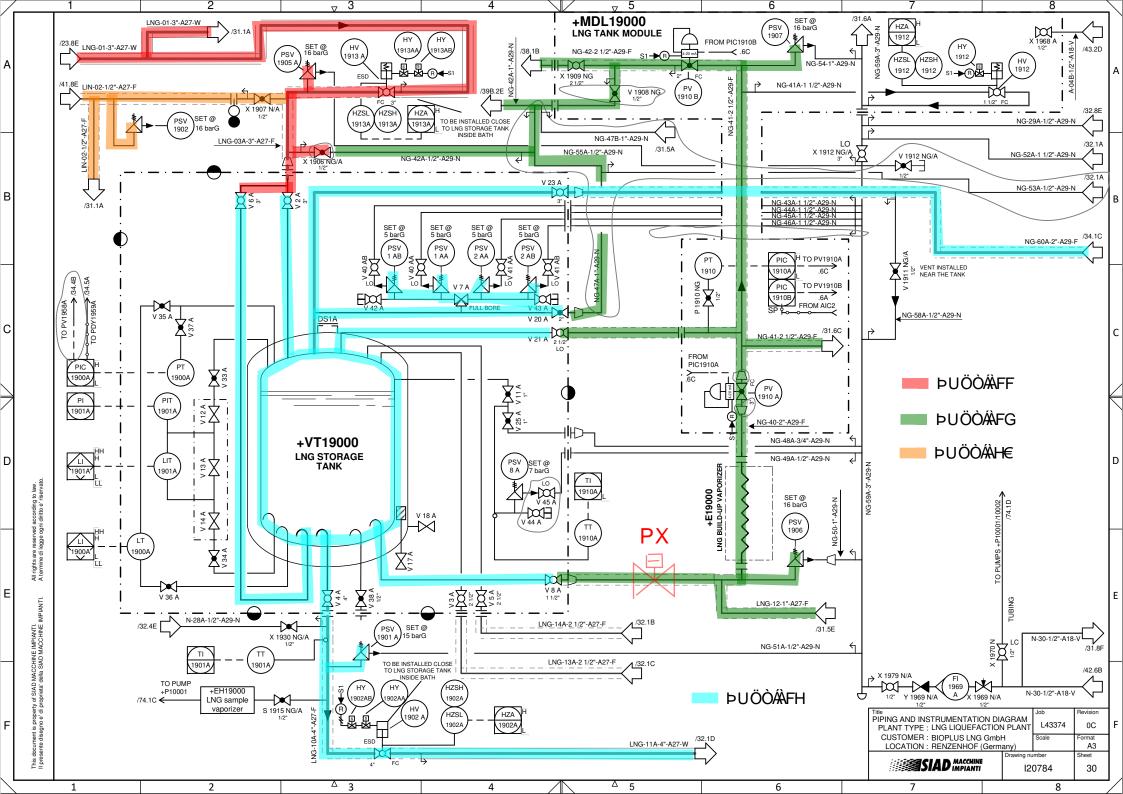


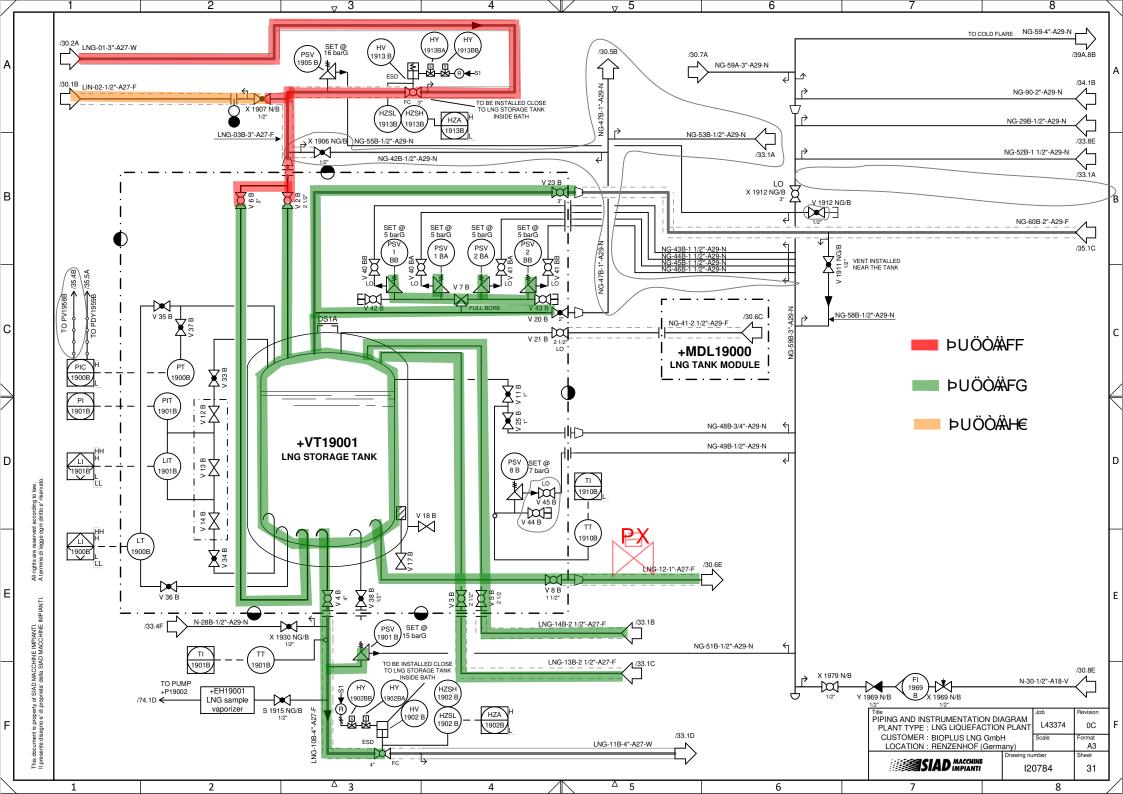


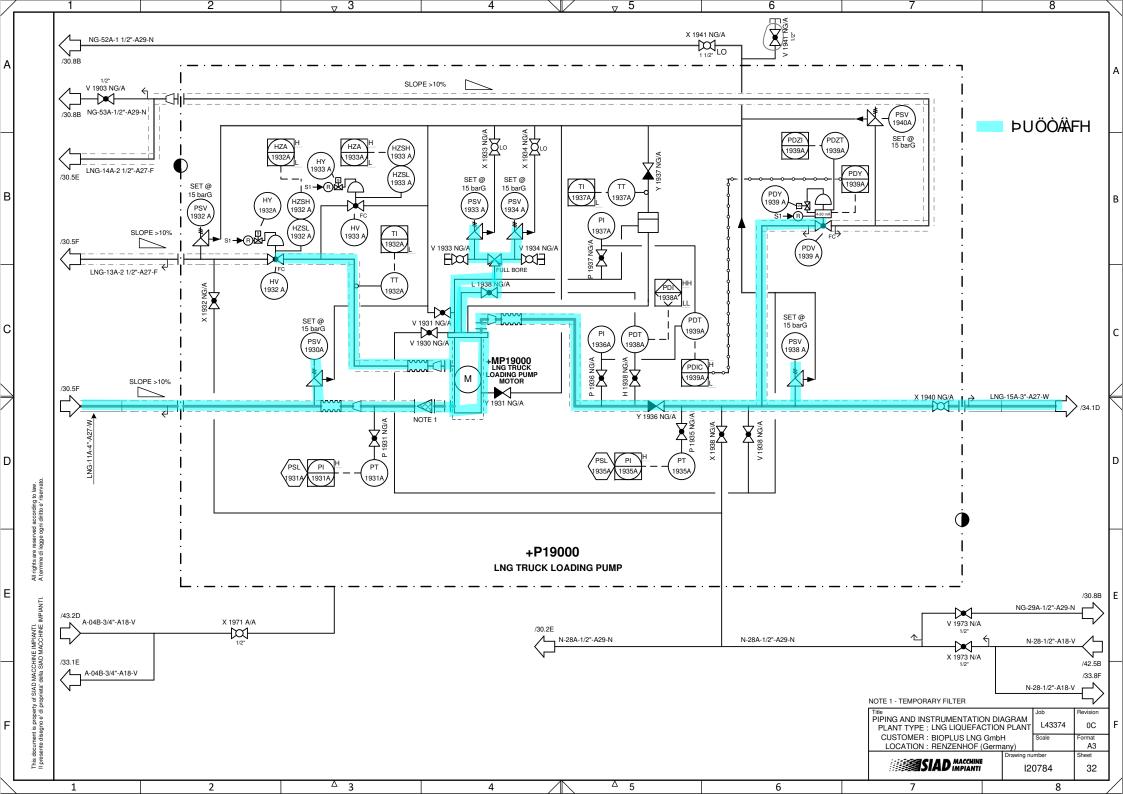


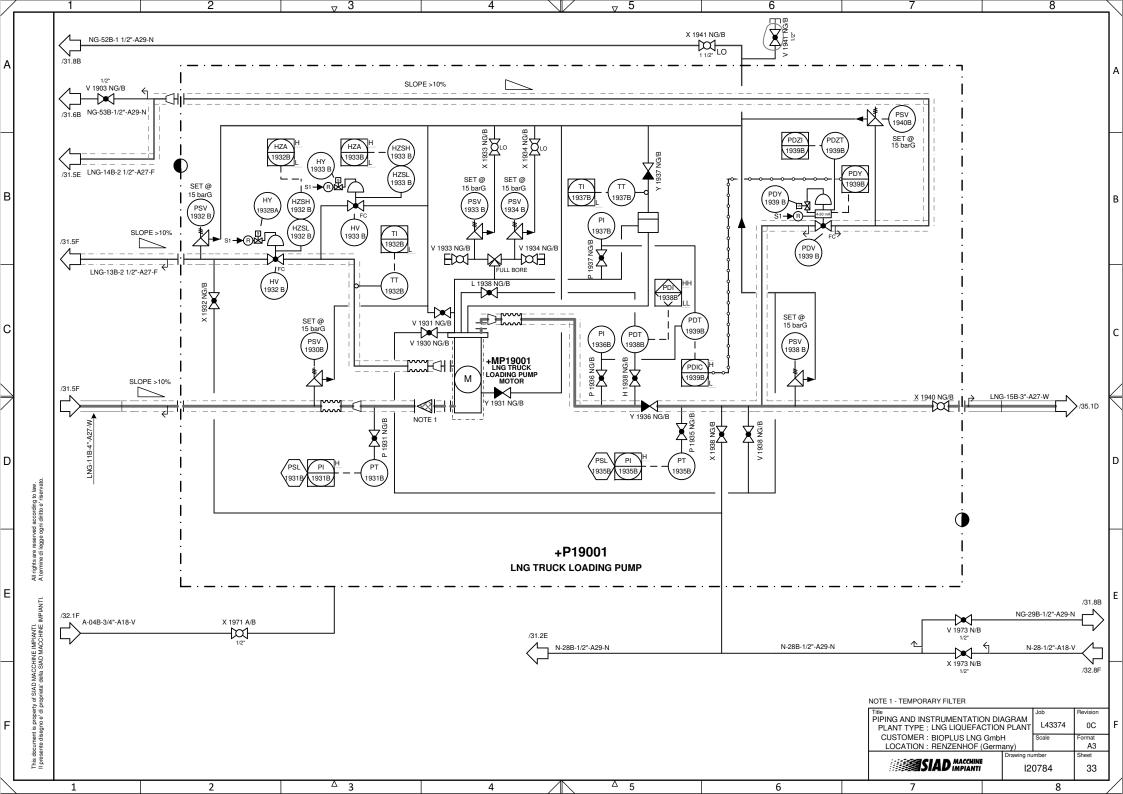


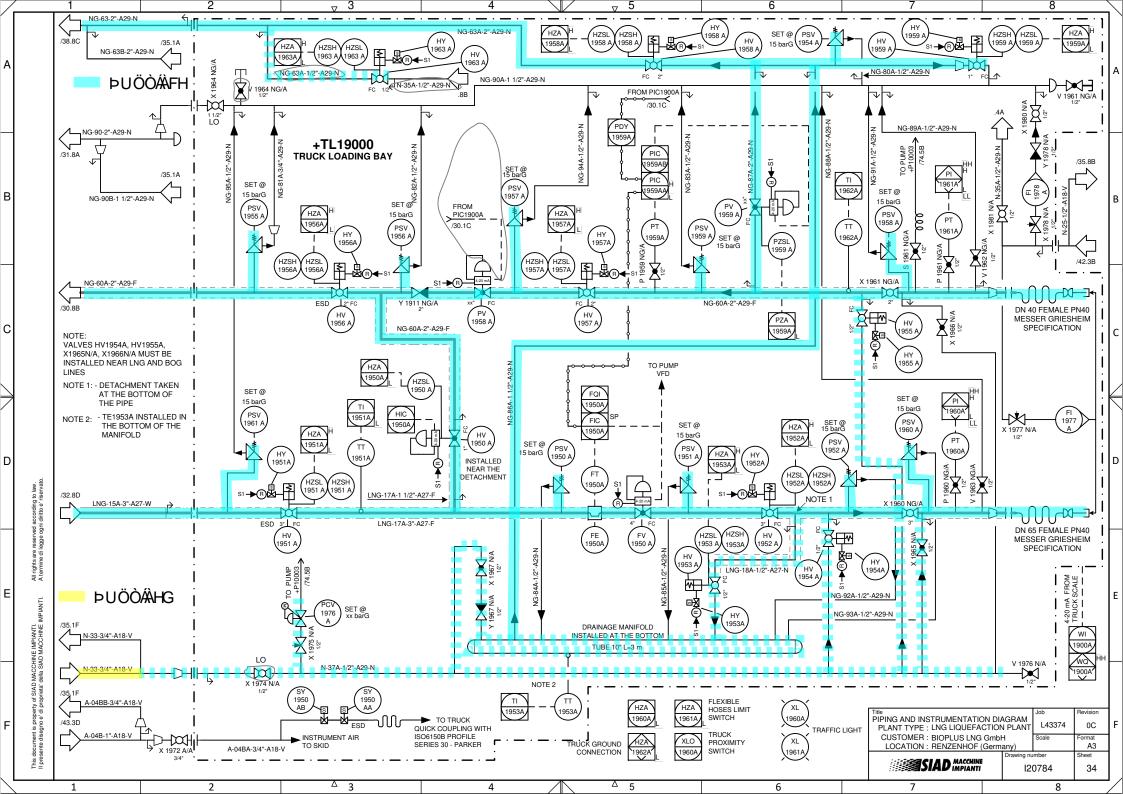


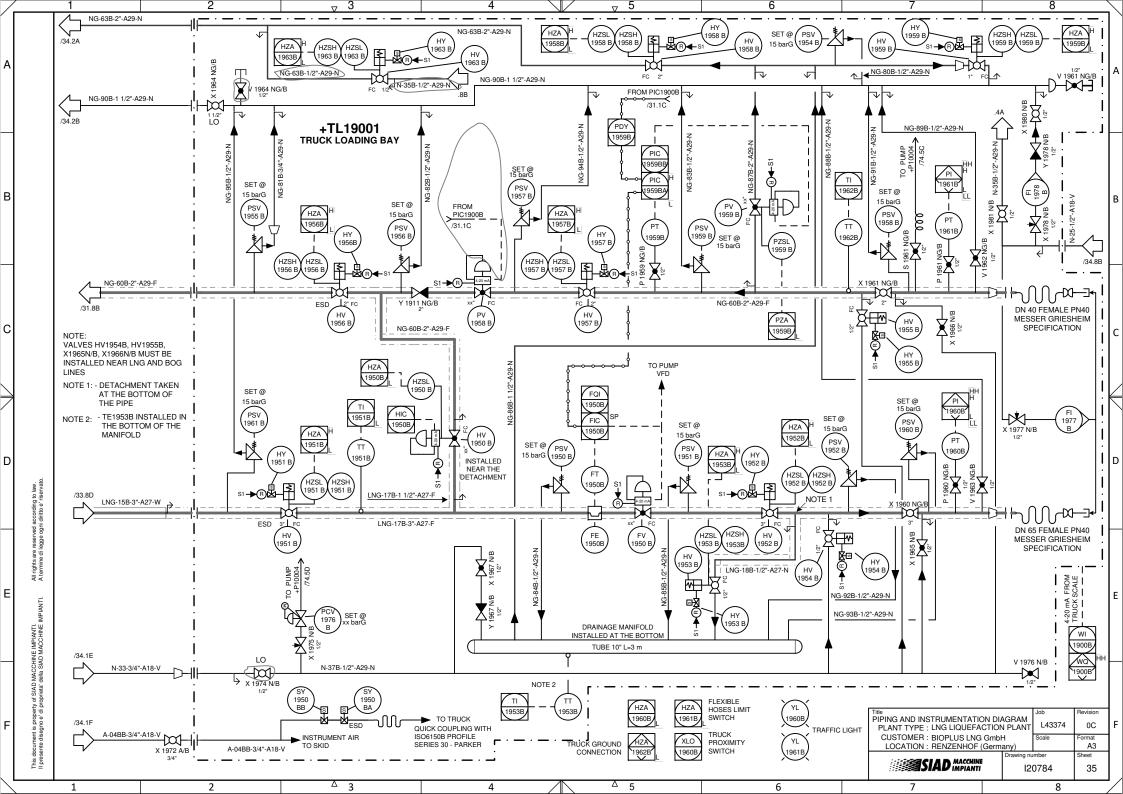


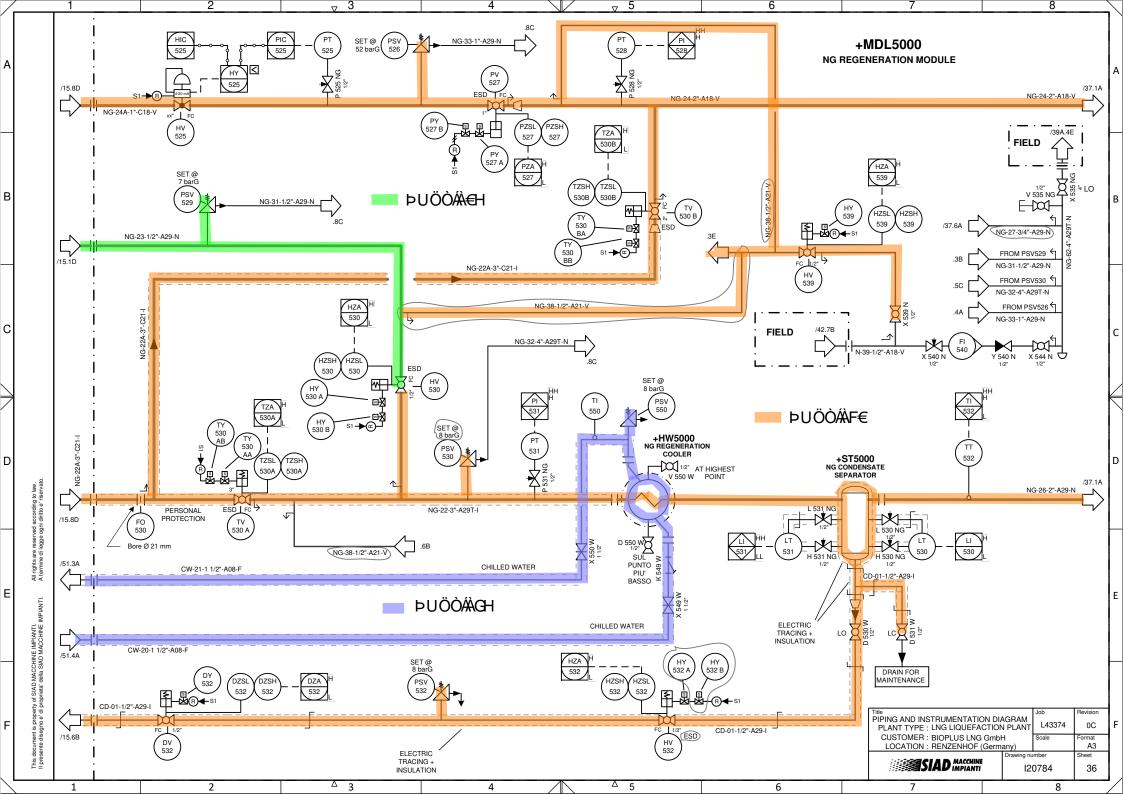


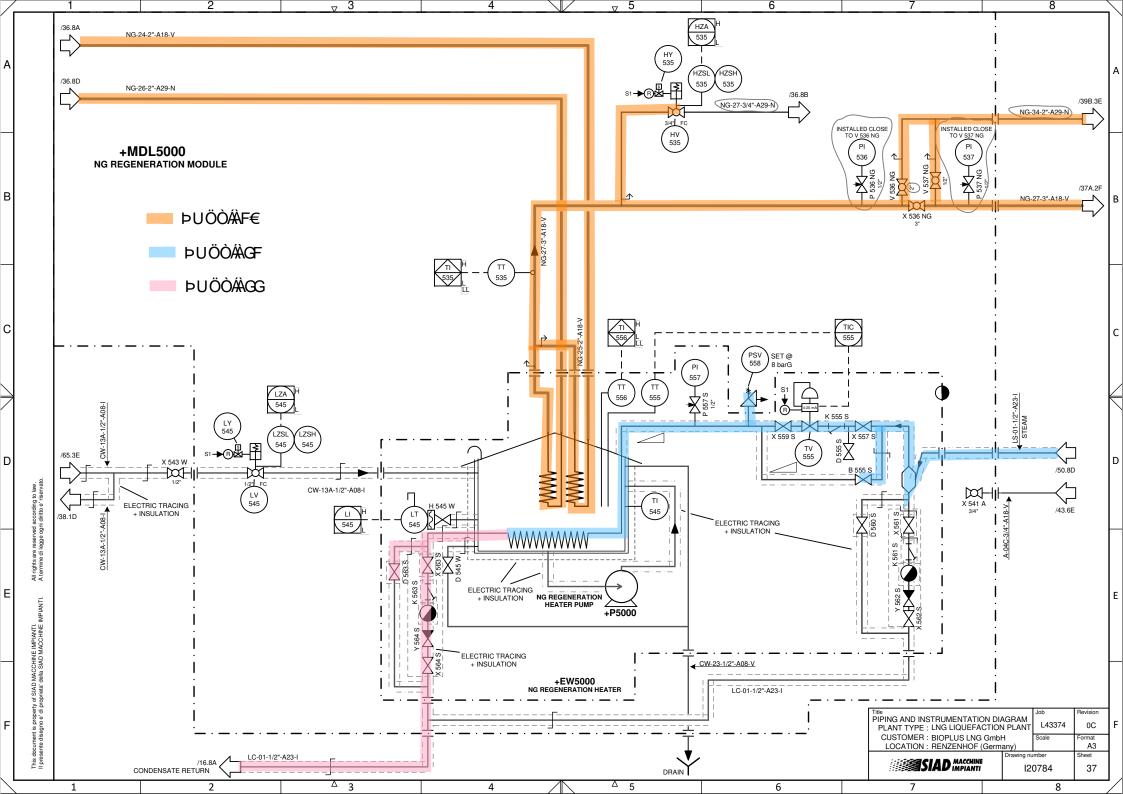


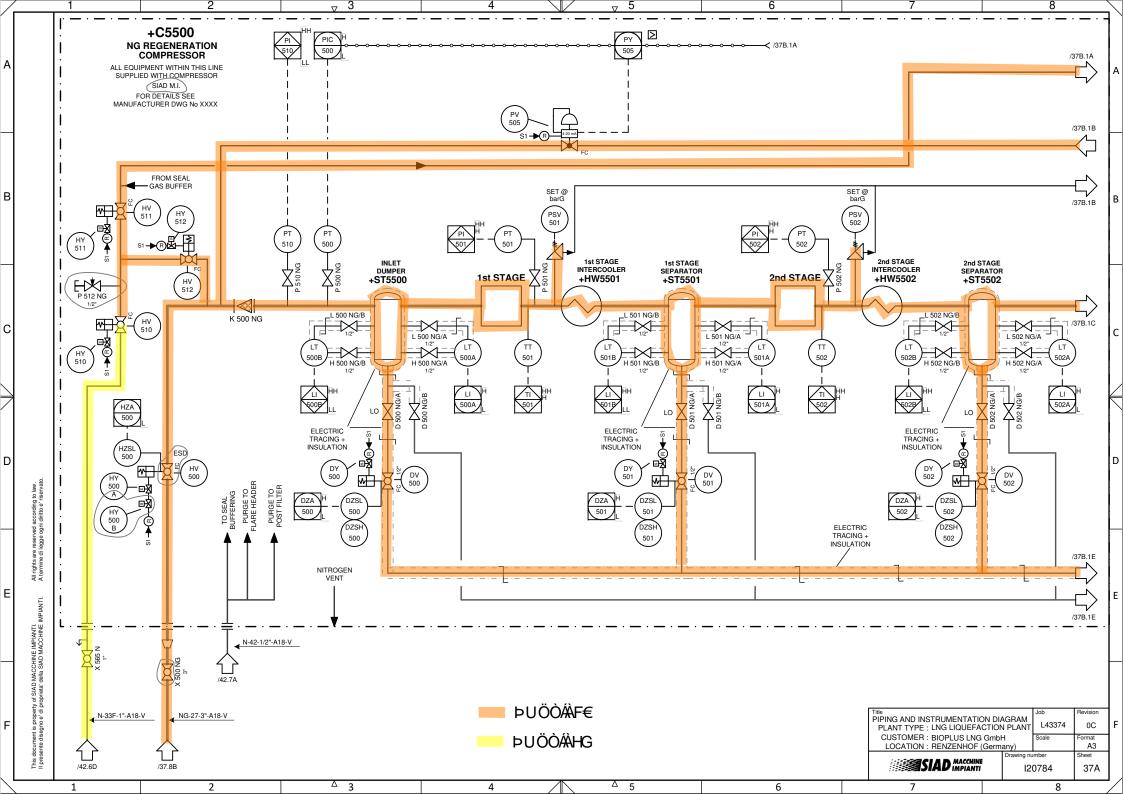


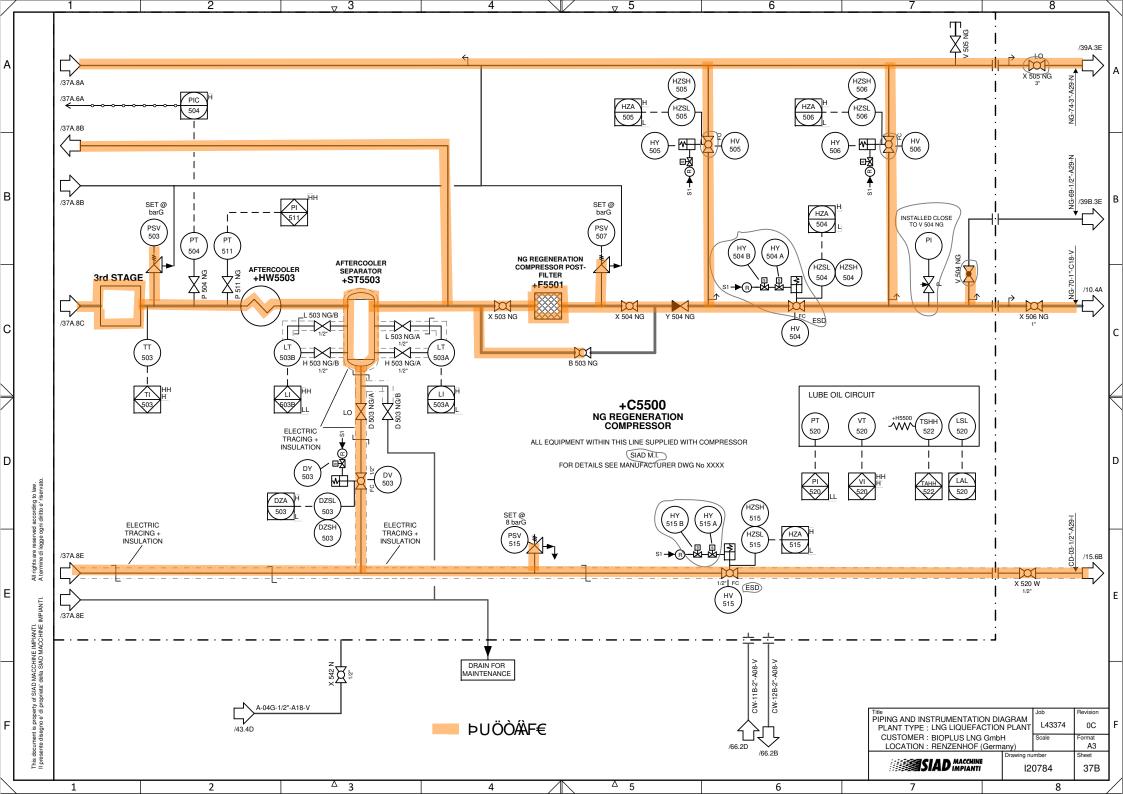


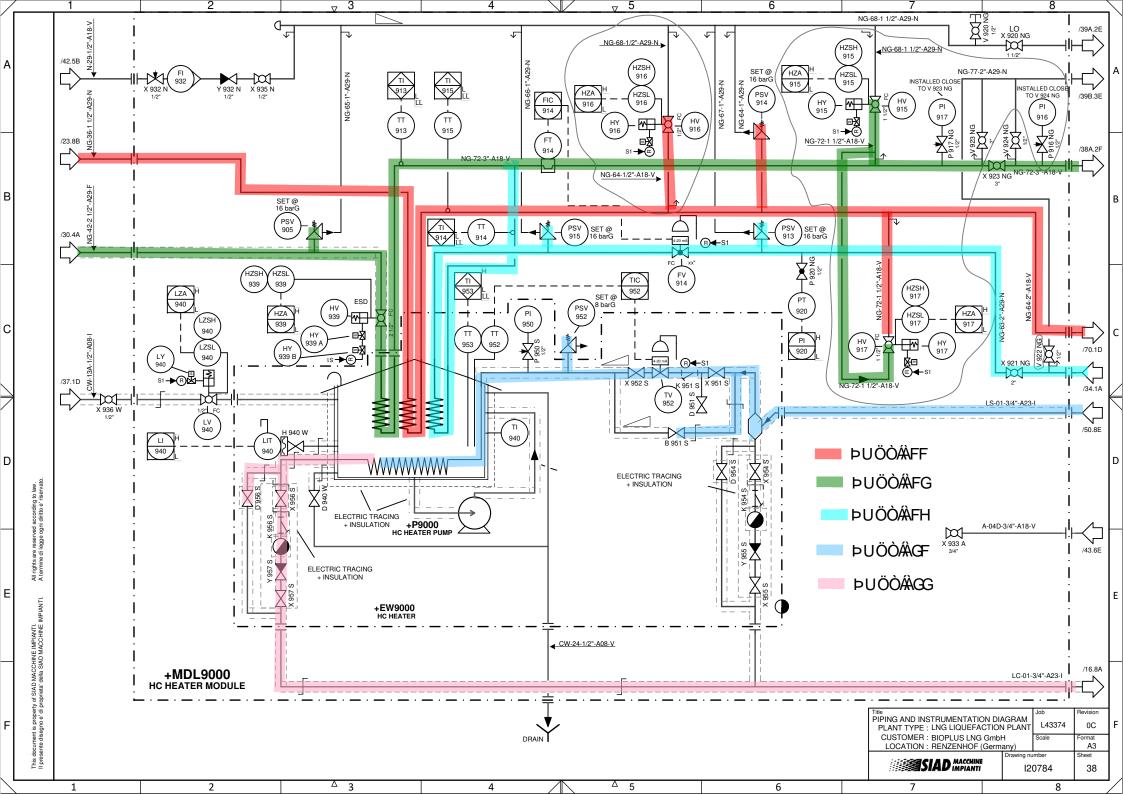


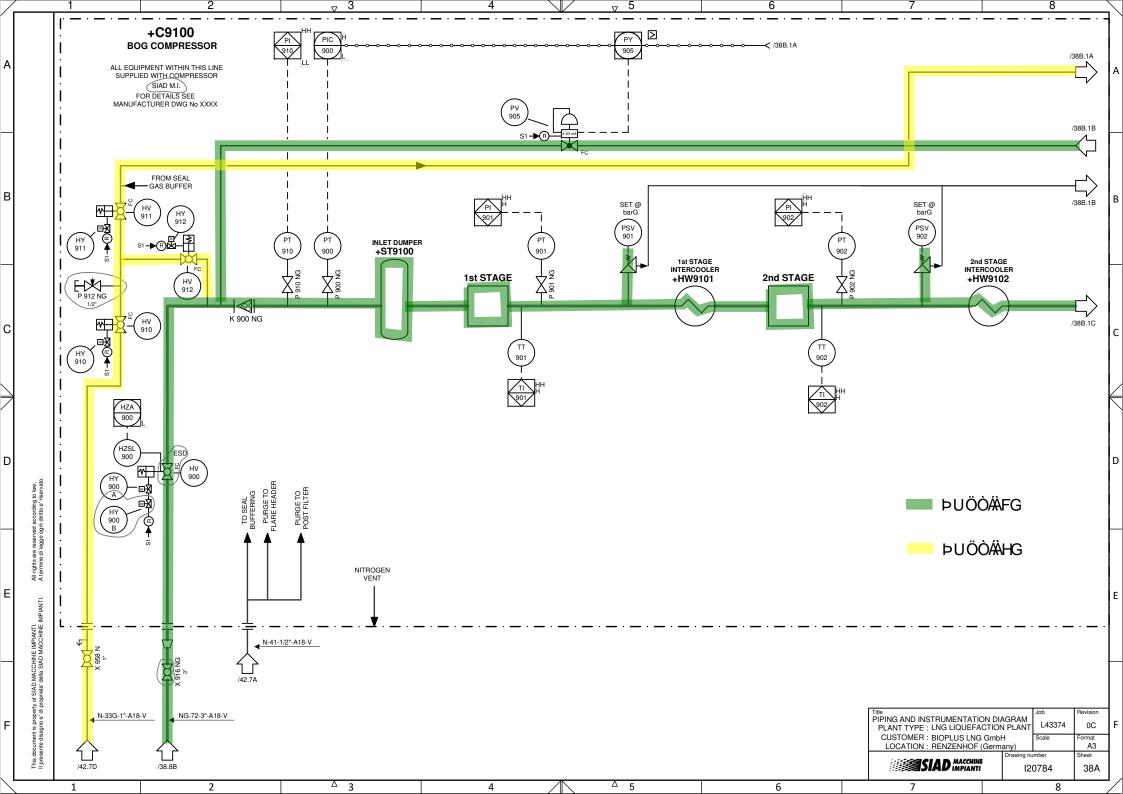


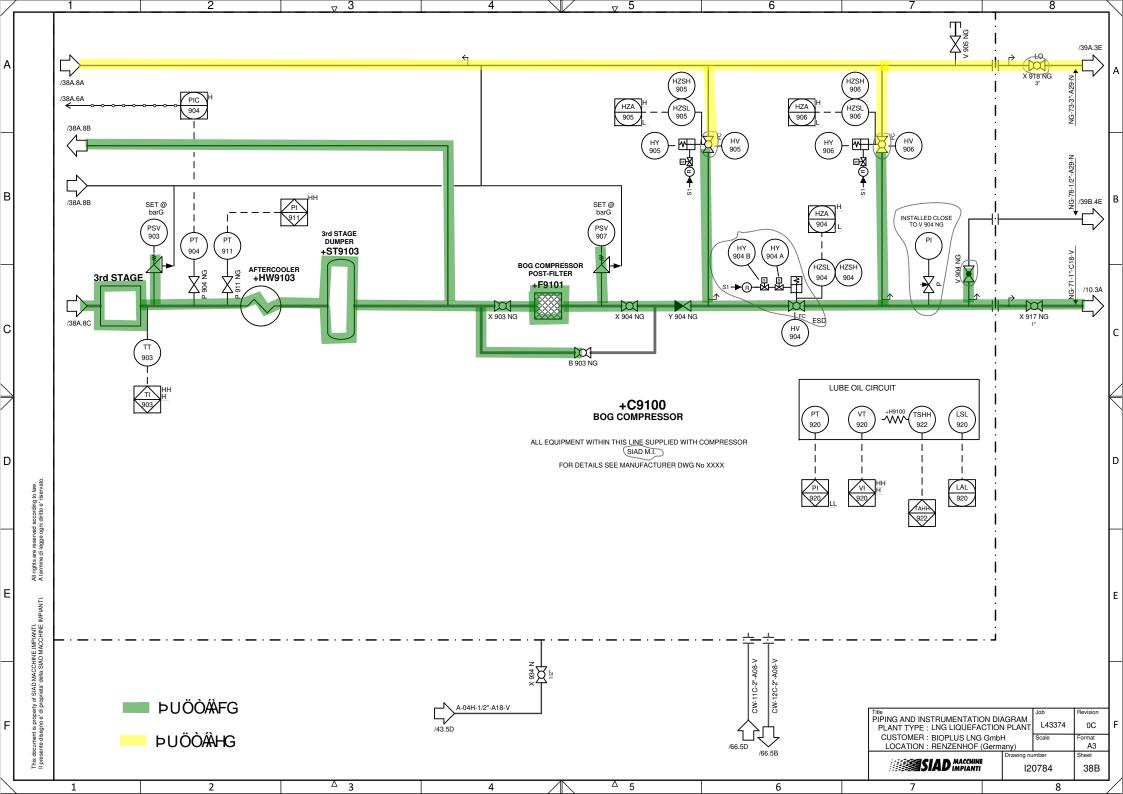


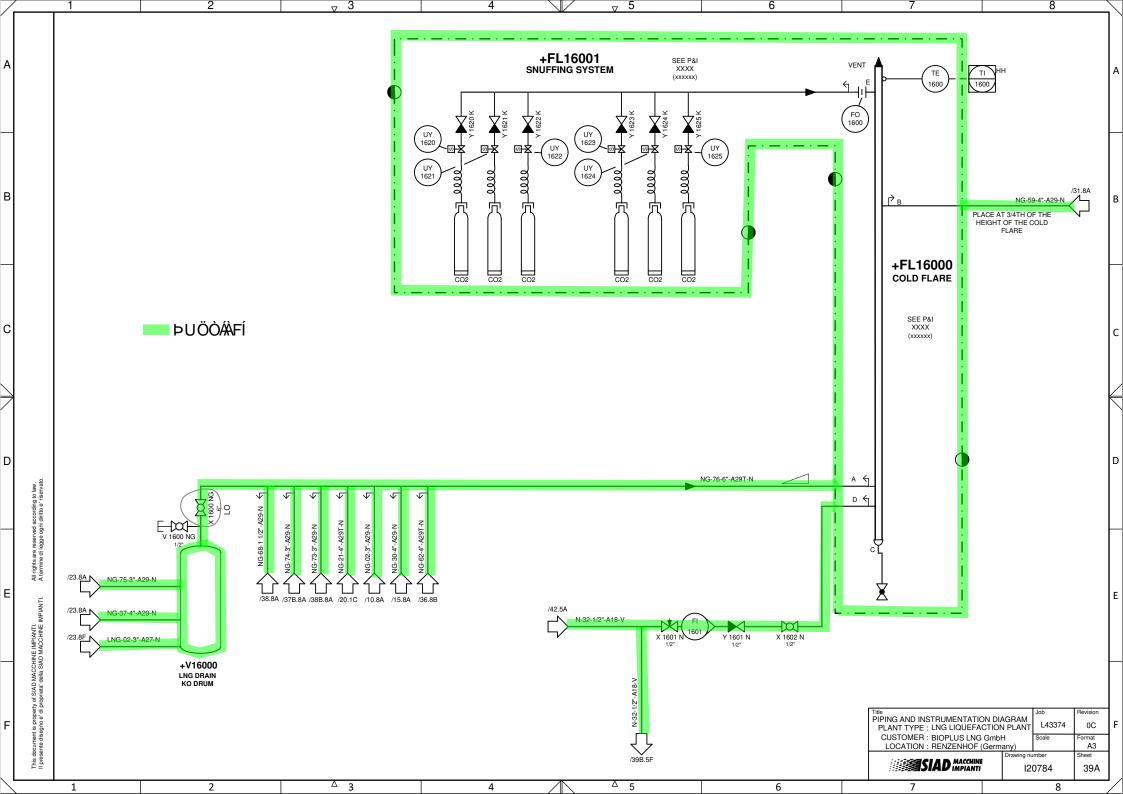


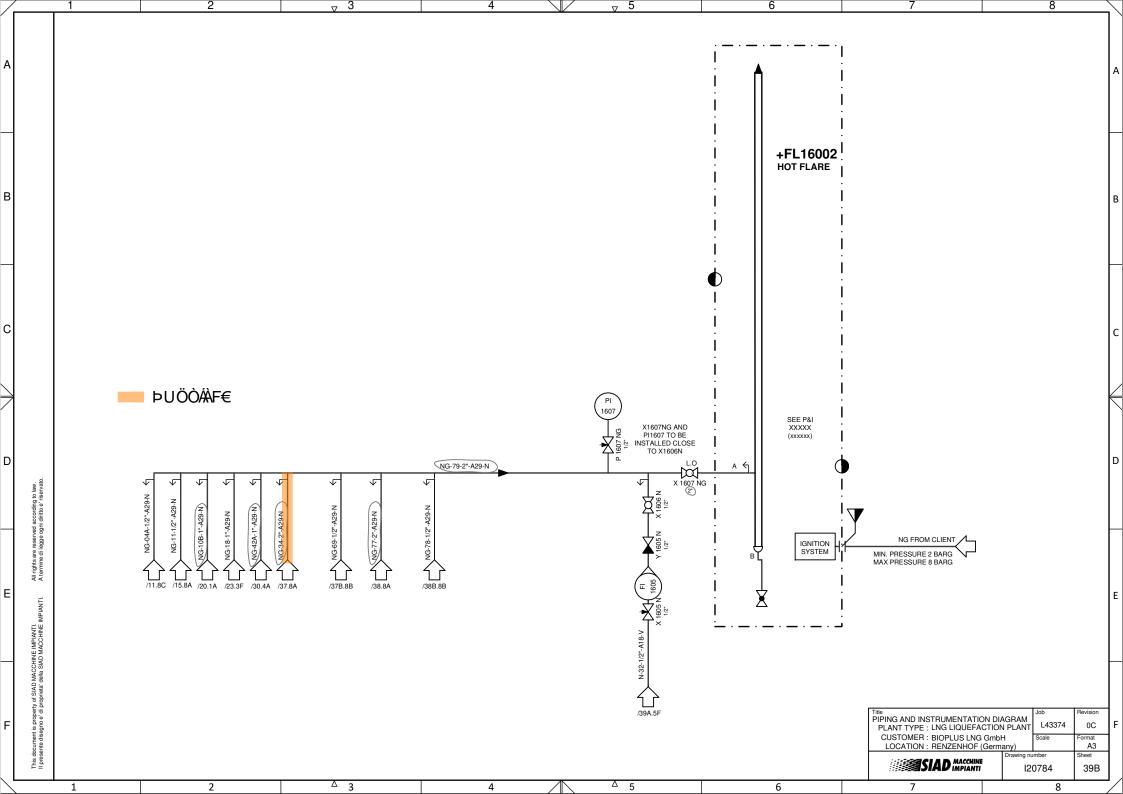


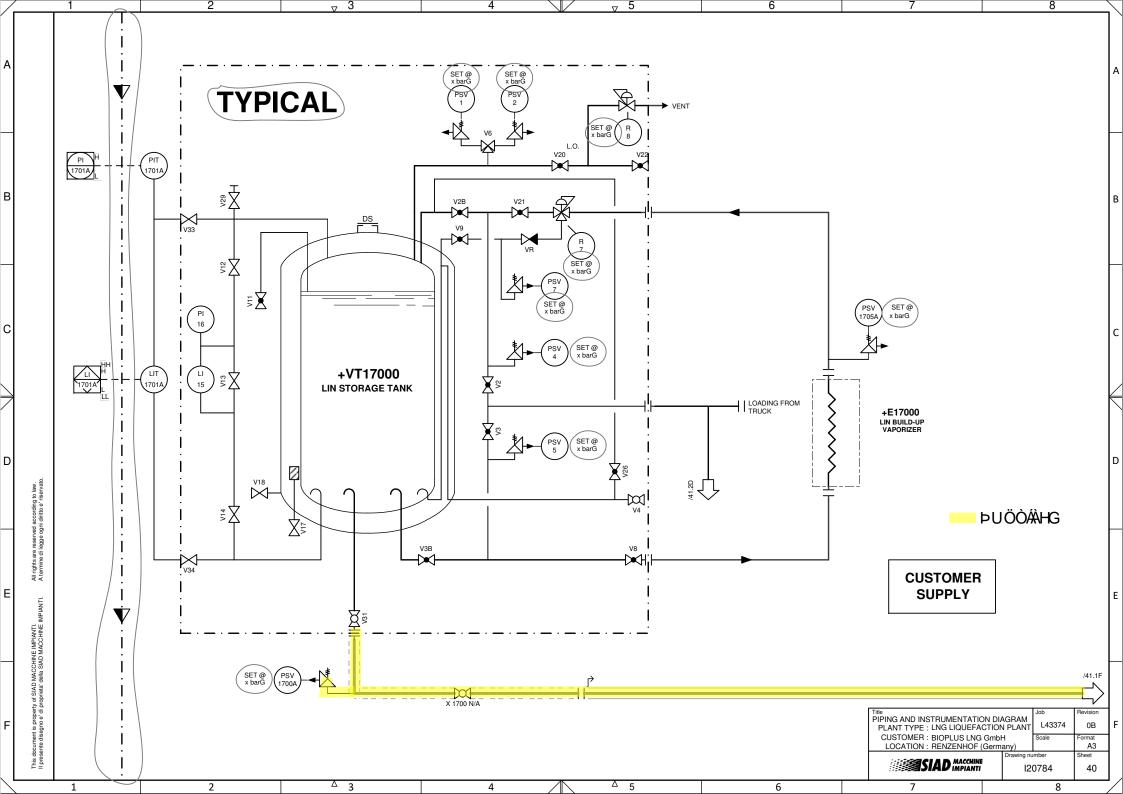


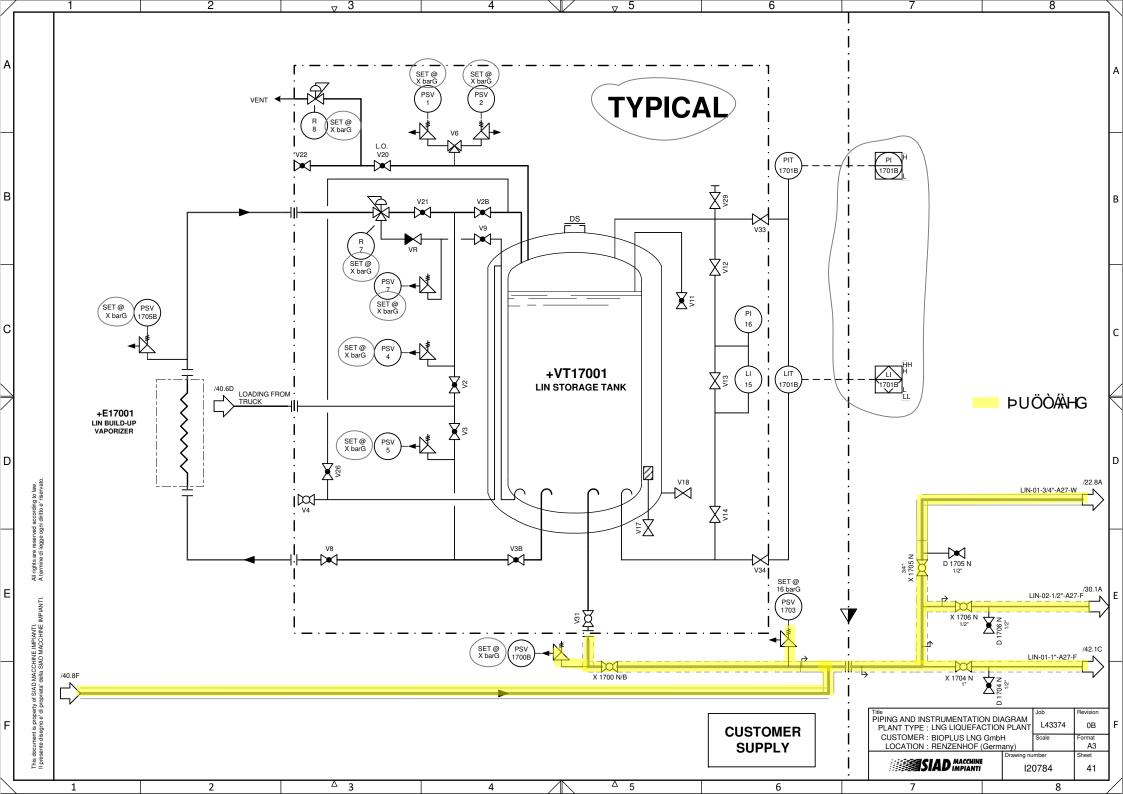


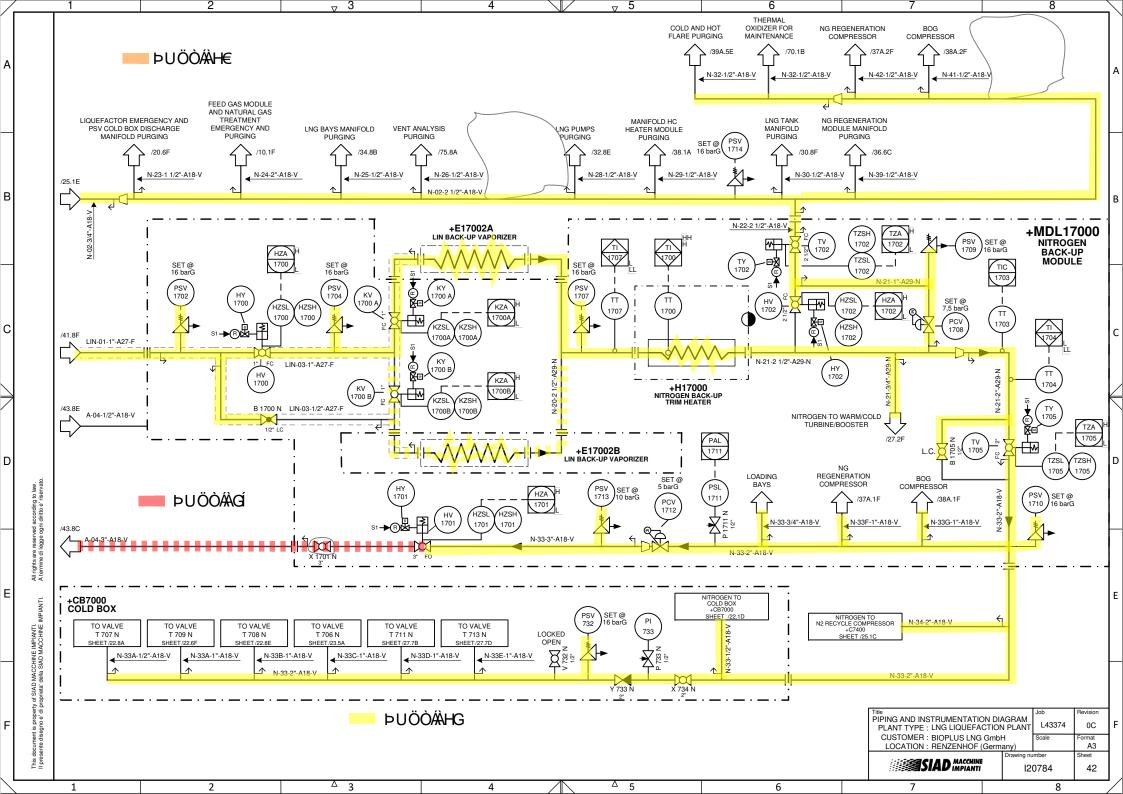


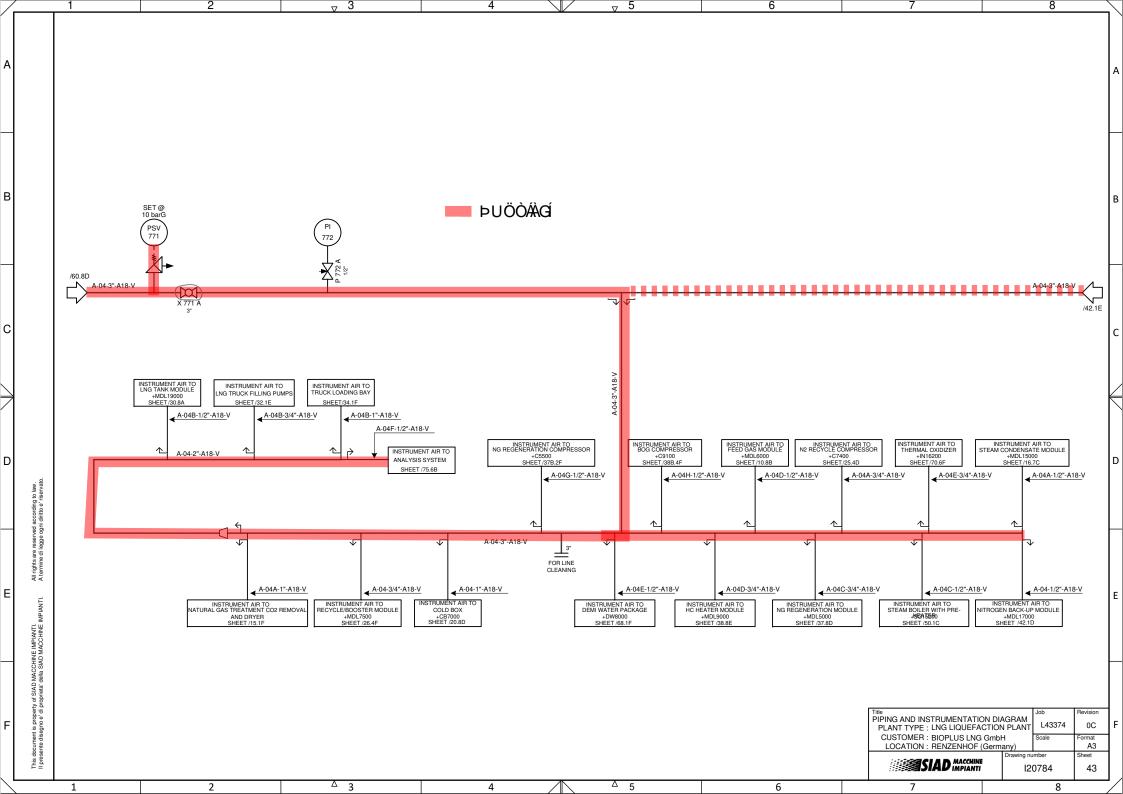


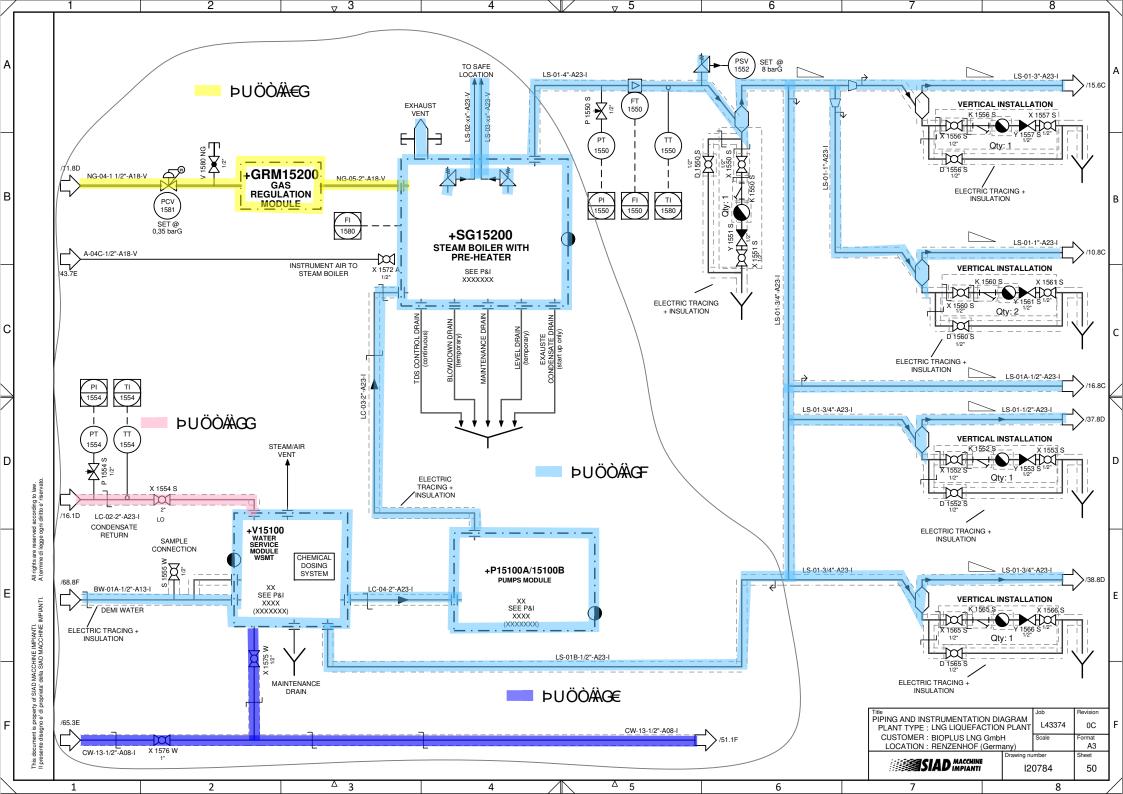


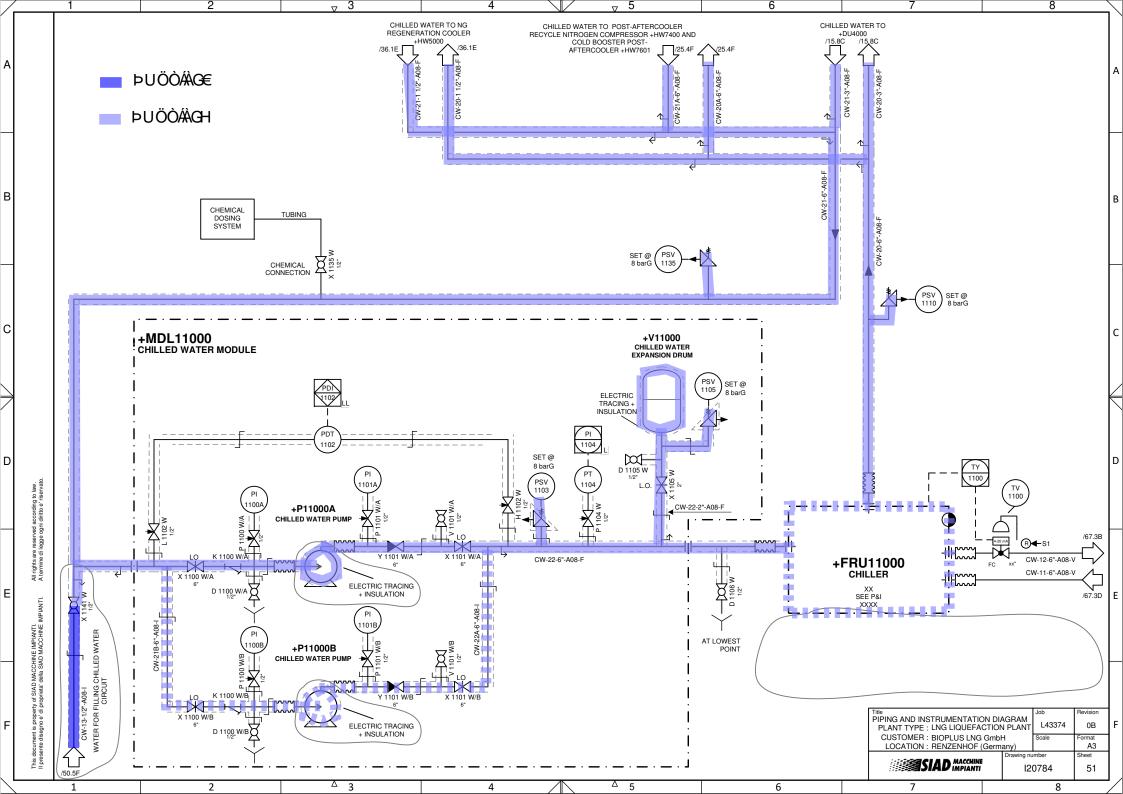


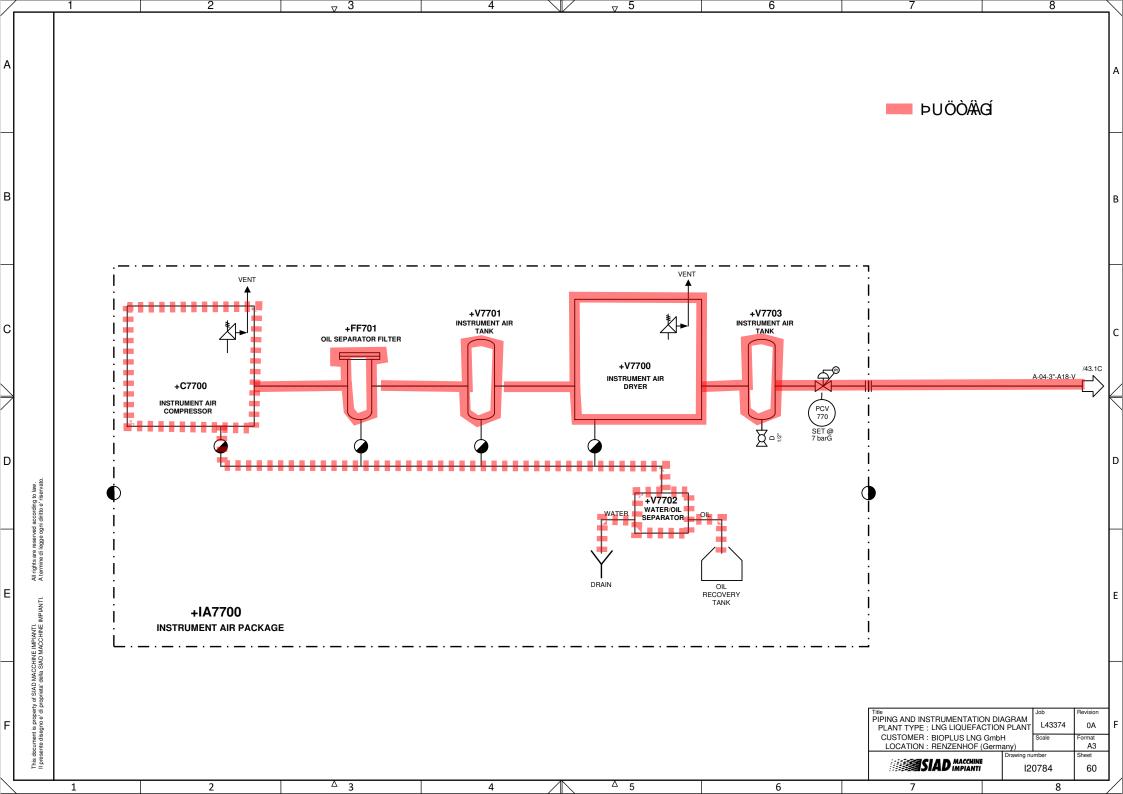


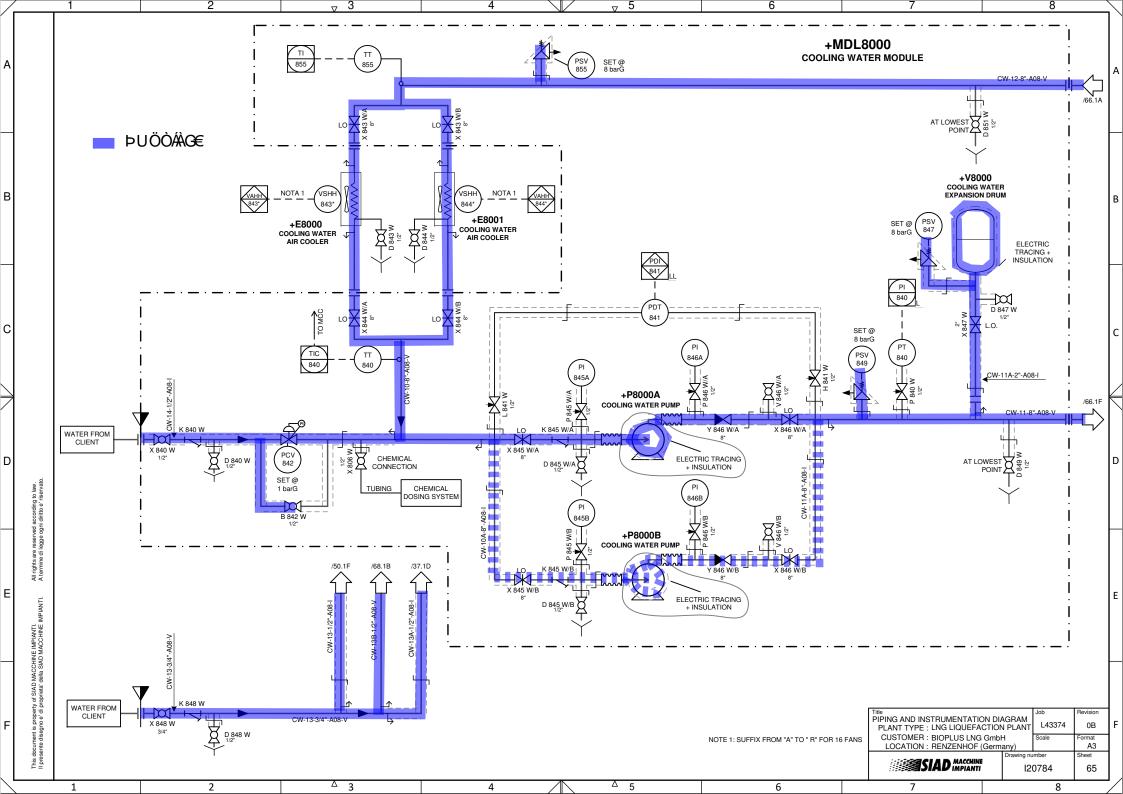


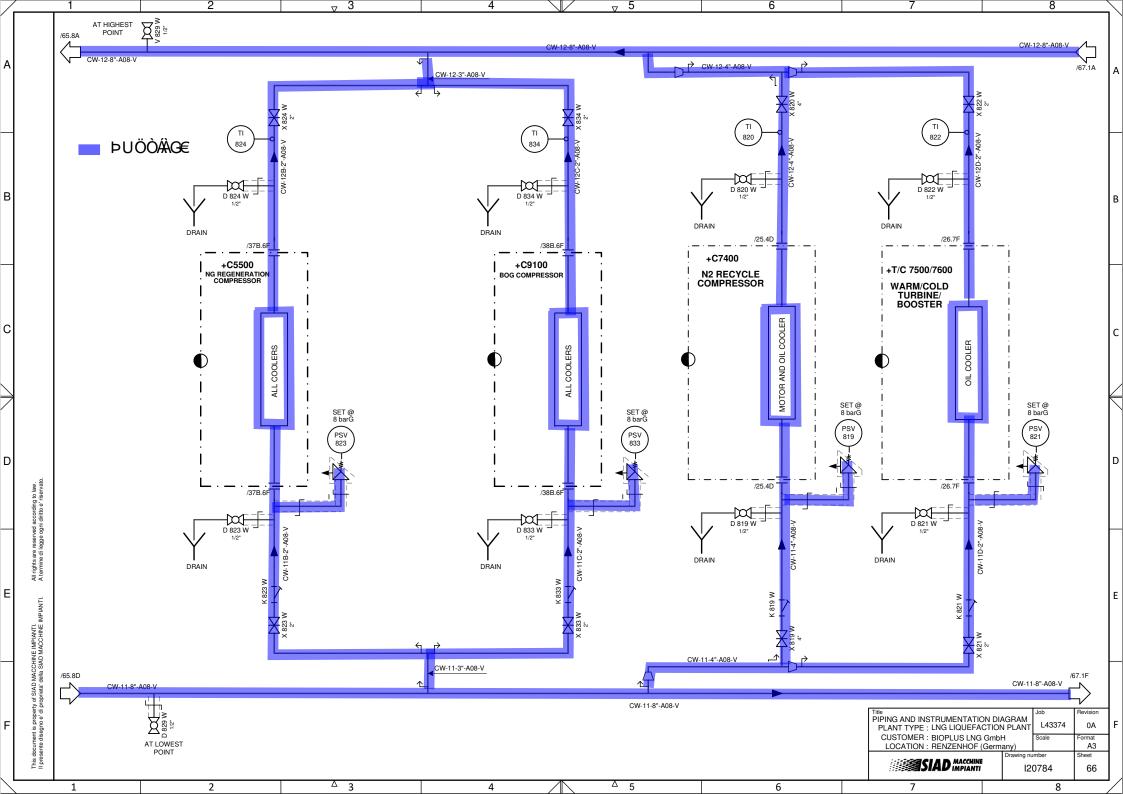


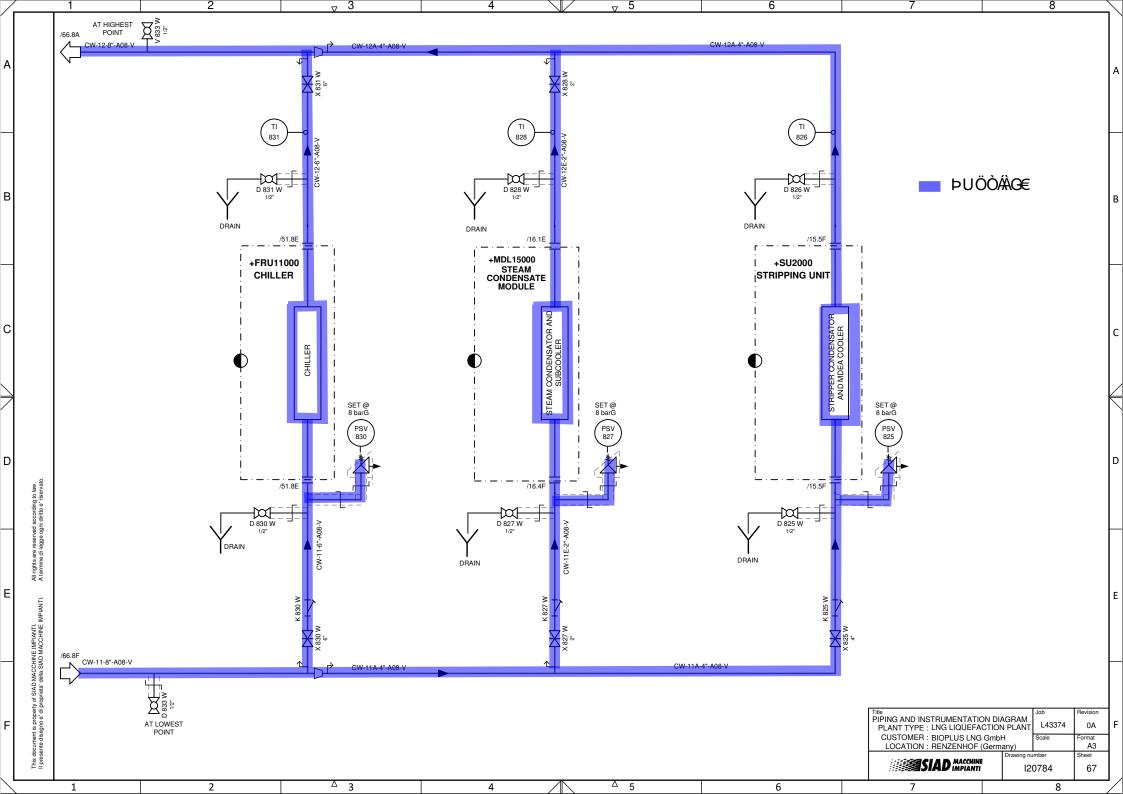


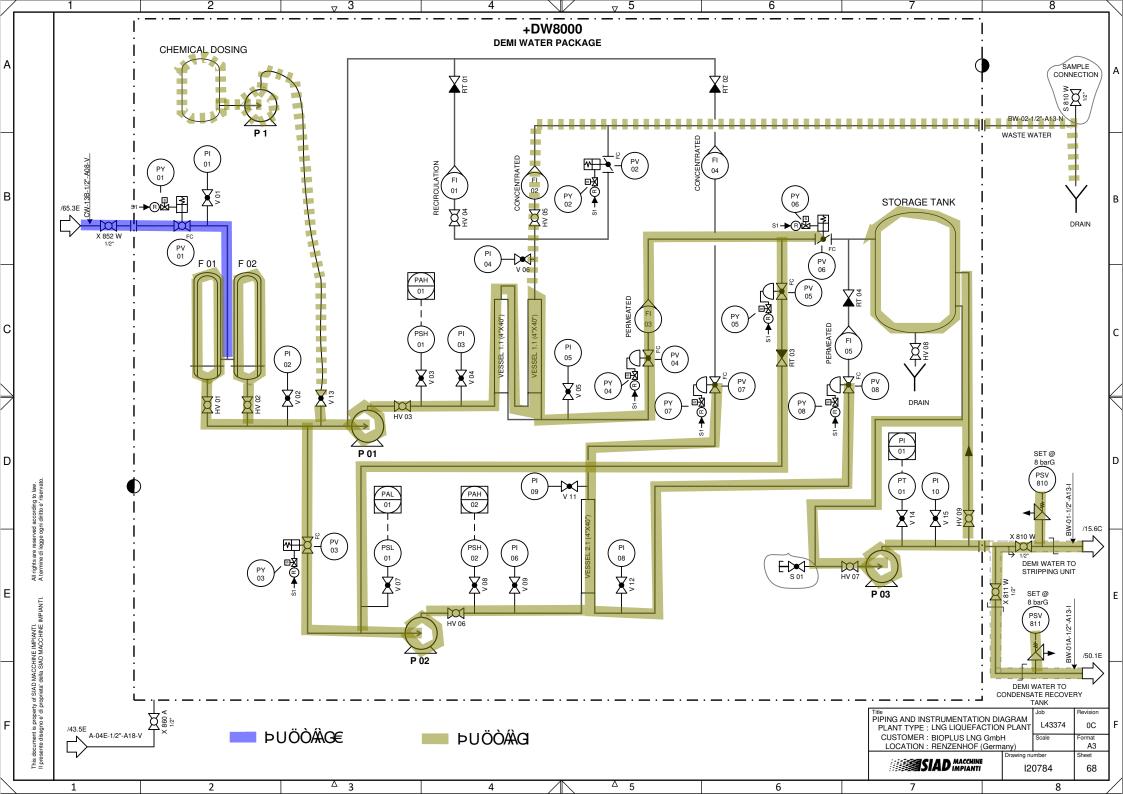


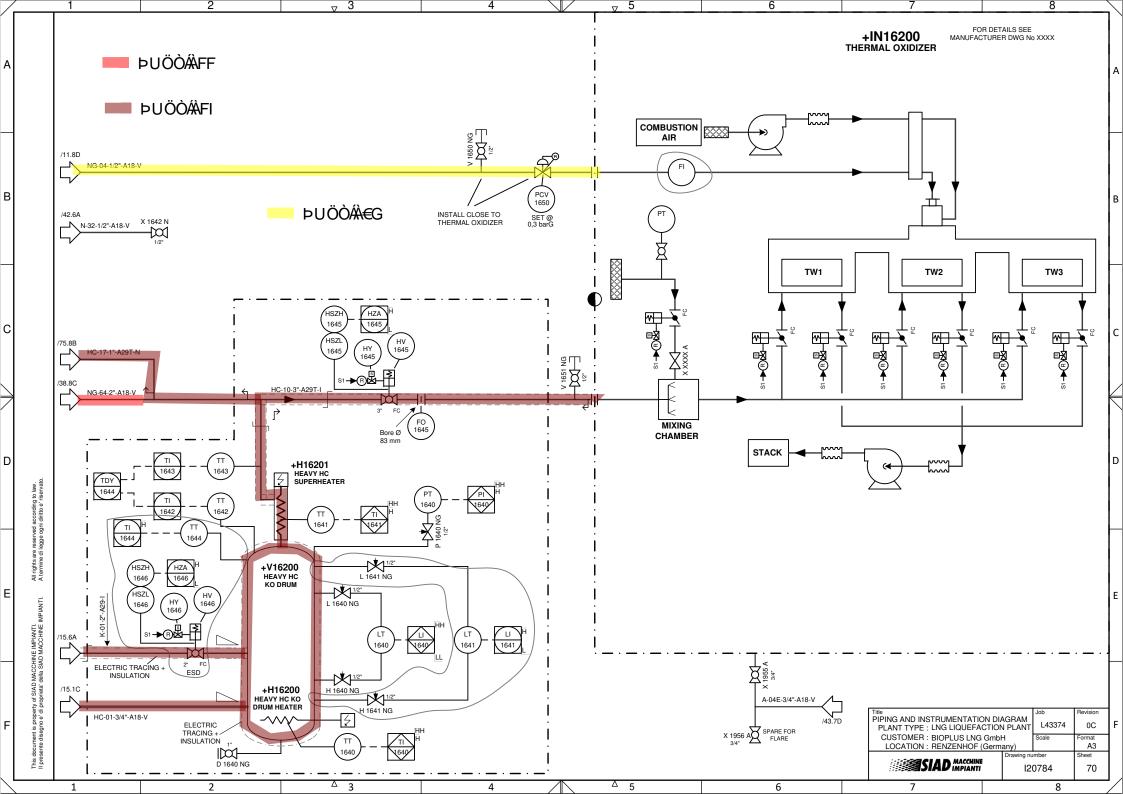


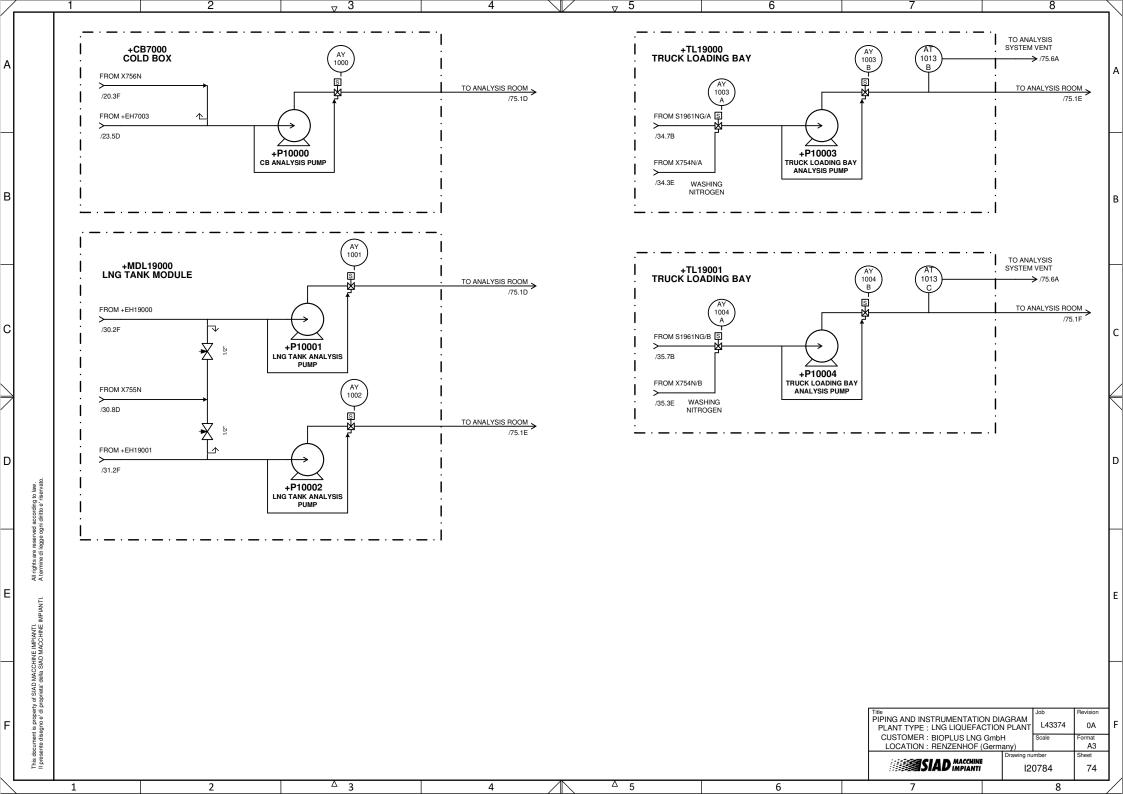


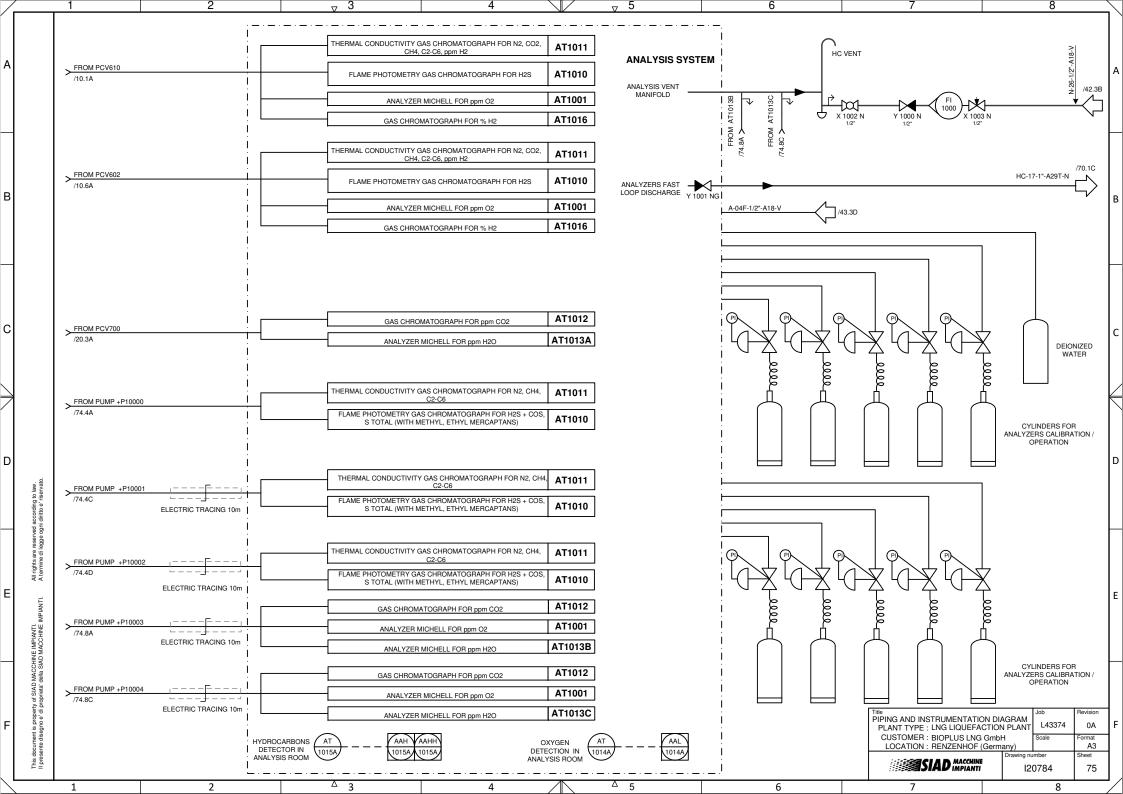


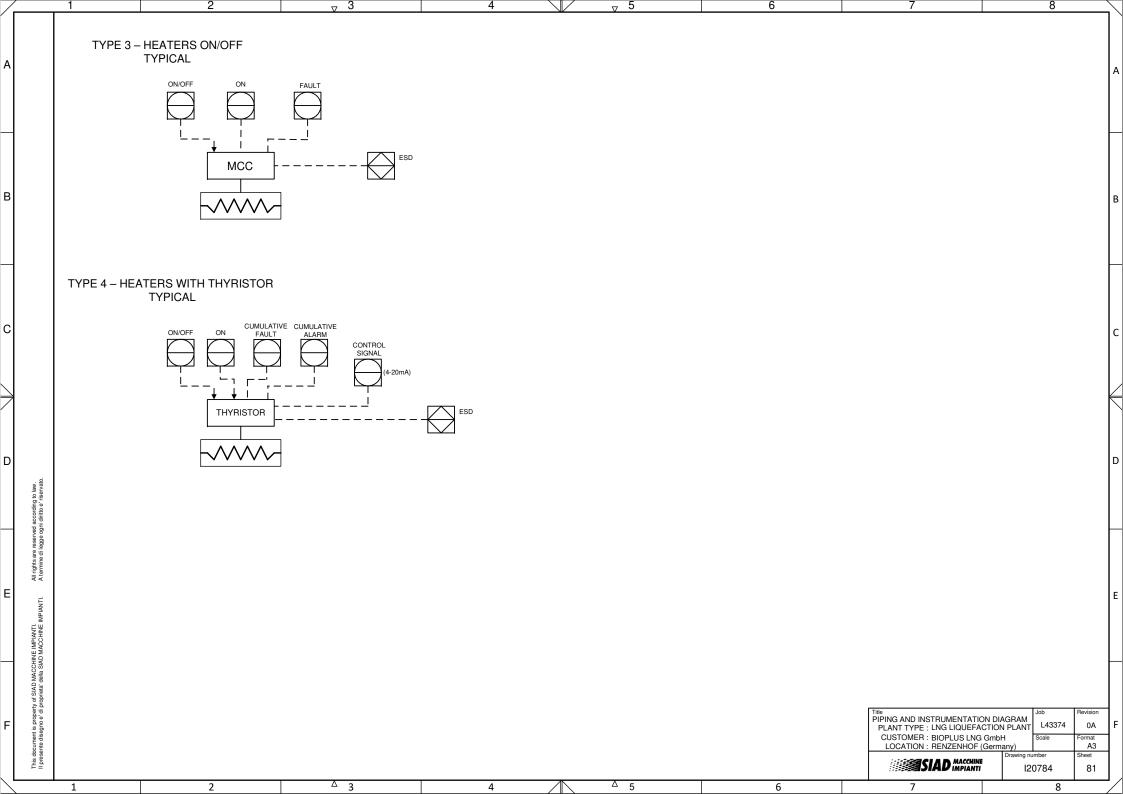


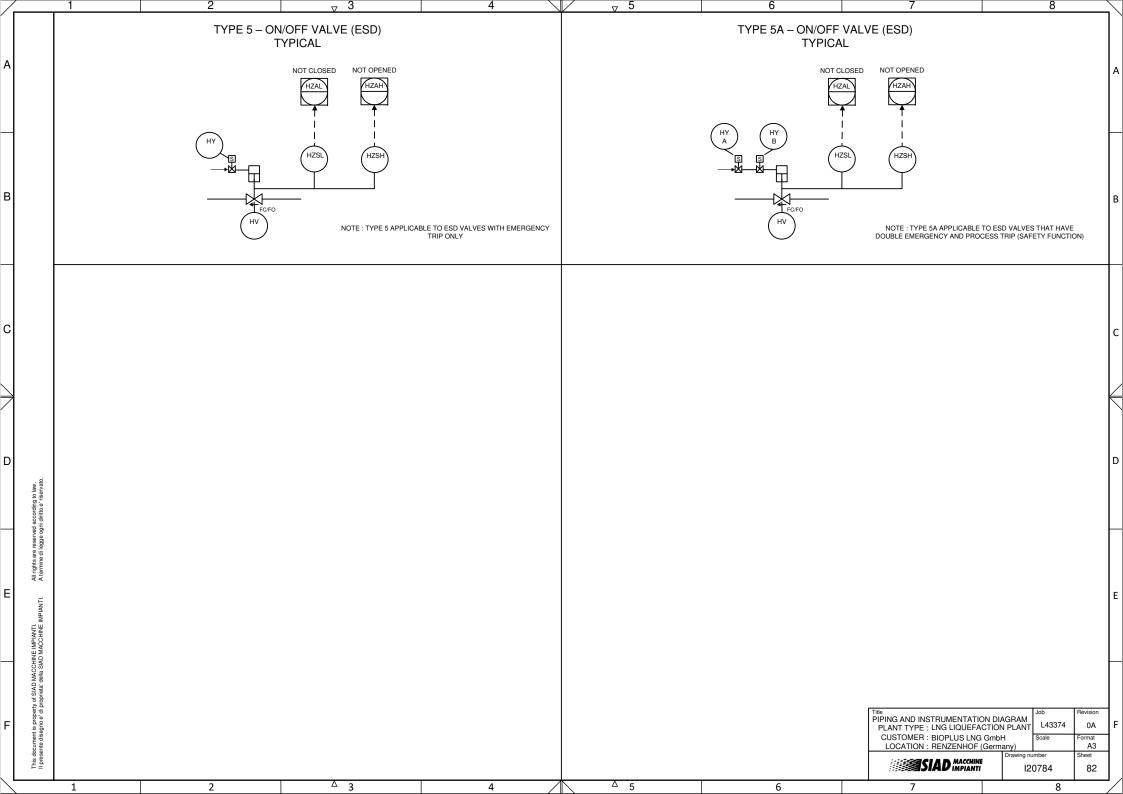












	/	1	2	∇	3	4	√ 5	6		7	8	
	A	TYPE	1 - LV MOTOR TYPICAL									Δ
	В			FAULT	ESD							В
F TYPE 8 - LV MOTOR UNDER VFD SOC: SPEED SPEED SOC: SPEED SPEED SPEED SPEED <td< td=""><td></td><td>TYPE</td><td></td><td>FAULT</td><td>ESD</td><td></td><td></td><td></td><td></td><td></td><td></td><td>C</td></td<>		TYPE		FAULT	ESD							C
1 2 Δ_3 4 Δ_5 6 7 8	T T M document is properly of SIAD MACCHINE IMPLANTI. All rights are reserved according to law. assnite disegno e' di proprieta" della SIAD MACCHINE IMPLANTI. Altermine di legge ogni diritto e' riservato.		STOP/START RUNNING		ESD				PIPING AN PLANT T CUSTOI LOCAT	YPE : LNG LIQUEFACT MER : BIOPLUS LNG G TION : RENZENHOF (G	I DIAGRAM TION PLANT AmbH ermany) Drawing number	OA Format A3 Sheet

LNG liquefaction plant			
HAZOP and SIL Allocation Report	PROJECT	DATE	PAGE
	23123I	April 2023	3 di 7

ATTACHMENT 3

HAZOP Worksheet

Locatio Facility PHA M	any: SIAD / OGE / BIOPLUS GmbH on: Renzenhof, Germany y: LNG liquefaction plant //ethod: HAZOP //ype: Initial		
Proces	SS:		
File De	escription:		
Date:			
Proces	ss Description:		
Chemic	icals:		
Purpos	se:		
Scope:	:		
Objecti	tives:		
Project	t Notes:		

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023 Node: (00) General issues Notes: Drawings: Parameter: Flow

Intention:

Parameter			Equipme	ent:			
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect	1. Misdirect Flow		1.1.1. Potential overpressurization of hot flare header		1. Mode of operation of hot flare and potential overpressurization scenario due to inadvertent opening of manual vent valves to be investigated once design of hot flare will be finalized (e. g. increasing DP of hot flare header, etc)	SIAD MI / OGE	
			1.1.2. Possible unexpected routing of gas to hot flare when not in operation with possible environmental concern/ complains from authorities		2. Appropriate isolation philosophy to be investigated for drains and vents on LNG/NG high pressure vents and drains to hot flare used for maintenance purposes only	SIAD MI / OGE	

Page: 1 of 161

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (01A) Fiscal metering station

Intention: OP upstream = 55 barg (normal operating), 65 barg (maximum operating), OP downstream = 43 barg, DP = 67.5 barg OT upstream W-B41 = 10°C

Notes:

Drawings: I20784 Sh 10 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	2. No/less Flow	2.1. Loss of natural gas from BL (any causes)	2.1.1. No impact on this node 2.1.2. Loss of natural gas to downstream section (See Node #01B and #02)	2.1.2.1. PAL/PALL-B40622 and operator response			
			2.1.3. Loss of natural gas to ground flare pilot and consequent delay in maintenance operation (ground flare is used for maintenance only)				
			2.1.4. Loss of natural gas to building heating system				
		2.2. Plugging of filter F-B41	2.2.1. According to composition of natural gas, significant plugging of the filter is not expected. In case of plugging, expected consequence is slight increase of differential pressure over time with potential minor operational upset	2.2.1.1. PDAH/AHH- B41211			
		2.3. Unexpected closure of SSV-B41520/41530 or PCV- B41540 or any other valve in the line	2.3.1. No impact on mechanical integrity of new piping according to design criteria (85 barg vs 67.5 barg)				
			2.3.2. Loss of natural gas to downstream section (See Node #01B and #02)	2.3.2.1. PAL/PALL-B40622 and operator response			
			2.3.3. No impact on existing natural gas distribution network				

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (01A) Fiscal metering station

Intention: OP upstream = 55 barg (normal operating), 65 barg (maximum operating), OP downstream = 43 barg, DP = 67.5 barg OT upstream W-B41 = 10°C

Notes:

Drawings: I20784 Sh 10 Parameter: Flow

Equipment: F-B41/2, W-B41/2

T drameter	. 1 1011		Equipina	5111. T - D + 1/2, W - D + 1/2			
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	3. More Flow	3.1. Higher demand rate from downstream unit	3.1.1. Possible lower temperature of natural gas at W-B41 outlet and potential operational upset with no safety concern	3.1.1.1. TAL/TALL-B40621 and operator response			
Reverse	4. Reverse Flow	4.1. No credible causes identified					
Misdirect	5. Misdirect Flow	5.1. Stand-by PCV passing/open	 5.1.1. No impact on metering since stand-by metering system is normally isolated by manual block valves 5.1.2. See pressure more for wide opening of PCV-B41540/B42540 				

Session: (1) 27/03/2023

Node: (01A) Fiscal metering station

Intention: OP upstream = 55 barg (normal operating), 65 barg (maximum operating), OP downstream = 43 barg, DP = 67.5 barg

OT upstream W-B41 = 10°C

Notes:

Drawings: I20784 Sh 10

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	6. Lower Temperature	6.1. Refer to More Flow in this node6.2. Failure of heater W-B41 or failure of relevant temperature control system (TT-B40621)			3. Ensure that signal from TT-B41320 and TT- B42320 are reported to DCS including high and low temperature alarm	OGE (TPG)	
			and potential operational upset on downstream sections.				

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (01A) Fiscal metering station Intention: OP upstream = 55 barg (normal operating), 65 barg (maximum operating), OP downstream = 43 barg, DP = 67.5 barg OT upstream W-B41 = 10°C

Notes:

Drawings: I20784 Sh 10 Parameter: Temperature

arameter.	remperature		Equipine	/III. I -D+ I/2, W-D+ I/2			
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
	6. Lower Temperature (cont.)	6.2. Failure of heater W-B41 or failure of relevant temperature control system (TT-B40621) (cont.)	6.2.2. Condensation is not expected in this case according to natural gas dew point (approximately -8°C)				
		6.3. Low ambient temperature	operation if heater W-B41 is working properly. Lower temperature of natural gas.	6.3.1.1. TAL/TALL-B40621and operator response(Stand-by heater available)6.3.1.2. Metering stationlocated inside container			
Nore	7. Higher Temperature	7.1. No causes identified for natural gas supply from distribution network					
		7.2. Higher heat input from heater W-B41 due to failure of relevant temperature control system (TT-B40621)	temperature and potential overheating of downstream piping (DT=80°C) with potential mechanical damage and loss of containment (possible	independent high high temperature interlock provided for heater W-B41 (Minimum requirement included on data sheet for	4. Ensure provision for internal independent high high temperature interlock provided for heater W-B41 to protect heater itself and downstream piping from overheating scenario	OGE (TPG)	
				7.2.2.1. Internal independent high high temperature interlock provided for heater W-B41 (Minimum requirement included on data sheet for vendor)	:See_4		

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (01A) Fiscal metering station

Intention: OP upstream = 55 barg (normal operating), 65 barg (maximum operating), OP downstream = 43 barg, DP = 67.5 barg OT upstream W-B41 = 10°C

Notes:

Drawings: I20784 Sh 10 Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	8. Lower Pressure	8.1. Refer to No/Less flow in this node					
More	9. Higher Pressure	9.1. No cause identified from distribution network					
		9.2. Refer to No/Less flow in this node	:				SBV-B40303 is addressed to relief gas protecting piping and prevent leading to intervention of shut-off valve SSVs in case of leakage from PCV-B41540
		9.3. PCV-B41540 malfunction (fully open), including PT- B40622 malfunction	dowstream valve PCV-B41540 up to 65 barg and potential overpressurization (DP=52 barg)	9.3.1.1. SSV- B41520/B41530 (mechanical/pneumatical devices to cut off natural gas supply)	5. Ensure adequate set point for SSV- B41520/B41530 intervention to prevent opening of PSVs located on downstream piping (set at 52 barg)	OGE (TPG)	
		9.4. PCV-610 malfunction (fully open)	9.4.1. Higher pressure of natural gas routed to analyser (44 barg instead of 1 barg) with potential overpressurization of analysers (AI-1001, 1010, 1011, 1016) and associated items (DP= 0.5 barg) with mechanical damage and potential injuries to personnel		6. Ensure provision for pressure release devices to protect analysers Al- 1001, 1010, 1011, 1016 and associated items in case of wide opening of pressure let down valve PCV-610/602	SIAD MI	Tubing and first valve downstream PCV-610 are rated to withstand 65 barg
		9.5. External fire	:		7. Investigate requirement for pressure relief devices for external fire case in compliance with criteria	OGE (TPG)	

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (01A) Fiscal metering station

Intention: OP upstream = 55 barg (normal operating), 65 barg (maximum operating), OP downstream = 43 barg, DP = 67.5 barg

OT upstream W-B41 = 10°C

Notes:

Drawings: I20784 Sh 10 Parameter: Pressure

Equipment: F-B41/2, W-B41/2

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	9. Higher Pressure	9.5. External fire (cont.)	: (cont.)		adopted for production		
(cont.)	(cont.)				plant		

Session: (1) 27/03/2023

Node: (01A) Fiscal metering station

Intention: OP upstream = 55 barg (normal operating), 65 barg (maximum operating), OP downstream = 43 barg, DP = 67.5 barg

OT upstream W-B41 = 10°C

Notes:

Drawings: I20784 Sh 10

Parameter: Level

Equipment: F-B41/2, W-B41/2

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	10. No/less Level	10.1. Not applicable					
More	11. Higher Level	11.1. Not applicable					

Session: (1) 27/03/2023

Node: (01A) Fiscal metering station

Intention: OP upstream = 55 barg (normal operating), 65 barg (maximum operating), OP downstream = 43 barg, DP = 67.5 barg

OT upstream W-B41 = 10°C

Notes:

Drawings: I20784 Sh 10

Parameter: Composition

Equipment: F-B41/2, W-B41/2

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	12. Different	12.1. Increased content of	12.1.1. No impact on this node				
	Composition	contaminants (CO2, H2S, H2,					
		O2, N2)	12.1.2. Possible impact on	12.1.2.1. Online analysers			
			liquefaction section (see relevant	AI-1001, 1010, 1011, 1016			
			nodes)	including high concentration			
				alarms			

Page: 6 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (01A) Fiscal metering station

Intention: OP upstream = 55 barg (normal operating), 65 barg (maximum operating), OP downstream = 43 barg, DP = 67.5 barg

OT upstream W-B41 = 10°C

Notes:

Drawings: I20784 Sh 10 Parameter: Services / Utilities

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No	13. No Services /	13.1. No additional causes					
	Utilities	identified					

Session: (1) 27/03/2023

Node: (01B) Natural gas supply, preheating, HG removal and absorption Intention: HW6000 shell side: OTin = 10 °C, OTout = 30 °C

TW1002: OT ~ 54°C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15 Parameter: Flow

alameter			Equipina	ent. 1100000, 1 1000, 1 1000,	1111002; 01001		
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
lo/less	14. No/less Flow (NG feed to TW1002)	14.1. Unexpected closure of HV-600 or HV-105	14.1.1. Blocked outlet for upstream section (See No/Less flow in Node #01A)				
			14.1.2. Pressure build-up overtime dowstream valve PCV- B41540 up to 65 barg and potential overpressurization (DP=52 barg) with mechanical	14.1.2.1. Discrepancy alarm provide for HVs 14.1.2.2. PAH/PAHH- B40622 and operator			
			damage, loss of containment and potential for fire/explosion	response 14.1.2.3. SSV- B41520/B41530 (mechanical/pneumatical devices to cut off natural gas supply)			
			14.1.3. No impact on equipment in this node				
			14.1.4. Loss of natural gas to downstream sections (see relevant nodes)				
		14.2. Signficant plugging of mercury trap is not expected according to gas composition					
		14.3. Possible plugging of dust filter	14.3.1. Increased DP accross F1006 resulting in possible operational upset	14.3.1.1. PDAH-101			
	15. No/less Flow (TW1002 overhead line)	15.1. Unexpected closure of HV-133	15.1.1. Pressure build-up overtime dowstream valve PCV- B41540 up to 65 barg and potential overpressurization	15.1.1.1. Discrepancy alarm provide for HVs 15.1.1.2. PAH/PAHH			

Session: (1) 27/03/2023

Node: (01B) Natural gas supply, preheating, HG removal and absorption Intention: HW6000 shell side: OTin = 10 °C, OTout = 30 °C

TW1002: OT ~ 54°C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less cont.)	15. No/less Flow (TW1002 overhead line) (cont.)	15.1. Unexpected closure of HV-133 (cont.)	(DP=52 barg) with mechanical damage, loss of containment and potential for fire/explosion	B40622 and operator response 15.1.1.3. SSV- B41520/B41530 (mechanical/pneumatical devices to cut off natural gas supply)			
			15.1.2. Loss of natural gas to downstream sections (see relevant nodes)				
	16. No/less Flow (TW1002 bottom side)	16.1. Unexpected closure of LV- 146 or malfunction of LIC-152 closing LV-152	16.1.1. Level build up in TW1002 bottom section, according to limited inventory of amine complete overfilling is not expected.				
			16.1.2. Loss of reach amine supply to flash vessel/stripping column resulting in loss of lean amine supply to TW1002 overtime and consequent CO2 carry over to downstream section	16.1.2.1. LAHH-126 to activate closure of HV-105, HV-106 (same actions are also initiated by LAHH-127 on S1001)			
			with potential impact on cold box (see relevant nodes)	16.1.2.2. PDI-125 to give alarm for high DP and to activate closure of HV-105, HV-106 in case of high high DP			
				16.1.2.3. AI-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD			

Session: (1) 27/03/2023

Node: (01B) Natural gas supply, preheating, HG removal and absorption Intention: HW6000 shell side: OTin = 10 °C, OTout = 30 °C

TW1002: OT ~ 54°C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	17. No/less Flow (nitrogen supply to cold flare header)	17.1. Inadvertent closure of manual valve	17.1.1. Negligible impact since multiple sources of flushing nitrogen to cold flare are in place				
More	18. More Flow (NG feed to TW1002)	18.1. Higher demand rate of natural gas (JT valve PV-703 malfunction)	18.1.1. Higher flowrate of gas TW-1002 and potential for indequate CO2 removal and consequent CO2 carry over to downstream section with potential impact on cold box (see relevant nodes)	 18.1.1.1. FIC-713 to limit natural gas flowrate 18.1.1.2. PDAH-125 and operator response 18.1.1.3. AI-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD 			
Reverse		19.1. No causes identified on natural gas side					
		19.2. No caused identified for natural gas backflow into nitrogen circuit since double block and bleed valve (FC) are provided (initiated by shut-down and depressurizing sequence)					
Misdirect		20.1. HV-602 or HV-106 left opened after start-up	20.1.1. No impact				
		20.2. Inadvertent opening of mercury trap F1005 by-pass line	20.2.1. Possible mercury carry- over to downstream section resulting in potential damage of equipment overtime (long term scenario) and reduction of relevant lifetime	20.2.1.1. Routine inspection and procedure			

Session: (1) 27/03/2023

Node: (01B) Natural gas supply, preheating, HG removal and absorption

Intention: HW6000 shell side: OTin = 10 °C, OTout = 30 °C

TW1002: OT ~ 54°C

Notes: Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15 Parameter: Flow

Equipment: HW6000, F1005, F1006, TW1002, S1001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect	20. Misdirect Flow	20.3. Unexpected opening of	20.3.1. Significant portion of	20.3.1.1. Discrepancy alarm			
(cont.)	(cont.)	HV-164	natural gas sent to cold flare resulting in possible	on HVs			
				20.3.1.2. PDI-105 to give			
				alarm for high DP and to			
				activate closure of HV-105,			
				HV-106 in case of high high			
				DP			
				20.3.1.3. Restriction orifice			
				RO-169 to limit flowrate			

Session: (1) 27/03/2023

Node: (01B) Natural gas supply, preheating, HG removal and absorption

Intention: HW6000 shell side: OTin = 10 °C, OTout = 30 °C

TW1002: OT ~ 54°C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	21. Lower Temperature	malfunction closing relevant TV	natural gas routed to TW1002 (10 °C instead of 30°C) resulting in inadequate CO2 removal and consequent carry over to downstream sections (see relevant nodes)	21.1.1.1. TAL/TALL-119 activate closure of HV-600, HV-602 21.1.1.2. AI-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD			
		in Node #01A	natural gas routed to TW1002 (10 °C instead of 30°C) resulting in inadequate CO2 removal and	21.2.1.1. TAL/TALL-119 activate closure of HV-600, HV-602 21.2.1.2. Al-1012 to			

Session: (1) 27/03/2023

Node: (01B) Natural gas supply, preheating, HG removal and absorption Intention: HW6000 shell side: OTin = 10 °C, OTout = 30 °C

TW1002: OT ~ 54°C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15 Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less (cont.)		21.2. Refer to Low temperature in Node #01A (cont.)	downstream sections (see relevant nodes)	provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD			
		21.3. Low ambient temperature	21.3.1. Possible freezing of stagnant piping on rich amine side	and insulation provided on rich amine piping (electrical tracing also supplied by EDG)	8. Investigate appropriate monitoring system to check functionality/effectiveness of electrical tracing systems	SIAD MI	
More	22. Higher Temperature	22.1. Refer to Higher temperature in Node #01A					
		22.2. Malfunction of TIC-600 providing higher duty to exchanger HW6000 by opening relevant TV	22.2.1. Higher temperature of natural gas routed to TW1002 resulting in inadequate CO2 removal and consequent carry	22.2.1.1. TAH/TAHH-119 activate closure of HV-600, HV-602			
			over to downstream sections (see relevant nodes)	22.2.1.2. AI-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD			

Session: (1) 27/03/2023

Node: (01B) Natural gas supply, preheating, HG removal and absorption Intention: HW6000 shell side: OTin = 10 °C, OTout = 30 °C

TW1002: OT ~ 54°C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15 Parameter: Pressure

More 24. Higher Pressure 24. Refer to No/Less flow in Node #01A and consequent carry over to downstream sections (see relevant nodes) activate closure of HV-600. HV-600. HV-602 More 24. Higher Pressure 23.2. Inadequate pressurization transition this node 23.2.1. Possible impact to F1005 PM+000 pm-110. PM+0000 pm-110. PM+000 pm-110. PM+0000 pm-110. PM+0000 pm-	GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More24. Higher Pressure24.1. Refer to No/Less flow in this nodeefficiency and possible reduced lifetimeby PT-122More24.2. Refer to No/Less flow in node #01A24.2. Refer to More Pressure in node #01ASee 724.3. External fire24.4. Trapped gas between HV- 600 and HV-10524.4.1. Possible thermal expansion of trapped gas with no impact since estimated pressure build-up is lower than 52 barg (DP)See 7	Less	23. Lower Pressure	#01A) 23.2. Inadequate pressurization at start-up (HV-106 does not	and consequent carry over to downstream sections (see relevant nodes) 23.2.1. Possible impact to F1005 internals due to high DP when	activate closure of HV-600, HV-602 23.1.1.2. PAL/PALL-122 activate closure of HV-105, HV-106 23.1.1.3. AI-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD 23.2.1.1. Permissive to not open HV-105 below			
24.5. PCV-602 malfunction (fully 24.5.1. Higher pressure of natural gas routed to analyser (44 barg	More	24. Higher Pressure	 24.1. Refer to No/Less flow in this node 24.2. Refer to More Pressure in node #01A 24.3. External fire 24.4. Trapped gas between HV-600 and HV-105 24.5. PCV-602 malfunction (fully 	efficiency and possible reduced lifetime : 24.4.1. Possible thermal expansion of trapped gas with no impact since estimated pressure build-up is lower than 52 barg (DP) 24.5.1. Higher pressure of natural	by PT-122	:See_7 :See_6		

Session: (1) 27/03/2023

Node: (01B) Natural gas supply, preheating, HG removal and absorption

Intention: HW6000 shell side: OTin = 10 °C, OTout = 30 °C

TW1002: OT ~ 54°C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15 Parameter: Pressure

Equipment: HW6000, F1005, F1006, TW1002, S1001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	24. Higher Pressure	24.5. PCV-602 malfunction (fully	instead of 1 barg) with potential		: <u>See_6</u> (cont.)		
(cont.)	(cont.)	open) (cont.)	overpressurization of analysers				
			(Al-1001, 1010, 1011, 1016) and				
			associated items (DP= 0.5 barg)				
			with mechanical damage and				
			potential injuries to personnel				

Session: (1) 27/03/2023

Node: (01B) Natural gas supply, preheating, HG removal and absorption

Intention: HW6000 shell side: OTin = 10 °C, OTout = 30 °C

TW1002: OT ~ 54°C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15

Parameter: Level

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	ΒY	NOTES
No/less	25. No/less Level	fully opening LV-152 on TW- 1002 bottom side	and consequent gas breakthrough (44 barg) to flash vessel S1003 (DP=10 barg) leading to potential overpressurization with mechanical damage and loss of	25.1.1.1. LALL-144 activate closure of LV-146 (same function is also initiated by PAHH-172) 25.1.1.2. PSV-167 on S1003 sized including gas breakthrough scenario			Capacity of S1003 is adequate to handle incoming liquid from TW1002 in case of wide opening of LV- 152 in order to exclude potential overfilling scenario
More	26. Higher Level	26.1. Refer to No/Less flow in this node 26.2. No causes identified for S1001					

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (01B) Natural gas supply, preheating, HG removal and absorption Intention: HW6000 shell side: OTin = 10 °C, OTout = 30 °C

Intention: HW6000 shell side: OTin = 10 °C, OTout = 30TW1002: OT ~ 54°C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15 Parameter: Composition

Equipment: HW6000, F1005, F1006, TW1002, S1001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	Composition	27.1. See previous deviation					
		27.2. <u>See_node #06</u> for off-spec lean amine					

Session: (1) 27/03/2023

Node: (01B) Natural gas supply, preheating, HG removal and absorption Intention: HW6000 shell side: OTin = $10 \degree$ C, OTout = $30 \degree$ C

TW1002: OT ~ 54°C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15 Parameter: Services / Utilities

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No	28. No Services /	28.1. Loss of utilities	28.1.1. No additional scenario				
	Utilities		identified (see previous deviation)				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (02) Natural gas supply to steam generator Intention: RS6000: m= 70 kg/h; OPin = 43,9 barg, OPout = 2 barg; OTin = 30 °C, OTout = 6 °C

Notes:

Drawings: I20784 Sh 10; I20784 Sh 11; I20784 Sh 50; I20784 Sh 70

Parameter: Flow

Equipment: RS6000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
GW No/less	DEVIATION 29. No/less Flow	CAUSES 29.1. Loss of natural gas supply from BL (any cause relevant to node #01A, #01B)	CONSEQUENCES 29.1.1. No impact on this node 29.1.2. Loss of natural gas feed to steam generator burners leading to loss of LP steam production leading to plant shut- down 29.1.3. Loss of natural gas feed to steam generator burners (see dedicated HAZARD analysis/any other technical documentation provided by manufacturer) 29.1.4. Loss of natural gas feed to thermal-oxidizer pilots and main burners resulting in operational upset including possible plant shut-down	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
			29.1.5. Loss of natural gas feed to thermal-oxidizer pilots and main burners (see dedicated HAZARD analysis/any other technical documentation provided by manufacturer)				
		29.2. Unexpected isolation within feed gas module MDL6000	29.2.1. Loss of natural gas feed to steam generator burners leading to loss of LP steam production leading to plant shut- down				
			29.2.2. Loss of natural gas feed to steam generator burners (see dedicated HAZARD analysis/any other technical documentation				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (02) Natural gas supply to steam generator Intention: RS6000: m= 70 kg/h; OPin = 43,9 barg, OPout = 2 barg; OTin = 30 °C, OTout = 6 °C

Notes:

Drawings: I20784 Sh 10; I20784 Sh 11; I20784 Sh 50; I20784 Sh 70

Parameter: Flow

Equipment: RS6000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES	
No/less (cont.)	29. No/less Flow (cont.)	29.2. Unexpected isolation within feed gas module MDL6000 (cont.)	provided by manufacturer) 29.2.3. Loss of natural gas feed to thermal-oxidizer pilots and main burners resulting in operational upset including possible plant shut-down 29.2.4. Loss of natural gas feed to thermal-oxidizer pilots and main burners (see dedicated HAZARD analysis/any other technical documentation provided by manufacturer) 29.2.5. Negligible impact on usptream sections					
		29.3. Unexpected closure of PCV-1581	29.3.1. Loss of natural gas feed to steam generator burners leading to loss of LP steam production leading to plant shut- down					
			29.3.2. Loss of natural gas feed to steam generator burners (see dedicated HAZARD analysis/any other technical documentation provided by manufacturer)					
		29.4. Unexpected closure of PCV-1650	29.4.1. Loss of natural gas feed to thermal-oxidizer pilots and main burners resulting in operational upset including possible plant shut-down					

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (02) Natural gas supply to steam generator

Intention: RS6000: m= 70 kg/h; OPin = 43,9 barg, OPout = 2 barg; OTin = 30 °C, OTout = 6 °C Notes:

Drawings: I20784 Sh 10; I20784 Sh 11; I20784 Sh 50; I20784 Sh 70

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)			to thermal-oxidizer pilots and main burners (see dedicated HAZARD analysis/any other technical documentation provided by manufacturer)				
More		30.1. No significant cause identified					
Reverse	31. Reverse Flow	31.1. No causes identified					
Misdirect	32. Misdirect Flow	32.1. No causes identified					

Session: (1) 27/03/2023

Node: (02) Natural gas supply to steam generator

Intention: RS6000: m= 70 kg/h; OPin = 43,9 barg, OPout = 2 barg; OTin = 30 °C, OTout = 6 °C

Notes:

Drawings: I20784 Sh 10; I20784 Sh 11; I20784 Sh 50; I20784 Sh 70

Parameter: Temperature

Equipment: RS6000

Equipment: RS6000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	33. Lower Temperature	natural gas from upstream section (see node #01B)	33.1.1. Natural gas routed to feed gas module at 10 °C instead of 30 °C and consequent lower temperature to users (estimated - 17 °C) leading to possible operational upset. No impact on mechanical integrity on piping (MDMT = -29°C)				
More	34. Higher Temperature			33.1.2.1. TAL-601 / TALL- 601 to close HV-600			

Page: 18 of 161

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (02) Natural gas supply to steam generator

Intention: RS6000: m= 70 kg/h; OPin = 43,9 barg, OPout = 2 barg; OTin = 30 °C, OTout = 6 °C

Notes:

Drawings: I20784 Sh 10; I20784 Sh 11; I20784 Sh 50; I20784 Sh 70

Parameter: Temperature

Equipment: RS6000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	34. Higher Temperature	section (see node #01B)	34.1.1. No significant impact				
(cont.)	(cont.)		(cont.)				

Session: (1) 27/03/2023

Node: (02) Natural gas supply to steam generator

Intention: RS6000: m= 70 kg/h; OPin = 43,9 barg, OPout = 2 barg; OTin = 30 °C, OTout = 6 °C

Notes:

Drawings: I20784 Sh 10; I20784 Sh 11; I20784 Sh 50; I20784 Sh 70

Parameter: Pressure

Equipment: RS6000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	35. Lower Pressure	35.1. See no/less flow					
More	36. Higher Pressure	36.1. Malfunction of pressure controller on feed gas module	resulting in potential overpressurization, mechanical damage, natural gas leak and fire / explosion hazard	provided within MDL6000 as per national regulation			
		36.2. Malfunction of PCV-1581 (fully open)	36.2.1. Higher pressure of natural gas routed to steam boiler burners (44 barg instead of 2 barg) (see dedicated HAZARD analysis/any other technical documentation provided by manufacturer)				
		36.3. Malfunction of PCV-1615 (fully open)	36.3.1. Higher pressure of natural gas routed to thermal oxidizer burners and main pilots (44 barg instead of 2 barg) (see dedicated HAZARD analysis/any other technical documentation				

Page: 19 of 161

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (1) 27/03/2023

Node: (02) Natural gas supply to steam generator

Intention: RS6000: m= 70 kg/h; OPin = 43,9 barg, OPout = 2 barg; OTin = 30 °C, OTout = 6 °C

Notes:

Drawings: I20784 Sh 10; I20784 Sh 11; I20784 Sh 50; I20784 Sh 70

Parameter: Pressure

Equipment: RS6000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	36. Higher Pressure	36.3. Malfunction of PCV-1615	provided by manufacturer)				
(cont.)	(cont.)	(fully open) (cont.)					

Session: (1) 27/03/2023

Node: (02) Natural gas supply to steam generator

Intention: RS6000: m= 70 kg/h; OPin = 43,9 barg, OPout = 2 barg; OTin = 30 °C, OTout = 6 °C

Notes:

Drawings: I20784 Sh 10; I20784 Sh 11; I20784 Sh 50; I20784 Sh 70

Parameter: Level

Equipment: RS6000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	37. No/less Level	37.1. Not applicable					
More	38. Higher Level	38.1. Not applicable					

Session: (1) 27/03/2023

Node: (02) Natural gas supply to steam generator

Intention: RS6000: m= 70 kg/h; OPin = 43,9 barg, OPout = 2 barg; OTin = 30 °C, OTout = 6 °C

Notes:

Drawings: I20784 Sh 10; I20784 Sh 11; I20784 Sh 50; I20784 Sh 70

Parameter: Composition

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	39. Different	39.1. No causes identified					
	Composition						

Session: (1) 27/03/2023

Node: (02) Natural gas supply to steam generator

Intention: RS6000: m= 70 kg/h; OPin = 43,9 barg, OPout = 2 barg; OTin = 30 °C, OTout = 6 °C

Notes:

Drawings: I20784 Sh 10; I20784 Sh 11; I20784 Sh 50; I20784 Sh 70

Parameter: Services / Utilities

Equipment: RS6000

Equipment: RS6000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No		40.1. Not applicable					
	Utilities						

Session: (2) 28/03/2023 Node: (03) Flash vessel Intention: S1003: OT ~ 54°C HW2007: OTin = 54°C; OTout = 99°C OP = 5 barg Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 15; I20784 Sh 36

Parameter: Flow

Equipment: S1003, HW2007

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	41. No/less Flow (Overhead line)	41.1. Malfunction of PIC-171 closing PV-171 or PV spurious closure	41.1.1. Pressure build up in S1003 leading to potential overpressurization with mechanical damage and loss of containment of natural gas/rich amine, potential fire/explosion and injuries to personnel due to mechanical damage	41.1.1.1. PAHH-172 to activate closure of LV-146 41.1.1.2. PSV-167 sized including this scenario			
			41.1.2. Loss of amine flash gas to NG regeneration cooler with negligible impact (9 Nm3/h vs overall stream 260 Nm3/h)				
	42. No/less Flow (Hydrocarbon line)	42.1. Malfunction of LIC-158 closing LV-158 or not opening on demand or spurious closure of LV-143	42.1.1. Hydrocarbon accumulation overtime on S1003 leading to potential HC carry over to TW2008 and TW1002 resulting in foaming and consequent operational upset				
	43. No/less Flow (Rich amine)	43.1. Malfunction of LIC-163 closing LV-163 or not opening on demand or spurious closure of LV-151	43.1.1. Increase of level in S1003, overfilling is not expected taking into account void space available in S1003 compared to hold up in TW2008 and TW1002				
			43.1.2. Increase of level in S1003 leading to rich amine overflow inside HC bucket and consequent possible amine carry-over to thermal oxidizer KO drum with operational upset and no safety concern	activate closure LV-146			

Page: 21 of 161

Session: (2) 28/03/2023 Node: (03) Flash vessel Intention: S1003: OT ~ 54°C HW2007: OTin = 54°C; OTout = 99°C OP = 5 barg Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 15; I20784 Sh 36

Parameter: Flow

Equipment: S1003, HW2007

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	43. No/less Flow (Rich	43.1. Malfunction of LIC-163	43.1.3. Loss of reach amine	43.1.3.1. LAL-202 and			
(cont.)	amine)	closing LV-163 or not opening	supply to stripping column	operator response			
	(cont.)	on demand or spurious closure	resulting in loss of lean amine				
		of LV-151 (cont.)		43.1.3.2. Al-1012 to provide			
			consequent CO2 carry over to downstream section with potential	a high CO2 concentration			
				on high high CO2			
			nodes)	concentration through ESD			
			,	Ũ			
				43.1.4.1. LAL-202 and			
			supply to stripping column resulting in loss of level and	operator response			
			0	43.1.4.2. LALL-209 activate			
			due to dry-running with potential	trip of pump P-2005A/B and			
			localized NG leakage due to	to close HV-138			
			backflow from TW1002 resulting				
			in possible fire and injuries to				
			personnel				
More	44. More Flow	44.1. No causes identified					
Reverse	45. Reverse Flow (NG	45.1. No causes identified for					
	side)	backflow from gas regeneration					
		cooler according to operating condition downstream cooler					
		itself (OP approximately 1.5					
		barg)					
	46. Reverse Flow (HC	46.1. No causes identified for					
	side)	backflow from oxidizer suction KO drum through HC discharge					
		line (OP approximately 0.1 barg)					
	47. Reverse Flow (rich	47.1. No causes identified for					
	amine)	backflow from TW2008					

PHAWorks by Primatech Inc.

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (2) 28/03/2023 Node: (03) Flash vessel Intention: S1003: OT ~ 54°C HW2007: OTin = 54°C; OTout = 99°C OP = 5 barg Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 15; I20784 Sh 36 Parameter: Flow

Equipment: S1003, HW2007

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Reverse (cont.)	amine) (cont.)	according to operating condition (OP approximately 0.9					
Misdirect		barg) 48.1. No causes identified					

Session: (2) 28/03/2023

Node: (03) Flash vessel

Intention: S1003: OT ~ 54°C

HW2007: OTin = 54°C; OTout = 99°C

OP = 5 barg

Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 15; I20784 Sh 36

Parameter: Temperature

Equipment: S1003, HW2007

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less		49.1. No significant process causes identified 49.2. Low ambient temperature	49.2.1. Possible freezing of stagnant piping on rich amine side	49.2.1.1. Electrical tracing and insulation provided on rich amine piping (electrical tracing also supplied by EDG)	:See_8		
More	50. Higher Temperature	50.1. No causes identified					

Page: 23 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (2) 28/03/2023 Node: (03) Flash vessel Intention: S1003: OT ~ 54°C HW2007: OTin = 54°C; OTout = 99°C OP = 5 barg Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 15; I20784 Sh 36

Parameter: Pressure

Equipment: S1003, HW2007

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	51. Lower Pressure	51.1. Malfunction of PIC-171 fully opening PV-171	51.1.1. Pressure decrease in S1003 resulting in inadequate driving force to push rich amine to stripping unit (Refer to No/Less Flow consequences) 51.1.2. No impact on downstream system				
More	52. Higher Pressure	 52.1. Gas breakthrough scenario from TW1002 (see node #01B) 52.2. Blocked outlet (see no/less flow in this node) 52.3. Gas breakthrough scenario from HW4001 (see Node #04) 					
		52.4. External fire	52.4.1. Overpressurization of involved equipment/piping with possible mechanical damage	52.4.1.1. PSV-167 sized including external fire			

Session: (2) 28/03/2023 Node: (03) Flash vessel Intention: S1003: OT ~ 54°C HW2007: OTin = 54°C; OTout = 99°C OP = 5 barg Notes:

Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 15; I20784 Sh 36

Parameter: Level

Equipment: S1003, HW2007

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	53. No/less Level (Hydrocarbon side)	53.1. Malfunction of LIC-158 fully opening LV-158		53.1.2.1. LSLL-104 activate closure of LV-143			V16200 DP to be finalized (at least same of DP of flash vessel S1003, 10 barg)
	54. No/less Level (rich amine)	54.1. Malfunction of LIC-163 fully opening LV-163	S1003 and consequent gas breakthrough (5 barg) to stripping				
More	55. Higher Level	55.1. Refer to No/Less flow in this node					

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (2) 28/03/2023 Node: (03) Flash vessel Intention: S1003: OT ~ 54°C HW2007: OTin = 54°C; OTout = 99°C OP = 5 barg Notes: Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 15; I20784 Sh 36 Parameter: Composition

Equipment: S1003, HW2007

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	56. Different	56.1. No additional causes					
	Composition	identified					

Page: 26 of 161

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (2) 28/03/2023

Node: (04) NG stream to dryers and condensate separator Intention: HW4001: OTin = 50 °C, OTout = 20 °C, OPchilled water = 3 barg

OP = 44 barg

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 5 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	57. No/less Flow (gas)	57.1. No/Less Flow from upstream section	57.1.1. No impact on this node				
	58. No/less Flow (condensate)	58.1. Malfunction of LIC-419 closing LV-419 or not opening on demand or spurious closure of LV-413	 58.1.1. No impact on flash vessel S1003 58.1.2. Level build up on precooler condensate separator ST4001 resulting in possible overfilling and liquid carry over to dryers with potential for damage of adsorbent material, economical losses and no safety concern 	58.1.2.1. LAHH-411 activate closure HV105, HV106 58.1.2.2. AI-1013A to provide a high H2O concentration alarm and to close HV-700 on high high H2O concentration through ESD			
More	59. More Flow	59.1. No causes identified					
Reverse	60. Reverse Flow	60.1. No causes identified					
Misdirect	61. Misdirect Flow	61.1. Tube rupture in HW4001	61.1.1. NG (44 barg) enters into HW4001 shell side (DP= 8 barg) and potential overpressuriization on chilled water circuit resulting in mechanical damage and loss of containment of natural gas, potential fire/explosion and injuries to personnel due to mechanical damage	61.1.1.1. PSV-478 sized for this scenario (routed to cold flare)			
		61.2. HV-130 left opened after start-up	61.2.1. No impact				

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (2) 28/03/2023

Node: (04) NG stream to dryers and condensate separator Intention: HW4001: OTin = 50 °C, OTout = 20 °C, OPchilled water = 3 barg

OP = 44 barg

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 5 Parameter: Temperature

Equipment: HW4001, ST4001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	62. Lower Temperature	fully opening TV-486 on chilled	62.1.1. Lower temperature on natural gas resulting in potential hydrates formation and possible plugging overtime leading to operational upset	62.1.1.1. TALL-421 activate closure of HV-105 and HV- 106			
		62.2. Low ambient temperature	62.2.1. Possible freezing of stagnant piping on condensate side	and insulation provided on condensate piping (electrical tracing also supplied by EDG)	:See_8 9. Provide winterization on low points where condensation may happen on naturale gas line from TW1002 to HW4001	SIAD MI	
More	63. Higher Temperature	63.1. Loss of chilled water including malfunction of TIC-486 closing TV-486	63.1.1. Loss of water condensation on natural gas stream leading to reduced efficiency of dryer section and potential for umidy slippage to cold box (see relevant node)	 63.1.1.1. TAHH-421 activate closure of HV-105 and HV-106 63.1.1.2. AI-1013A to provide a high H2O concentration alarm and to close HV-700 on high high H2O concentration through ESD 			

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (2) 28/03/2023

Node: (04) NG stream to dryers and condensate separator

Intention: HW4001: OTin = 50 °C, OTout = 20 °C, OPchilled water = 3 barg

OP = 44 barg

Notes: Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 5 Parameter: Pressure

Equipment: HW4001, ST4001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES	
Less		at start-up (HV-130 does not open on demand)	•					
More	3	65.1. Refer to misdirect flow (tube tupture in HW4001) 65.2. External fire	:		:See_7			
		HW4001 shell side		65.3.1.1. PSV-478 sized for this scenario				

Session: (2) 28/03/2023

Node: (04) NG stream to dryers and condensate separator

Intention: HW4001: OTin = 50 °C, OTout = 20 °C, OPchilled water = 3 barg

OP = 44 barg Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 5

Parameter: Level

Equipment: HW4001, ST4001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	66. Lower Level	66.1. Malfunction of LIC-419	66.1.1. Loss of level on ST-4001	66.1.1.1. LALL-472 activate	10. Closure of LV-413	SIAD	
		fully opening LV-419	and consequent gas	closure of LV-413	shall be also initiated by	MI	
			breakthrough (44 barg) to flash		PAHH-172		
			vessel S1003 (DP=10 barg)	66.1.1.2. PSV-167 on			
			leading to potential	S1003 sized including gas			
			overpressurization with	breakthrough scenario			
			mechanical damage and loss of	-			
			containment of natural gas/rich				
			amine, potential fire/explosion				
			and injuries to personnel due to				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

r dointy. Erte inquelabiler plar

Session: (2) 28/03/2023

Node: (04) NG stream to dryers and condensate separator

Intention: HW4001: OTin = 50 °C, OTout = 20 °C, OPchilled water = 3 barg

OP = 44 barg

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 5 Parameter: Level

Equipment: HW4001, ST4001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	66. Lower Level (cont.)	66.1. Malfunction of LIC-419	mechanical damage	66.1.1.2. PSV-167 on	10. Closure of LV-413		
(cont.)		fully opening LV-419 (cont.)		S1003 sized including gas	shall be also initiated by		
				breakthrough scenario	PAHH-172 (cont.)		
				(cont.)			
More	67. Higher Level	67.1. Refer to No/Less flow					

Session: (2) 28/03/2023

Node: (04) NG stream to dryers and condensate separator

Intention: HW4001: OTin = 50 °C, OTout = 20 °C, OPchilled water = 3 barg

OP = 44 barg

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 5

Parameter: Composition

Equipment: HW4001, ST4001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	68. Different	68.1. No additional causes					
	Composition	identified					1

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (2) 28/03/2023

Node: (05) MDEA Storage tank and dosing Intention: System used for periodical pure amine make up after weekly sampling (if make up is required)

Notes: Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Flow

Equipment: Amine IBC, P3001

Falametei	. 1 10 W		Equipin	ent. Annine IbC, F3001			
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	69. No/less Flow	69.1. Pump P3001 failure when required in operation	69.1.1. Interruption of pure amine make-up and consequent delay in operation (according to operating manual, additional sampling is required after make-up)				
More	70. More Flow	70.1. Improper make-up operation (excessive amount)	70.1.1. Higher amount of pure amine with no significant consequences on process side. Minor economical losses				
Reverse	71. Reverse Flow	71.1. Pump P3001 failure when required in operation	71.1.1. Possible backflow from lean amine circuit with potential contamination of fresh amine and economical losses/potential overfilling of IBC and potential for soil contamination	 71.1.1.1. Dicrepancy alarm/electrical fault signal for pump status reported to PLC 71.1.1.2. Presence of two check valves in series 71.1.1.3. IBC located inside curbed area with adequate impermeable material 			
Misdirect	72. Misdirect Flow	72.1. Wrong line up of connection between P3001 discharge and V3004	72.1.1. Make-up amine batch routed to V3004 instead of to lean amine circuit resulting in minor economical losses/operational upset due to delay in operation. No impact on V3004 according to limited amount involved				

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (2) 28/03/2023

Node: (05) MDEA Storage tank and dosing

Intention: System used for periodical pure amine make up after weekly sampling (if make up is required)

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Temperature

Equipment: Amine IBC, P3001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	73. Lower Temperature		portions of piping where lean amine can be possibly present and consequent mechanical	73.1.2.1. Winterization provided between first check valve on pump P3001 discharge and injection point	:See_8		
More	74. Higher Temperature	74.1. No causes identified					

Session: (2) 28/03/2023

Node: (05) MDEA Storage tank and dosing

Intention: System used for periodical pure amine make up after weekly sampling (if make up is required)

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Pressure

Equipment: Amine IBC, P3001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less		75.1. Refer to No/Less flow (pump failure)					
More	- 0	76.1. Inadvertent closure of valve on pump discharge line	76.1.1. Pressure build up in blocked outlet piping up to P3001 shut off pressure (estimated < 5 barg). No impact on piping mechanical integrity (ANSI150)				

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (2) 28/03/2023

Node: (05) MDEA Storage tank and dosing

Intention: System used for periodical pure amine make up after weekly sampling (if make up is required)

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Level

Equipment: Amine IBC, P3001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less			77.1.1. Emptying of IBC during fresh amine transfer and potential damage to P3001 due to dry running, economical losses		11. Provide additional gauging system to monitor level inside amine IBC (e.g. pressure gauge on bottom outlet line to P3001 pump suction, etc.)	SIAD MI	
More	78. Higher Level	78.1. No causes identified					

Session: (2) 28/03/2023

Node: (05) MDEA Storage tank and dosing

Intention: System used for periodical pure amine make up after weekly sampling (if make up is required)

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Composition

Equipment: Amine IBC, P3001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
	79. Different Composition	79.1. No additional causes identified					

Session: (2) 28/03/2023

Node: (05) MDEA Storage tank and dosing

Intention: System used for periodical pure amine make up after weekly sampling (if make up is required)

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Services / Utilities

Equipment: Amine IBC, P3001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No	80. No Services /	80.1. No additional causes					
	Utilities	identified					

Session: (2) 28/03/2023

Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C

HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15 Parameter: Flow

Equipment: TW2008, HW2009, HW2010, S2011, P2012A/B, HW2007, P2005A/B, F2001, F2002, F2003

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	81. No/less Flow (lean amine to TW1002)	81.1. Failure of pump P2005A/B	81.1.1. Level build up in TW2008, overfilling is not expected since capacity of this equipment can accomodate overall amine inventory				
			81.1.2. Level build up in TW2008 resulting in temperature build up on bottom section (<150°C) with negligible impact on amine (degradation temperature around 180°C)				
			81.1.3. Loss of lean amine supply to TW1002 and consequent inadequate CO2 removal and consequent CO2 slippage to cold box (see relevant node)	81.1.3.1. Discrepancy signal from onduty P2005A/B starting stand-by pump 81.1.3.2. FAL-230 and operator response			
				81.1.3.3. AI-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD			
		81.2. Malfunction of FIC-227 to reduce rpm of pump P2005A/B through relevant VFD	81.2.1. Reduced of lean amine supply to TW1002 and consequent inadequate CO2 removal and consequent CO2 slippage to cold box (see relevant node)	81.2.1.1. AI-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD		SIAD MI	

Page: 34 of 161

Session: (2) 28/03/2023

Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Flow

Equipment: TW2008, HW2009, HW2010, S2011, P2012A/B, HW2007, P2005A/B, F2001, F2002, F2003

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	81. No/less Flow (lean amine to TW1002) (cont.)	81.3. Unexpected closure of HV-138 on TW1002 inlet line	81.3.1. Level build up in TW2008, overfilling is not expected since capacity of this equipment can accomodate overall amine inventory				
			81.3.2. Level build up in TW2008 resulting in temperature build up on bottom section (<150°C) with negligible impact on amine (degradation temperature around 180°C)				
			81.3.3. Loss of lean amine supply to TW1002 and consequent inadequate CO2 removal and consequent CO2 slippage to cold box (see relevant node)	81.3.3.1. Discrepancy alarm on HVs 81.3.3.2. Al-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD			
			81.3.4. Pressure build up on blocked in piping up to P-2005A/B shut-off pressure (approximately 52 barg). No impact on mechanical integrity of piping and equipment according to design criteria				
			81.3.5. Potential damage to P- 2005A/B overtime due to prolonged operation in blocked	81.3.5.1. PAH-201A/B 81.3.5.2. Unit is located			

Page: 35 of 161

Session: (2) 28/03/2023

Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Flow

Equipment: TW2008, HW2009, HW2010, S2011, P2012A/B, HW2007, P2005A/B, F2001, F2002, F2003

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
	81. No/less Flow (lean amine to TW1002) (cont.)	81.3. Unexpected closure of HV-138 on TW1002 inlet line (cont.)	outlet condition resulting in economical losses/possible amine spillage and soil contamination	inside curbed area with adequate impermeable material			
	82. No/less Flow (lean amine recirculation)	82.1. PCV-229 malfunction (close position)	82.1.1. Loss of lean amine filtration resulting in possible increasing foaming tendency in TW2008 and process upset	82.1.1.1. FAL-230 and operator response 82.1.1.2. Periodical sampling and availability of antifoaming agent			
		82.2. Plugging of cartridge filter F2002/F2003	82.2.1. Increased DP accross cartridge filter F2002/F2003 leading to cartridge damage overtime (minor economical losses)	82.2.1.1. PDAH-243			It's not credible plugging of carbon filter F2001
	83. No/less Flow (Overhead circuit)	83.1. Malfunction of PIC-275 closing PV-275 on CO2 vent to thermal oxidizer	83.1.1. Pressure build up on TW2008 and S2011 (DP=2barg) leading to potential overpressurization overtime, mechanical damage and injuries to personnel	83.1.1.1. PAHH-282 activate closure of FV-204 83.1.1.2. PSV-271 sized including this scenario	among actions initiated by PAHH-282 14. Investigate appropriate routing of PSV-271		
			83.1.2. No impact on thermal oxidizer due to loss of CO2 vent				

Page: 36 of 161

Session: (2) 28/03/2023 Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Flow

Equipment: TW2008, HW2009, HW2010, S2011, P2012A/B, HW2007, P2005A/B, F2001, F2002, F2003

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	83. No/less Flow (Overhead circuit) (cont.)	83.1. Malfunction of PIC-275 closing PV-275 on CO2 vent to thermal oxidizer (cont.)	stream				
	84. No/less Flow (Bottom circuit)	84.1. Failure of pump P2012A/B	leading to possible overfilling resulting in HW2010 flooding,	pump	15. Add closure of LV-151 among actions initiated by LAHH-279	SIAD MI	
			84.1.2. Level build up in S2011 leading liquid carry over to thermal oxidizer KO drum with operational upset	84.1.2.1. Discrepancy signal from onduty P2012A/B starting stand-by pump 84.1.2.2. LAHH-279 activate closure of FV-204	:See_15		
		84.2. Malfunction of LIC-278 closing LV-278		84.2.1.1. LALL-280 activate trip of P2012A/B			
More	85. More Flow	85.1. Malfunction of FIC-227 to increase rpm of pump P2005A/B through relevant VFD	flowrate for amine resulting in	85.1.1.1. PAH-201A/B 85.1.1.2. Al-1012 to			

PHAWorks by Primatech Inc.

Session: (2) 28/03/2023 Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	85. More Flow (cont.)	85.1. Malfunction of FIC-227 to increase rpm of pump P2005A/B through relevant VFD (cont.)		provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD			
Reverse	86. Reverse Flow		reverse flow from TW1002 (44barg) to TW2008 (DP=2barg)	86.1.1.1. Discrepancy signal from onduty P2005A/B starting stand-by pump	interlock to shut down HV- 138 in case of back flow due to both P2005A/B not running (e.g. high high pressure detected on common pump suction line)	SIAD MI	
						SIAD MI	
		86.2. No causes identified for backflow on CO2 vent line to thermal oxidizer					
Misdirect	87. Misdirect Flow		column TW2008 with pressure build up on TW2008 and S2011 (DP=2barg) leading to potential	87.1.1.1. PAHH-282 activate closure of FV-204 87.1.1.2. PSV-271 sized including this scenario			
		87.2. Malfunction of LIC-202	87.2.1. Level build up in S2011	87.2.1.1. LAHH-279			

Session: (2) 28/03/2023 Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Flow

Equipment: TW2008, HW2009, HW2010, S2011, P2012A/B, HW2007, P2005A/B, F2001, F2002, F2003

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect (cont.)	87. Misdirect Flow (cont.)	leading to unexpected opening of LV-291 on demi water supply to S2011	leading to possible overfilling resulting in HW2010 flooding, loss of condensation and pressure build up on TW2008 and S2011 (DP=2barg) leading to potential ovepressurization overtime, damage and injuries to personnel	activate closure of LV-291 (same action is initiated by PAHH-282) 87.2.1.2. PSV-271 sized including this scenario			
			87.2.2. Level build up in S2011 leading liquid carry over to thermal oxidizer KO drum with operational upset	87.2.2.1. LAHH-279 activate closure of LV-291			

Session: (2) 28/03/2023

Node: (06) MDEA stripping column

Intention: TW2008: OT ~ 111 °C

HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C

P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	88. Lower Temperature	88.1. Malfunction of TIC-226	88.1.1. Lower temperature of lean	88.1.1.1. Event detectable			
		fully opening TV-226	amine (minimum estimated 40°C	by TI-222			
			instead of 50°C) to absorber TW-				
			1002 resulting in slight loss of	88.1.1.2. AI-1012 to provide			
			efficiency and CO2 minor	a high CO2 concentration			
			slippage to cold box (less critical	alarm and to close HV-700			
			than other case)	on high high CO2			

Session: (2) 28/03/2023

Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Temperature

PHAWorks by Primatech Inc.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less (cont.)	88. Lower Temperature (cont.)	fully opening TV-226 (cont.)	88.1.1. Lower temperature of lean amine (minimum estimated 40°C instead of 50°C) to absorber TW- 1002 resulting in slight loss of efficiency and CO2 minor slippage to cold box (less critical than other case) (cont.)	concentration through ESD			
		88.2. Malfunction of TIC-204 (or TIC-263)/FIC-204 closing FV- 204 or any other cause for loss of LP steam to reboiler HW2009	resulting in off spec lean amine to absorber TW-1002 resulting in	88.2.1.2. AI-1012 to provide			
		88.3. Malfunction of TIC-272 fully opening TV-272	88.3.1. Level build up in S2011 resulting in operational upset leading to slight reduction of amine with negligible impact				
		switch off H2001 or loss of electrical power to H2001	condensation on CO2 vent	88.4.1.1. Discrepancy status of electrical heater reported to PLC			
			88.5.1. Possible freezing of stagnant piping on condensate side	88.5.1.1. Electrical tracing and insulation provided on condensate piping (electrical tracing also supplied by EDG)	:See_8		

Session: (2) 28/03/2023 Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15 Parameter: Temperature

Equipment: TW2008, HW2009, HW2010, S2011, P2012A/B, HW2007, P2005A/B, F2001, F2002, F2003

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	89. Higher Temperature	89.1. Malfunction of TIC-226 closing TV-226	89.1.1. Lean amine at 80 °C instead of 50°C routed to absorber TW-1002 leading to loss of efficiency and CO2 slippage to cold box (See relevant node)	 89.1.1.1. TAHH-222 activate closure of HV-105, HV-106 89.1.1.2. AI-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD 			
		89.2. Malfunction of TIC-204 (or TIC-263)/FIC-204 fully opening FV-204	89.2.1. Increased vaporization in TW2008 leading to higher consumption of demi water with operational upset				
		89.3. Higher temperature of LP steam from BL	89.3.1. Higher temperature on HW2009 tubes resulting in potential increased amine degradation rate with operational upset overtime	89.3.1.1. TAHH-267 activate closure of FV-204			
		89.4. Malfunction of TIC-272 closing TV-272		89.4.1.1. Event detectable by FIQ-208			
		89.5. Malfunction of TI-203 to switch on H2001 when not required	89.5.1. No impact during normal operation (maximum reachable temperature on CO2 vent stream is approximately 15 °C)				
		89.6. Blocked outlet condition	89.6.1. Possible overheating of	89.6.1.1. TAHH-211			

PHAWorks by Primatech Inc.

Session: (2) 28/03/2023

Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Temperature

Equipment: TW2008, HW2009, HW2010, S2011, P2012A/B, HW2007, P2005A/B, F2001, F2002, F2003

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)			H2001 and piping (DT = 90°C) with potential mechanical damage and loss of containment of hot product with personnel injuries	activate trip of heater H2001			
			89.6.2. Possible damage to thermal element of H2001 with consequent economical losses	89.6.2.1. TAHH-212 activate trip of first heater H2001 electrical bundle			
				89.6.2.2. TAHH-213 activate trip of second heater H2001 electrical bundle			

Session: (3) 29/03/2023

Node: (06) MDEA stripping column

Intention: TW2008: OT ~ 111 °C

HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Pressure

Equipment: TW2008, HW2009, HW2010, S2011, P2012A/B, HW2007, P2005A/B, F2001, F2002, F2003

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less		90.1. Refer to No/Less flow in this node					
		fully opening PV-275 on CO2 vent to thermal oxidizer		90.2.1.1. TAL-214 and operator response 90.2.1.2. AI-1012 to			

PHAWorks by Primatech Inc.

Session: (3) 29/03/2023 Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Pressure

Equipment: TW2008, HW2009, HW2010, S2011, P2012A/B, HW2007, P2005A/B, F2001, F2002, F2003

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less (cont.)	90. Lower Pressure (cont.)	90.2. Malfunction of PIC-275 fully opening PV-275 on CO2 vent to thermal oxidizer (cont.)	decrease and consequent inadequate stripping resulting in off spec lean amine to absorber TW-1002 resulting in loss of efficiency and CO2 slippage to cold box (See relevant node) 90.2.2. Negligible impact on downstream equipment (thermal oxidizer)	provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD			
		90.3. Unit shut down and consequent equipment isolation	 90.3.1. Possible vacuum condition in HW2009 steam side (shell side) with no impact in mechanical integrity according to design criteria (FV requirement) 90.3.2. According to presence of inert gas, no vacuum conditions are expected for stripper and condensate separator however all stripping sections are designed for FV 				
More	91. Higher Pressure	91.1. Refer to gas breakthrough scenario in node #0391.2. Refer to No/Less flow in this node					
		91.3. Refer to Reverse flow in this node					

Page: 43 of 161

Session: (3) 29/03/2023

Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	91. Higher Pressure (cont.)	91.4. Malfunction of PCV-229 (fully open)	sent to F2001, F2002 and F2003 (DP = 8 barg) resulting in possible	91.4.1.2. PSV-203 sized for			
		91.5. Unexpected start up of stand-by P-2005A/B	91.5.1. Transient pressure build up on P-2005A/B discharge below shut-off condition. Negligible impact				
		91.6. Unexpected start up of stand-by P-2012A/B	91.6.1. Pressure build up on P- 2012A/B discharge below shut-off condition (approximately 4 barg). No impact on mechanical integrity of piping according to design condition of piping (ANSI150). Possible transient operational upset				
		91.7. External fire	:		:See 7		
		91.8. Trapped liquid on heat exchangers	leading to mechanical damage and consequent economical losses and potential minor injuries	91.8.1.1. PSV-294 to protect HW2004 cold side 91.8.1.2. PSV-295 to protect HW2010 cold side			
				91.8.1.3. PSV-193 to protect HW2007 cold side			

Session: (3) 29/03/2023 Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Level

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	92. No/less Level	202/TIC-272 leading to reduced	92.2.1. Level decrease in TW2008 with loss of reach amine supply to stripping column	92.2.1.1. LALL-209 activate trip of pump P-2005A/B and to close HV-138	:See 16, 17		
		make-up through TV-291	potential damage to P-2005A/B due to dry-running with potential localized NG leakage due to backflow from TW1002 resulting in possible fire and injuries to personnel				
		closing LV-278		92.3.1.1. LALL-280 activate trip of pump P-2012A/B			

Session: (3) 29/03/2023 Node: (06) MDEA stripping column Intention: TW2008: OT ~ 111 °C HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Composition

Equipment: TW2008, HW2009, HW2010, S2011, P2012A/B, HW2007, P2005A/B, F2001, F2002, F2003

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different		93.1. No additional causes					
	Composition	identified					

Session: (3) 29/03/2023

Node: (06) MDEA stripping column

Intention: TW2008: OT ~ 111 °C

HW2007: OTin = 121,1 °C; OTout = 79,83°C; HW2004 OTout = 50°C

P2005A/B: OPsuction = 1,69 barg, OPdischarge = 47,25 barg

HW2010: OTin = 112 °C; OTout = 45 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Services / Utilities

Equipment: TW2008, HW2009, HW2010, S2011, P2012A/B, HW2007, P2005A/B, F2001, F2002, F2003

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No			94.1.1. Possible natural gas		:See 16, 17		
	Utilities		reverse flow from TW1002				
			(44barg) to TW2008 (DP=2barg)				
			leading to pressure build up in				
			stripping column, mechanical				
			damage and potential for injuries				
			to personnel including				
			fire/explosion hazard				

Page: 46 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank

Intention: OP = atm, OT = Ambient.

Equipment: V3004, P3002

Notes: V3004 can collect the maximum capacity of one section (max inventory of amine in flash vessel). The vessel is used only for maintenance operation, during plant stop. Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Flow

			= 4 p	5111. ¥0001, 1 0002			
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	95. No/less Flow	95.1. Failure of pump P3002 when required in operation	95.1.1. Delay in maintenance operation with minor upset	95.1.1.1. Possibility to replace P3002 with P3001			
More	96. More Flow	96.1. Operator mistake starting simultaneous drainage of different equipment	96.1.1. Possible level increase in V3004 leading to possible overfilling and amine release from vent line with possible injuries to personnel/soil contamination	 96.1.1.1. Specific maintenance procedures which foresees single drainage at once 96.1.1.2. LAH/LAHH-305 activate trip of pump P3002 (used for equipment drainage) 96.1.1.3. MDEA blowdown tank located inside curbed area with adequate impermeable material 	18. Provide overflow line for V3004 discharging to ground (located below inlet nozzle of PSV header)	SIAD MI	
Reverse	97. Reverse Flow	97.1. Failure of pump P3002 during trasfer to truck	97.1.1. Possible reverse flow from truck to MDEA blow down tank with negligible impact (delay in operation). Overfilling is not expected according to tank elevation.		19. Add check valve on P3002 discharge line to truck loading (downstream recirculation line)	SIAD MI	
Misdirect	98. Misdirect Flow	98.1. Operator error to open recirculation line during truck loading operation	98.1.1. Slight delay in operation with negligible impact				
		98.2. Inadvertent opening of valve X318 or valve passing	98.2.1. Possible contamination of fresh amine and consequent operational upset		20. Specify NC valve X307 on IBC bottom	SIAD MI	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank

Intention: OP = atm, OT = Ambient.

Equipment: V3004, P3002

Notes: V3004 can collect the maximum capacity of one section (max inventory of amine in flash vessel). The vessel is used only for maintenance operation, during plant stop.

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	99. Lower Temperature	99.1. Low ambient temperature	99.1.1. Potential for freezing of stagnant line leading to mechanical damage	99.1.1.1. Electrical tracing and insulation provided on amine piping and blowdown tank (electrical tracing also supplied by EDG) 99.1.1.2. Free draining requirement for MDEA PSV header	:See_8		
More	100. Higher Temperature	100.1. Operator mistake draining hot amine from TW2008 bottom (120 °C)	100.1.1. Possible overheating of V3004 (DT=60°C) resulting in mechanical damage and possible leakages (injuries to personnel/economical losses)	adequate amine cooling before transfer to V3004 100.1.1.2. TAL-214 to give	 21. Relocate TAL to give permission to pump P3002 to start from TT-214 to TT-127 22. Review V3004 design temperature up to 100 °C 	SIAD	

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank

Intention: OP = atm, OT = Ambient.

Notes: V3004 can collect the maximum capacity of one section (max inventory of amine in flash vessel). The vessel is used only for maintenance operation, during plant stop. Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Pres	sure
-----------------	------

Equipment: V3004, P3002

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less		101.1. No causes identified fot V3004 since open vented to atmosphere by 2" vent					
More	5	102.1. No causes identified fot V3004 since open vented to atmosphere by 2" vent					
			102.2.1. Pressure buil up on blocked in piping (including		23. Ensure that flexible hoses used for amine	OGE (TBF)	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Facility. LING inquelaction plan

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank

Intention: OP = atm, OT = Ambient.

Equipment: V3004, P3002

Notes: V3004 can collect the maximum capacity of one section (max inventory of amine in flash vessel). The vessel is used only for maintenance operation, during plant stop.

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Pressure

			I I				
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	102. Higher Pressure (cont.)	102.2. Pump P3002 blocked outlet condition (cont.)	flexible hoses) up to pump sut- off pressure (approximately 4 barg). No impact on mechanical integrity of piping according to design criteria. Possible overpressurization of flexible hose resulting in amine solution leak		transfer to truck have adequate design pressure to cope with shut-off pressure of P3002		
			and possible injuries to personnel/soil contamination				

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank

Intention: OP = atm, OT = Ambient.

Notes: V3004 can collect the maximum capacity of one section (max inventory of amine in flash vessel). The vessel is used only for maintenance operation, during plant stop. Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Level

Equipment: V3004, P3002

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES	
No/less	103. No/less Level	103.1. Operator does not stop P3002 on low level in V3004 (including LT-305 failure)	103.1.1. Possible damage to P3002 due to dry running with minor economical losses and delay in operation	103.1.1.1. LALL-305 activate the trip of pump (not effective in case of LT- 305 failure) 103.1.1.2. Event detectable by PI-306 (operator is in place during transfer)	24. Add a level gauge on V3004	SIAD MI		
		103.2. Operator does not stop P3002 on low level in equipment under drainage	103.2.1. Possible damage to P3002 due to dry running with minor economical losses and delay in operation	103.2.1.1. Event detectable by PI-306 (operator is in place during transfer)				
More	104. Higher Level	104.1. Refer to More flow in this node						
		104.2. Malfunction of LT-305 leading to inadequate transfer of collected amine	u	104.2.1.1. MDEA blowdown tank located inside curbed area with adequate impermeable material	:See_18, 24			

Company: SIAD / OGE / BIOPLUS GmbH

Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank

Intention: OP = atm, OT = Ambient.

Notes: V3004 can collect the maximum capacity of one section (max inventory of amine in flash vessel). The vessel is used only for maintenance operation, during plant stop.

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Level

CONSEQUENCES NOTES GW DEVIATION CAUSES SAFEGUARDS RECOMMENDATIONS ΒY 104. Higher Level :See 18, 24 (cont.) More 104.2. Malfunction of LT-305 .to personnel/soil contamination 104.2.1.1. MDEA blowdown leading to inadequate transfer of tank located inside curbed (cont.) (cont.) collected amine (cont.) area with adequate impermeable material (cont.)

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank

Intention: OP = atm, OT = Ambient.

Notes: V3004 can collect the maximum capacity of one section (max inventory of amine in flash vessel). The vessel is used only for maintenance operation, during plant stop.

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Composition

Equipment: V3004, P3002

Equipment: V3004, P3002

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
		105.1. No causes identified					
	Composition						

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023 Node: (08) Antifoam dosing package Notes:

Drawings: 2220698-0C-10-001 Sh 3 Parameter: Flow

Intention:

Equipment: AF drum, P2013

i urumeter.	1101		Equipina				
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	106. No/less Flow	106.1. Failure of P2013 when required in operation	106.1.1. Loss/Inadequate antifoam agent injection on demand and consequent increased foaming tendency on liquid stream resulting in operational upset	106.1.1.1. Periodical sampling 106.1.1.2. Discrepancy alarm provided for pump P2013			
More	107. More Flow	107.1. Increased flowrate through P2013 due to malfunction/excessive amount injected due to operator mistake	due to consumption/possible plugging of carbon filter guard	107.1.1.1. Periodical sampling 107.1.1.2. PDAH-243			
Reverse	108. Reverse Flow	108.1. Failure of P2013 when required in operation	108.1.1. Backflow from P2005A/B suction to antifoam agent drum is not expected since diaphragm pump is selected and check valve is available				
Misdirect	109. Misdirect Flow	109.1. Operator error lining up wrong injection point	109.1.1. Negligible impact				

Session: (3) 29/03/2023

Node: (08) Antifoam dosing package

Notes:

Drawings: 2220698-0C-10-001 Sh 3 Parameter: Temperature

Equipment: AF drum, P2013

Intention:

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	110. Lower	110.1. Unavailability of antifoam	110.1.1. Increased viscosity of	110.1.1.1. Routine			
	Temperature	belt drum heater	antifoam agent and consequent	inspection			
			possible inadequate injection of				
			antifoam agent (see no/less flow				
			but less critical)				
		110.2. Low ambient temperature		110.2.1.1. Electrical tracing	: <u>See 8</u>		
			antifoam agent and consequent	and insulation provided on			
			possible inadequate injection of	antifoam agent piping			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023 Node: (08) Antifoam dosing package Notes:

Drawings: 2220698-0C-10-001 Sh 3 Parameter: Temperature

111. Higher

Temperature

 GW
 DEVIATION
 CAUSES
 CONSEQUENCES
 SAFEGUARDS

 Less
 110. Lower
 110.2. Low ambient temperature (cont.)
 Intervalue (cont.)
 Inter

111.1. No causes identified

Session: (3) 29/03/2023 Node: (08) Antifoam dosing package Notes: Drawings: 2220698-0C-10-001 Sh 3

Parameter: Pressure

More

GW DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS ΒY NOTES Less 112. Lower Pressure 112.1. Refer to No/Less flow in this node 113.1. Blocked outlet for P2013 113.1.1. Possible damage to SIAD More 113. Higher Pressure 113.1.1.1. Specific 25. Add pressure relief provedure for line up of device on P2013 pump (economical MI losses)/potential antifoam agent injection line discharge line, sized for overpressurization of downstream blocked outlet scenario piping resulting in mechanical damage and potential injuries to personnel

Session: (3) 29/03/2023

Node: (08) Antifoam dosing package Notes:

Drawings: 2220698-0C-10-001 Sh 3

Parameter: Level

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	114. No/less Level	114.1. No cause identified					
More	115. Higher Level	115.1. No cause identified					

Intention:

Intention:

Intention:

Equipment: AF drum, P2013

Equipment: AF drum, P2013

Equipment: AF drum, P2013

Page: 52 of 161

NOTES

RECOMMENDATIONS

See 8 (cont.)

ΒY

PHAWorks by Primatech Inc.

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023 Node: (08) Antifoam dosing package Notes: Drawings: 2220698-0C-10-001 Sh 3 Parameter: Composition

Intention:

Equipment: AF drum, P2013

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	116. Different Composition	116.1. No cause identified					
	Composition						

Page: 53 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction Intention: HW4002: OTin = 25 °C, OTout = 10 °C HX7000: OTin = 10 °C, OTout = -168 °C

V4003: OT= 25 °C

Notes: The process includes 8 h of operation and 8 h of bed regeneration (composed by following phases: heating, cooling, pressurization and depressurization)

Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20

Parameter: Flow

Equipment: V4003, F4005, HW4002, HX7000, HX7001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	117. No/less Flow	 117.1. Loss of natural gas from upstream section (any cause) 117.2. No causes identified for unexpected closure of HV-427 or HV-443 (FL valves managed by automatic sequence) 117.3. No causes identified for plugging of dryer bed 	117.1.1. No impact on this node				
		117.4. Plugging of F4005 overtime	117.4.1. Increased DP accross F4005 leading to operational upset on downstream section	117.4.1.1. PDAH-473			
		117.5. Unexpected closure of HV-700	117.5.1. No impact on this node and upstream system (pressure build up is not expected, however all natural gas loop from metering station let down valve to JT valve PV-703 is designed at same value (52 barg))	117.5.1.1. Discrepancy alarm on HVs 117.5.1.2. PAL-703			
			117.5.2. Loss of natural gas feed to cold box and associated equipment on cryogenic equipment (see node #11)	117.5.2.1. Discrepancy alarm on HVs 117.5.2.2. PAL-703			
More	118. More Flow	118.1. Higher demand rate of natural gas (JT valve PV-703 malfunction)	118.1.1. Higher flowrate of gas through dryers and potential for indequate humidity removal and consequent humidity carry over to downstream section with potential impact on cold box (see relevant nodes)	118.1.1.1. FIC-713 to limit natural gas flowrate 118.1.1.2. FAH-600 118.1.1.3. Al-1013A to provide a high H2O			

Page: 54 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction Intention: HW4002: OTin = 25 °C, OTout = 10 °C

HX7000: OTin = 10 °C, OTout = -168 °C V4003: OT= 25 °C

Notes: The process includes 8 h of operation and 8 h of bed regeneration (composed by following phases: heating, cooling, pressurization and depressurization)

Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	118. More Flow (cont.)	118.1. Higher demand rate of natural gas (JT valve PV-703 malfunction) (cont.)	indequate humidity removal and	concentration alarm and to close HV-700 on high high H2O concentration through ESD			
Reverse	119. Reverse Flow	119.1. No causes identified					
Misdirect	120. Misdirect Flow	120.1. Wrong position for any KV in the position between high pressure stream and low pressure stream		120.1.2.1. Valve is FC 120.1.2.2. KV is managed by automatic sequence including discrepancy alarm to freeze the sequence (manual/semi-automatic mode of operation to manage software is not allowed) 120.1.2.3. PAHH-528 activate closure of PV-527 (for depressurization circuit) or PAHH-531 activate			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction Intention: HW4002: OTin = 25 °C, OTout = 10 °C

HX7000: OTin = 10 °C, OTout = -168 °C V4003: OT= 25 °C

Notes: The process includes 8 h of operation and 8 h of bed regeneration (composed by following phases: heating, cooling, pressurization and depressurization)

Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect (cont.)	120. Misdirect Flow (cont.)	120.1. Wrong position for any KV in the position between high pressure stream and low pressure stream (cont.)	120.1.2. Natural gas in operating mode (44 barg, 20 °C) routed to NG regeneration module (16 barg) resulting in possible overpressurization, mechanical damage and natural gas leak (possible fire/explosion) (cont.)	120.1.2.4. PSV-530 sized including this scenario			
			120.1.3. Partial loss of natural gas to regeneration/depressurization loop resulting in higher NG flowrate from BL leading to potential loss of efficiency in CO2 and humidity removal with consequent impact on cold box (see relevant node)	120.1.3.1. Valve is FC 120.1.3.2. KV is managed by automatic sequence including discrepancy alarm to freeze the sequence (manual/semi-automatic mode of operation to manage software is not allowed)			
				120.1.3.3. FAHH-600 activate closure of HV-600 and HV-602 120.1.3.4. AI-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high			
				CO2 concentration through ESD 120.1.3.5. AI-1013A to provide a high H2O concentration alarm and to close HV-700 on high high H2O concentration			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction Intention: HW4002: OTin = 25 °C, OTout = 10 °C

HX7000: OT n = 10 °C, OTout = -168 °C

V4003: OT= 25 °C

Notes: The process includes 8 h of operation and 8 h of bed regeneration (composed by following phases: heating, cooling, pressurization and depressurization)

Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect	120. Misdirect Flow	120.1. Wrong position for any	120.1.3. Partial loss of natural	through ESD			
(cont.)	(cont.)	KV in the position between high pressure stream and low pressure stream (cont.)	gas to regeneration/depressurization loop resulting in higher NG flowrate from BL leading to potential loss of efficiency in CO2 and humidity removal with consequent impact on cold box (see relevant node) (cont.)				
		120.2. Tube rupture in HW4002		120.2.1.1. PSV-478 sized for this scenario (routed to cold flare)			
		120.3. Unexpected opening of HV-705	120.3.1. Natural gas sent to cold flare with environmental concern	120.3.1.1. Discrepancy alarm on HVs 120.3.1.2. PDAHH-708 activate closure of HV-600 and HV-602	26. Specify FO valve HV- 705 since it is blow down valve for emergency purposes	SIAD MI	
			120.3.2. Partial loss of natural gas to cold flare resulting in higher NG flowrate from BL leading to potential loss of efficiency in CO2 and humidity removal with consequent impact on cold box (see relevant node)	120.3.2.1. Discrepancy alarm on HVs 120.3.2.2. PDAHH-708 activate closure of HV-600 and HV-602 (same actions activated by FAHH-600)			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction Intention: HW4002: OTin = 25 °C, OTout = 10 °C

HX7000: OTin = 10 °C, OTout = -168 °C V4003: OT= 25 °C

Notes: The process includes 8 h of operation and 8 h of bed regeneration (composed by following phases: heating, cooling, pressurization and depressurization) Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20

Parameter: Flow

Equipment: V4003, F4005, HW4002, HX7000, HX7001

			=-1				
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
		120.3. Unexpected opening of HV-705 (cont.)	120.3.2. Partial loss of natural gas to cold flare resulting in higher NG flowrate from BL leading to potential loss of efficiency in CO2 and humidity removal with consequent impact on cold box (see relevant node) (cont.)	120.3.2.3. AI-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD 120.3.2.4. AI-1013A to provide a high H2O concentration alarm and to close HV-700 on high high H2O concentration through ESD			

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction

Intention: HW4002: OTin = 25 °C, OTout = 10 °C

HX7000: OTin = 10 °C, OTout = -168 °C

V4003: OT= 25 °C

Notes: The process includes 8 h of operation and 8 h of bed regeneration (composed by following phases: heating, cooling, pressurization and depressurization) Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less More	121. Lower Temperature 122. Higher	121.1. No causes identified	122.1.1. Natural gas routed to	122.1.1.1. TI-485	27. Add a high	SIAD	
	Temperature	HW4002	downstream equipment at 25°C instead of 10°C resulting in reduction of efficiency in liquefaction process		5	MI	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction Intention: HW4002: OTin = 25 °C, OTout = 10 °C

HX7000: OTin = 10 °C, OTout = -168 °C V4003: OT= 25 °C

Notes: The process includes 8 h of operation and 8 h of bed regeneration (composed by following phases: heating, cooling, pressurization and depressurization)

Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20

Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	123. Lower Pressure	123.1. Refer to No/Less flow in this node 123.2. Low pressure from upstream sections (any cause)	123.2.1. Loss of efficiency in humidity removal resultin in humidity carry over to dowstream	123.2.1.1. PALL-449 activate closure HV-105, HV-106			
			section (cold box, see relevant node)	123.2.1.2. AI-1013A to provide a high H2O concentration alarm and to close HV-700 on high high H2O concentration through ESD			
More	124. Higher Pressure	124.1. PCV-700 malfunction (fully open)	124.1.1. Higher pressure of natural gas routed to analyser (44 barg instead of 1 barg) with potential overpressurization of analysers (AI-1013A, 1012) and associated items (DP= 0.5 barg) with mechanical damage and potential injuries to personnel		28. Ensure provision for pressure release devices to protect analysers Al- 1013A, 1012 and associated items in case of wide opening of pressure let down valve PCV-700	SIAD MI	
		124.2. Trapped chilled water in HW4002 shell side	124.2.1. Thermal expansion of trapped chilled water resulting in mechanical damage and economical losses	124.2.1.1. PSV-478 sized for this scenario			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction

Intention: HW4002: OTin = 25 °C, OTout = 10 °C

HX7000: OTin = 10 °C, OTout = -168 °C

V4003: OT= 25 °C

Notes: The process includes 8 h of operation and 8 h of bed regeneration (composed by following phases: heating, cooling, pressurization and depressurization)

Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20

Parameter: Level

Equipment: V4003, F4005, HW4002, HX7000, HX7001

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	125. No/less Level	125.1. Not applicable					
More	126. Higher Level	126.1. Not applicable					

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction

Intention: HW4002: OTin = 25 °C, OTout = 10 °C

HX7000: OTin = 10 °C, OTout = -168 °C

V4003: OT= 25 °C

Notes: The process includes 8 h of operation and 8 h of bed regeneration (composed by following phases: heating, cooling, pressurization and depressurization)

Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20

Parameter: Composition

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	127. Different	127.1. By-pass line left open	127.1.1. Possible dust carry over	127.1.1.1. Event detectable			
	Composition	after maintenance on filter	in the downstream section	by PDI-473			
		F4005	resulting in increased DP on				
			downstream equipment with				
			operational upset				

Session: (3) 29/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	128. No/less Flow (regeneration gas supply line)	128.1. FIC-461 malfunction closing FV-461 or closure of any KV on regeneration gas loop	128.1.1. Inadequate regeneration resulting in possible slippage of humidity when dryer is put back in service with possible impact on cold box (see relevant node)				
			128.1.2. Possible overheating of H4006 and piping (DT = 350°C) with potential mechanical damage and loss of containment of natural gas product with personnel injuries/fire explosion hazard				
			128.1.3. Possible damage to thermal element of H4006 with consequent economical losses	128.1.3.1. TAHH-466/467 activate trip of heater H4006 (same actions activated by TAHH-469)			
			128.1.4. Loss of suction feed NG regeneration compressor C5500 resulting in possible mechanical damage and economical losses	128.1.4.1. Recirculating by- pass through PV-505 sized to cope with this scenario 128.1.4.2. PALL-510 activate trip of compressor C5500			Continuous stream from flash vessel is still available to avoid vacuum condition on compressor suction line
	129. No/less Flow (regeneration gas stream)	129.1. Unexpected closure of TV-530A	129.1.1. Inadequate regeneration resulting in possible slippage of humidity when dryer is put back	129.1.1.1. PDAL-481 129.1.1.2. Al-1013A to			

PHAWorks by Primatech Inc.

Session: (3) 29/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	129. No/less Flow (regeneration gas stream) (cont.)	129.1. Unexpected closure of TV-530A (cont.)	in service with possible impact on cold box (see relevant node)	provide a high H2O concentration alarm and to close HV-700 on high high H2O concentration through ESD			
			with potential mechanical damage and loss of containment of natural gas product with personnel				
			129.1.3. Possible damage to thermal element of H4006 with consequent economical losses	129.1.3.1. TAHH-466/467 activate trip of heater H4006 (same actions activated by TAHH-469)			
			129.1.4. Loss of suction feed NG regeneration compressor C5500 resulting in possible mechanical damage and economical losses	129.1.4.1. Recirculating by- pass through PV-505 sized to cope with this scenario 129.1.4.2. PALL-510 activate trip of compressor C5500			
			129.2.1. Condensate accumulation in ST5000 leading to level build up and liquid carry over to compressor and potential for mechanical damage leading to economical losses	129.2.1.1. LAHH-531 activate closure of TV-530A 129.2.1.2. LAHH-500B activate trip of compressor and close HV-500			

Session: (3) 29/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	130. No/less Flow (depressurization stream)	130.1. Unexpected closure of HV-525 or PV-527 or HV-525 not opening on demand including PT-525 malfunction	depressurization leading to	130.1.1.1. Inconsistent condition alarms generated by sequence (PT- 439,440,441)			
	131. No/less Flow (compressor suction)	131.1. Unexpected closure of HV-500					
			- 5				
			131.1.3. Possible damage to thermal element of H4006 with consequent economical losses 131.1.4. Loss of suction feed	131.1.3.1. TAHH-466/467 activate trip of heater H4006 (same actions activated by TAHH-469) 131.1.4.1. Recirculating			

Session: (3) 29/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	131. No/less Flow (compressor suction) (cont.)	131.1. Unexpected closure of HV-500 (cont.)	NG regeneration compressor C5500 resulting in possible mechanical damage and economical losses	by-pass through PV-505 sized to cope with this scenario 131.1.4.2. PALL-510 activate trip of compressor C5500			
			131.1.5. Vacuum condition on compressor suction with no impact on mechanical integrity according to design criteria (FV)				
		131.2. Potential plugging of strainer K500NG	131.2.1. Decrease in compressor efficiency and consequent operational upset	131.2.1.1. Differential pressure gauge provided for K500NG (see dedicated P&ID for compressor C5500)			
		131.3. Unexpected compressor stop (any cause)	131.3.1. Inadequate regeneration resulting in possible slippage of humidity when dryer is put back in service with possible impact on cold box (see relevant node)				
			131.3.2. Possible overheating of H4006 and piping (DT = 350°C) with potential mechanical damage and loss of containment of natural gas product with personnel				

Session: (3) 29/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	131. No/less Flow (compressor suction) (cont.)	131.3. Unexpected compressor stop (any cause) (cont.)	injuries/fire explosion hazard	H4006 (same actions activated by TAHH-469)			
			131.3.3. Possible damage to thermal element of H4006 with consequent economical losses	131.3.3.1. TAHH-466/467 activate trip of heater H4006 (same actions activated by TAHH-469)			
		131.4. Malfunction of PIC-500 reducing speed of compressor motor	131.4.1. See consequences for stop of compressor but less critical				
	132. No/less Flow (compressor discharge)	132.1. Plugging of compressor post filter F5501	132.1.1. Increased DP accross filter with operational upset	132.1.1.1. Differential pressure gauge provided for F5501 (see dedicated P&ID for compressor C5500)			
		132.2. Unexpected closure of HV-504	132.2.1. See consequences of unexpected closure of HV-500 for impact on upstream section				
			132.2.2. Pressure build up on compressor discharge system (DP=49 barg) and possible	132.2.2.1. PIC-504 to open PV-505			Each stage is provided with PSV sized for blocked
			overpressurization leading to mechanical damage, loss of containment, potential for fire/ovelosion_injuries to	132.2.2.2. PAHH-511 activate trip of compressor 132.2.2.3. PSV-503			outlet (PSV-501/502) and high high pressure interlock
			fire/explosion, injuries to personnel	132.2.2.3. 237-303			(PAHH-501/502)
		132.3. Unexpected closure of HV-511	132.3.1. Unavailability of bleed valve on demand		29. Specify HV-511 as FO valve	SIAD MI	

Session: (3) 29/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
<i>l</i> lore	133. More Flow	133.1. Malfunction of FIC-461 fully opening FV-461	133.1.1. Increased filowrate through H4006 leading to possible inadequate heating up of regeneration gas resulting in potential uncomplete regeneration (possible humidity slippage when the dryer is put back in service and impact on cold box, see relevant node)	133.1.1.1. TAL-483 133.1.1.2. AI-1013A to provide a high H2O concentration alarm and to close HV-700 on high high H2O concentration through ESD			
		133.1.2. Pressure build up on	133.1.2.1. PAH-531, PAH- 500 133.1.2.2. PAHH-510 activate trip of compressor 133.1.2.3. PAHH-531				
		133.2. Malfunction of PIC/HIC- 525 opening PV-525 more than required	133.2.1. Excessive depressurization rate for involved dryer resulting in possible reduction in lifetime of internals of absorption bed with economical losses	activate closure of TV-530A 133.2.1.1. PAH-528			
			133.2.2. Pressure build up on C5500 suction resulting in possible mechanical damage and economical losses	133.2.2.1. PAH-500 133.2.2.2. PAHH-510 activate trip of compressor 133.2.2.3. PAHH-528			
				activate closure of PV-527			

Session: (3) 29/03/2023

Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
/lore cont.)	133. More Flow (cont.)	133.3. Malfunction of compressor control (PIC-500) system increasing motor speed through VFD	133.3.1. No impact on usptream section 133.3.2. Lower pressure on compressor suction side with possible compressor motor overload leading to damage to motor (economical losses)	133.3.2.1. Overload protection for compressor motor activate trip of compressor motor 133.3.2.2. PALL-510 activate trip of compressor motor			
Reverse	134. Reverse Flow	134.1. Compressor trip/stop (any cause)	134.1.1. Reverse flow from compressor discharge system (43 barg) toward compressor suction side (DP=8 barg for ST5000 and HW5000) has not been considered a credible scenario since compressor is reciprocating type and any cause of compressor trip/stop will lead to closure of HV-504, HV-500 and opening HV-505 (by-bass line through PV-505 is normally closed during normal operation)				
Misdirect	135. Misdirect Flow	135.1. Unexpected opening of HV-455/HV-535	135.1.1. Natural gas sent to cold flare with environmental concern	135.1.1.1. HV-455/HV-535 is FC and managed by depressurization/purging sequence			
				135.1.1.2. Discrepancy alarm on HVs			

Page: 67 of 161

Session: (3) 29/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Visdirect (cont.)		135.1. Unexpected opening of HV-455/HV-535 (cont.)	135.1.2. Loss of suction feed NG regeneration compressor C5500 resulting in possible mechanical damage and economical losses	135.1.2.1. HV-455/HV-535 is FC and managed by depressurization/purging sequence			
				135.1.2.2. Recirculating by- pass through PV-505 sized to cope with this scenario			
				135.1.2.3. PALL-510 activate trip of compressor C5500			
		135.2. Unexpected opening of HV-464	135.2.1. Limited amount of natural gas sent to cold flare (amount involved in depressurization) with minor environmental concern	135.2.1.1. HV-464 is FC and managed by depressurization/purging sequence			
				135.2.1.2. Discrepancy alarm on HVs			
		135.3. Unexpected opening of HV-539	135.3.1. Nitrogen entrainment on depressurization gas stream routed to compressor suction side with increased content of nitrogen in process flow (minor operational upset)	alarm on HVs			
			135.3.2. Nitrogen entrainment on depressurization gas stream with pressure build up on C5500 suction resulting in possible mechanical damage and	135.3.2.1. HV-539 is FC and managed by depressurization/purging sequence			

Page: 68 of 161

Session: (3) 29/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect (cont.)	135. Misdirect Flow (cont.)	135.3. Unexpected opening of HV-539 (cont.)	economical losses	135.3.2.2. Discrepancy alarm on HVs 135.3.2.3. PAH-500 135.3.2.4. PAHH-510 activate trip of compressor C5500			
		135.4. Unexpected opening of TV-530B	 135.3.3. After compressor shut down pressure build up (OPof nitrogen =9barg) on blocked in suction system (DP=10 barg) with no mechanical impact 135.3.4. Nitrogen at 9 barg routed to flash vessel S1003 with no impact on mechanical integrity according to design criteria (DP=10 barg for vessel and 16 barg for associated piping) 135.4.1. During dryer heating mode, higher temperature of natural gas to downstream section (220°C instead of 10°C) due to by-pass of HW5000, with possible overheating (DT=65°C for EW5000) resulting in mechanical damage and possible leak of natural gas with possible fire 		30. Add a high high temperature interlock initiated by TI-535 to close TV-530B	SIAD MI	

Session: (3) 29/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect (cont.)	135. Misdirect Flow (cont.)	135.5. Tube rupture in HW5000	135.5.1. Chilled water (OP approximately 3 barg) enters into regeneration gas stream with possible liquid accumulation on ST5000 leading to level build up and liquid carry over to compressor and potential for mechanical damage leading to economical losses	135.5.1.1. LAHH-500B activate trip of compressor and close HV-500			
			135.5.2. In case of possible natural gas entrainment in chilled water circuit no significant consequences are expected during normal operation; accumulation of natural gas can lead to potential exposure of maintenance operator to flammable mixture			OSE (TZSA)	
		135.6. Unexpected opening of HV-505	135.6.1. Natural gas sent to cold flare with environmental concern 135.6.2. Loss of regeneration gas stream to natural gas feed stream with no impact	135.6.1.1. Discrepancy alarm on HVs			
		135.7. Inadvertent opening of separators drain valve	135.7.1. Potential operational upset due to unexpected trip of compressor due to PALL intervention/leakage of NG and potential for personnel exposure to fire/explosion hazards		32. Specify manual valves on recycle gas compressor separators drains as LC		

Page: 70 of 161

Session: (3) 29/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect (cont.)	(cont.)	when not required	135.8.1. Pressure build up on C5500 suction (DP=6 barg) resulting in possible overpressurization leading to mechanical damage, loss of containment, potential for fire/explosion, injuries to personnel	135.8.1.1. PAHH-510 activate trip of compressor			

Session: (4) 30/03/2023

Node: (10) Natural gas dryers regeneration loop

Intention: H4006: OTin = 0,9 °C , OTout = 250 °C

V4005: OT= 250 / 10 °C

EW5000: OTin = 10 °C, OTout = 35 °C

C5500: OPsuction = 2,55 barg, OPdischarge = 44,5 barg

V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Temperature Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	136. Lower Temperature	136.1. Failure of H4006 including TI-483 malfunction	136.1.1. Lower temperature of regeneration gas leading to inadequate regeneration resulting in possible slippage of humidity	136.1.1.1. Discrepancy alarm provided by			

Session: (4) 30/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Temperature Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less (cont.)	136. Lower Temperature (cont.)		136.1.1. Lower temperature of regeneration gas leading to inadequate regeneration resulting in possible slippage of humidity when dryer is put back in service with possible impact on cold box (see relevant node) (cont.)	through ESD			
		136.2. TV-530B does not open on demand including TAL-532 malfunction	136.2.1. Possible freezing of collected water in ST5000 resulting in possible damage of associated items (e.g. bottom drain valve) with no safety concern	136.2.1.1. Gas is passing through HW5000 (operated with chilled water at 5°C) 136.2.1.2. Electrical tracing provided for ST5000 and bottom drain lines			Low temperature scenario is expected only in the beginning of heating phase for limited period of time (few minutes)
			136.3.1. Regeneration gas routed to compressor C5500 at 10°C instead of 35°C with possible minor operational upset due to unstable operation conditions for compressor	136.3.1.1. TALL-535 activate closure of PV-527, TV-530A, TV-530B			
			136.3.2. Possible freezing on water bath in EW5000 resulting in possible damage (economical losses)	136.3.2.1. TALL-556 activate closure of PV-527, TV-530A, TV-530B			Low temperature scenario is expected only in the beginning of heating phase for limited period of time (few minutes)
		136.4. Low ambient temperature	136.4.1. Possible freezing of stagnant piping on water side	136.4.1.1. Electrical tracing and insulation provided on water piping (electrical	: <u>S</u> ee_8		

Page: 72 of 161

Session: (4) 30/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Temperature Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less (cont.)	136. Lower Temperature (cont.)	136.4. Low ambient temperature (cont.)	136.4.1. Possible freezing of stagnant piping on water side (cont.)	tracing also supplied by EDG)	:See_8 (cont.)		
More	137. Higher Temperature	137.1. See no/less flow (overheating of H4006)					
			137.2.1. Possible overheating of H4006 and piping (DT = 350°C) with potential mechanical damage and loss of containment of natural gas product with personnel injuries/fire explosion hazard				
			137.2.2. Possible damage to thermal element of H4006 with consequent economical losses	137.2.2.1. TAHH-466/467 activate trip of heater H4006 (same actions activated by TAHH-469)			
		failure in close position)	137.3.1. When dryer is put back in service transient higher temperature of process gas to downstream unit is expected with potential operational upset/thermal stress for HX-7000	137.3.1.1. KV is managed by automatic sequence including discrepancy alarm (on temperature, time and on valve position) to freeze the sequence (manual/semi-automatic mode of operation to manage software is not allowed)			
				137.3.1.2. TAHH-701 to activate closure of HV-700			

Page: 73 of 161

Session: (4) 30/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Temperature Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)		137.3. Inadequate cooling of dryer after regeneration (KV failure in close position) (cont.)	temperature of process gas to downstream unit and potential overheating of F4005 (DT=100°C) resulting in mechanical damage and possible leak of natural gas with possible fire	137.3.2.1. KV is managed by automatic sequence including discrepancy alarm (on temperature, time and on valve position) to freeze the sequence (manual/semi-automatic mode of operation to manage software is not allowed)			
		137.4. See misdirected flow (opening of TV-530B)					
		137.5. Loss of chilled water supply to HW5000	137.5.1. During dryer heating mode, higher temperature of natural gas to downstream section (220°C instead of 10°C) with possible overheating (DT=65°C for EW5000) resulting in mechanical damage and possible leak of natural gas with possible fire	137.5.1.1. TAHH-532 activate closure of TV-530A			
		137.6. Malfunction of TIC-555 fully opening TV-555	137.6.1. Higher temperature (up to 100°C) of regeneration gas to compressor resulting in possible overheating of EW5000 process gas coils (DT=65°C) resulting in mechanical damage and possible leak of natural gas with possible fire		33. Review design temperature of EW5000 process gas coils up to 100°C	SIAD MI	

Page: 74 of 161

Session: (4) 30/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Temperature Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	137. Higher Temperature (cont.)	137.7. Loss of cooling water to HW5501	137.7.1. Higher temperature of natural gas to second stage of compressor resulting in potential damage to internals and consequent economical losses	137.7.1.1. TAHH-502 activate trip of compressor			
		137.8. Loss of cooling water to HW5502	137.8.1. Higher temperature of natural gas to third stage of compressor resulting in potential damage to internals and consequent economical losses	137.8.1.1. TAHH-503 activate trip of compressor			
		137.9. Loss of cooling water to HW5503	137.9.1. Higher temperature of natural gas (estimated approximately 137°C) on equipment and piping on third stage discharge downstream aftercooler (DT=65°C) resulting in mechanical damage and possible leak of natural gas with possible fire		34. Add a high high temperature interlock downstream HW5503 to activate trip of compressor C5500	SIAD MI	
			137.9.2. No impact on natural gas feed due to increased temperature of recycled gas stream due to limited flowrate from compressor				

Session: (4) 30/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Pressure Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	138. Lower Pressure	138.1. Rerer to No/Less and Misdirect Flow					
		138.2. Shut down of steam supply to EW5000 coil	138.2.1. Possible vacuum condition with no impact on mechanical integrity according to design criteria				
More	139. Higher Pressure	139.1. Refer to No/Less and Misdirect Flow					
		139.2. Trapped chilled water in HW5000 shell side	139.2.1. Thermal expansion of trapped chilled water resulting in mechanical damage and economical losses	139.2.1.1. PSV-550 sized for this scenario			

Session: (4) 30/03/2023

Node: (10) Natural gas dryers regeneration loop

Intention: H4006: OTin = 0,9 °C , OTout = 250 °C

V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg

V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Level Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less		not closing DV-532 on demand	140.1.1. Natural gas at 2 barg routed to S2011 with no impact on mechanical integrity according to design criteria (DP=2 barg)				

Session: (4) 30/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Level Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
lo/less cont.)	140. No/less Level (cont.)	140.1. Malfunction of LIC-530 not closing DV-532 on demand (cont.)	140.1.2. Partial loss of regeneration gas to S2011 and in turns to thermal oxidizer through PV-275 with minor economical losses	140.1.2.1. LALL-531 activate closure of HV-532			
			140.1.3. Partial loss of regeneration gas to S2011 resulting in reduced flowrate to compressor leading to partial loss of suction feed NG regeneration compressor C5500 with possible mechanical damage and economical losses	140.1.3.1. LALL-531 activate closure of HV-532 140.1.3.2. Recirculating by- pass through PV-505 sized to cope with this scenario 140.1.3.3. PALL-510 activate trip of compressor C5500			
			140.2.1. Inadequate water make up to EW5000 leading to loss of level and consequent loss of duty to regeneration gas stream (see lower temperature due to loss of steam to EW5000)	140.2.1.1. TAL-535			
		140.3. Malfunction of LIC-500A not closing DV-500 on demand	140.3.1. Natural gas at 2 barg routed to S2011 with no impact on mechanical integrity according to design criteria (DP=2 barg)				
			140.3.2. Partial loss of regeneration gas to S2011 and in turns to thermal oxidizer through PV-275 with minor economical	140.3.2.1. LALL-500B activate closure of HV-515			

Page: 77 of 161

Session: (4) 30/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Level Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
GW No/less (cont.)	140. No/less Level	CAUSES 140.3. Malfunction of LIC-500A not closing DV-500 on demand (cont.)	CONSEQUENCES losses 140.3.3. Partial loss of regeneration gas to S2011 resulting in reduced flowrate to compressor leading to partial loss of suction feed NG regeneration compressor C5500 with possible mechanical damage and economical losses	140.3.2.1. LALL-500B activate closure of HV-515 (cont.) 140.3.3.1. LALL-500B activate closure of HV-515	RECOMMENDATIONS	BY	NOTES
		140.4. Malfunction of LIC-501A not closing DV-501 on demand	140.4.1. Natural gas at 4.9 barg routed to S2011 (DP=2 barg) with pressure build up, potential overpressurization resulting in mechanical damage and possible leak of natural gas with possible fire	C5500 140.4.1.1. LALL-501B	35. Investigate additional safeguard to prevent overpressurization in S2011 in case of gas breakthrough from C5500 compressor separators (e.g. PSV routed to cold flare located downstream HV-515, additional PAHH on drain line to S2011 acting on additional on/off valve etc)	SIAD MI	
			140.4.2. No impact on compressor				
		140.5. Malfunction of LIC-502A not closing DV-502 on demand	140.5.1. Natural gas at 15 barg routed to S2011 (DP=2 barg)	140.5.1.1. LALL-502B activate closure of HV-515	:See_35		

Page: 78 of 161

Session: (4) 30/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Level Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	140. No/less Level (cont.)	140.5. Malfunction of LIC-502A not closing DV-502 on demand (cont.)	with pressure build up, potential overpressurization resulting in mechanical damage and possible leak of natural gas with possible fire 140.5.2. No impact on compressor	activate closure of HV-515	:See_35 (cont.)		
		140.6. Malfunction of LIC-503A not closing DV-503 on demand	140.6.1. Natural gas at 43 barg routed to S2011 (DP=2 barg) with pressure build up, potential overpressurization resulting in mechanical damage and possible leak of natural gas with possible fire 140.6.2. No impact on compressor	140.6.1.1. LALL-503B activate closure of HV-515	:See_35		
More	141. Higher Level	141.1. See No/Less and Misdirect Flow for level build up in ST5000141.2. Malfunction of LSH-545 opening LV-545 when not required	141.2.1. Level build up in EW5000 resulting in overfilling and water carry over to drain collection pit at grade. Waste of water with no impact on personnel safety	141.2.1.1. TAL-556			
			141.2.2. Level build up in EW5000 resulting in overfilling	141.2.2.1. TAL-535/TAL- 556			

Page: 79 of 161

Session: (4) 30/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Level Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	141. Higher Level (cont.)	required (cont.)	and continuous water circulation through overflow line leading to lower temperature of recycling gas to compressor (see low temperature for loss of steam but less critical)	141.2.2.1. TAL-535/TAL- 556 (cont.)			
			141.3.1. Condensate accumulation in ST5500 leading to level build up and possible liquid carry over to compressor first stage and potential for mechanical damage leading to economical losses	141.3.1.1. LAHH-500B activate trip of compressor and close HV-500			
			141.4.1. Condensate accumulation in ST5501 leading to level build up and possible liquid carry over to compressor second stage and potential for mechanical damage leading to economical losses	141.4.1.1. LAHH-501B activate trip of compressor and close HV-500			
		141.5. Malfunction of LIC-502A not opening DV-502 on demand	141.5.1. Condensate accumulation in ST5502 leading to level build up and possible liquid carry over to compressor third stage and potential for mechanical damage leading to economical losses	141.5.1.1. LAHH-502B activate trip of compressor and close HV-500			
l		141.6. Malfunction of LIC-503A not opening DV-503 on demand	141.6.1. Condensate accumulation in ST5503 leading				

Page: 80 of 161

Session: (4) 30/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Level Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	141. Higher Level (cont.)	141.6. Malfunction of LIC-503A not opening DV-503 on demand (cont.)	to level build up and possible liquid carry over to natural gas feed with negligible impact				
			141.6.2. In case compressor is operated in recycling mode (e.g. start up operation) possible condensate accumulation in ST5503 leading to level build up and possible liquid carry over to compressor first stage through PV-505 and potential for mechanical damage leading to economical losses	141.6.2.1. LAHH-503B activate trip of compressor			

Session: (4) 30/03/2023

Node: (10) Natural gas dryers regeneration loop

Intention: H4006: OTin = 0,9 °C , OTout = 250 °C

V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Composition Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	Composition	142.1. By-pass of NG regeneration gas compressor post-filter F5501 left open after maintenance	142.1.1. Possible carry over of piston ring wear material to NG feed with negligible impact				

Session: (4) 30/03/2023 Node: (10) Natural gas dryers regeneration loop Intention: H4006: OTin = 0,9 °C , OTout = 250 °C V4005: OT= 250 / 10 °C EW5000: OTin = 10 °C, OTout = 35 °C C5500: OPsuction = 2,55 barg , OPdischarge = 44,5 barg V4004: OT= 25 °C

Notes:

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Services / Utilities Equipment: H4006, V4004, V4005, HW5000, ST5000, EW5000, C5500

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No	143. No Services /	143.1. No additional cause					
	Utilities	identified					

Page: 82 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (4) 30/03/2023

Node: (11) LNG separator

Intention: S7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Parameter: Flow

1, 120704 311	30, 1207 04 3	1170	
	Equipment: S	37003,	EW9000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	144. No/less Flow	144.1. No/Less flow from upstream section	144.1.1. No impact on this node				
		144.2. Malfunction of FIC-713 closing FV-713	144.2.1. No impact on this node and upstream system (pressure build up is not expected, however all natural gas loop from metering station let down valve to JT valve PV-703 is designed at same value (52 barg))				
			144.2.2. Loss of LNG production and potential interruption of truck loading operation	144.2.2.1. LI-1901A/B on LNG storage tank including low level alarms			
		144.3. Malfunction of PIC-703 closing PV-703 (JT valve)	144.3.1. No impact on this node and upstream system (pressure build up is not expected, however all natural gas loop from metering station let down valve to JT valve PV-703 is designed at same value (52 barg))				
			144.3.2. Loss of LNG production and potential interruption of truck loading operation	144.3.2.1. LI-1901A/B on LNG storage tank including low level alarms			
		144.4. Malfunction of PIC-715A closing PV-715	144.4.1. Inadequate displacement of not condensable gas and consequent accumulation resulting in pressure build up in LNG separator S7003 (DP=16 barg) leading to potential overpressurization, mechanical damage and potential for LNG	144.4.1.1. PAHH-717 activate closure of HV-700 144.4.1.2. PSV-705 sized including this scenario			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (4) 30/03/2023

Node: (11) LNG separator

Intention: S7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Parameter: Flow Equipment: S7003, EW9000

T aramoton.	Equipment: 37003, Evaluation						
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	144. No/less Flow (cont.)	144.4. Malfunction of PIC-715A closing PV-715 (cont.)	with release of NG to atmosphere through cold box vent valve (no impact on personnel expected since breathing valve vent located at safe location). Possible operational disruption due to equipment damage and prolonged maintenance operation	144.4.1.2. PSV-705 sized including this scenario (cont.)			
			144.4.2. Inadequate displacement of not condensable gas and consequent accumulation resulting in pressure build up in LNG separator S7003 (DP=16 barg) leading to potential overpressurization, mechanical damage and potential for LNG leakages inside the cold box with potential cold box overpressurization, mechanical damage and injuries to personnel (fire/explosion hazard)	144.4.2.1. PAHH-717 activate closure of HV-700 144.4.2.2. PSV-705 sized including this scenario 144.4.2.3. Overpressure device provided on cold box			
		closure of HV-717 or HV- 1913A/B	144.5.1. Level build up in LNG separator S7003 resulting in possible overfilling and LNG carry over to EW9000 with possible embrittlement of downstream piping leading to mechanical damage and loss of containment 144.5.2. Level build up in LNG separator S7003 resulting in possible overfilling and LNG carry	144.5.1.1. LAHH-716 activate closure HV-700 144.5.1.2. TALL-915 activate closure HV-721 144.5.2.1. LAHH-716 activate closure of HV-700 (same actions activated by			
				PAHH-717)			

Page: 84 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (4) 30/03/2023

Node: (11) LNG separator

Intention: \$7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Parameter: Flow Equipment: S7003, EW9000

arameter			Edubilit	Ent. 37003, EV9000			
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
lo/less	144. No/less Flow	144.5. Malfunction of LIC-715A	pressure build up in LNG	144.5.2.2. PSH-715A			
cont.)	(cont.)	closing LV-715 or unexpected	separator S7003 (DP=16 barg)	activate opening HV-715 to			
		closure of HV-717 or HV-	leading to potential	cold flare KO drum V16000			
		1913A/B (cont.)	overpressurization, mechanical				
			damage and potential for LNG	144.5.2.3. PSV-705 sized			
			leakages inside the cold box with	including this scenario			
			release of NG to atmosphere				
			through cold box vent valve (no				
			impact on personnel expected				
			since breathing valve vent located				
			at safe location). Possible				
			operational disruption due to				
			equipment damage and				
			prolonged maintenance operation				
			144.5.3. Level build up in LNG	144.5.3.1. LAHH-716			
			separator S7003 resulting in	activate closure of HV-700			
			possible overfilling and LNG carry	(same actions activated by			
			over to EW9000 with consequent	PAHH-717)			
			vaporization resulting in pressure				
			build up in LNG separator S7003	144.5.3.2. PSH-715A			
			(DP=16 barg) leading to potential	activate opening HV-715 to			
			overpressurization, mechanical	cold flare KO drum V16000			
			damage and potential for LNG				
			leakages inside the cold box with	144.5.3.3. PSV-705 sized			
			potential cold box	including this scenario			
			overpressurization, mechanical				
			damage and injuries to personnel	144.5.3.4. Overpressure			
			(fire/explosion hazard)	device provided on cold box			
			144.5.4. Level build up in LNG		36. PSV-914 shall be	SIAD	
			separator S7003 resulting in		verified for LNG	MI	
			possible overfilling and LNG carry		vaporization in EW9000		
			over to EW9000 with consequent	PAHH-717)			
			vaporization resulting in pressure				
			build up in EW9000 and	144.5.4.2. PSH-715A			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (4) 30/03/2023

Node: (11) LNG separator

Intention: S7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Parameter: Flow Equipment: S7003. EW9000

Falameter	ameter: Flow Equipment: S7003; EW9000								
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES		
No/less (cont.)	144. No/less Flow (cont.)	144.5. Malfunction of LIC-715A closing LV-715 or unexpected closure of HV-717 or HV- 1913A/B (cont.)	associated piping (DP=16 barg) leading to potential overpressurization, mechanical damage and potential for LNG leakages with possible injuries to personnel (fire/explosion hazard)	activate opening HV-715 to cold flare KO drum V16000 144.5.4.3. Overpressure device provided on cold box	36. PSV-914 shall be verified for LNG vaporization in EW9000 (cont.)				
More	145. More Flow	145.1. Malfunction of FIC-713 opening FV-713	145.1.1. No significant impact (flowrate on NG, LNG system is managed by JT valve PV-703)						
		145.2. See pressure parameter for wide opening of PV-703							
Reverse	146. Reverse Flow	146.1. Shut-down of thermal oxidizer	146.1.1. Possible CO2 stream at 0,9 barg (from S2011) back flow from V16200 to LNG separator S7003 (OP = 0,5 barg) leading to possible LNG contamination and off spec products		37. PAHH-1640 shall close HV-1646 to avoid LNG contamination by CO2 in case of thermal oxidizer shut-down possibly leading to CO2 backflow from V16200 to LNG separator S7003	SIAD MI			
Misdirect	147. Misdirect Flow	147.1. HV-701 stuck in open position after start-up	147.1.1. Negligible impact according to limited size of HV- 701						
		147.2. Unexpected opening of HV-715	147.2.1. Possible continuous NG routed to cold flare with environmental concern and loss of product			SIAD MI			
			147.2.2. Pressure decrease in S7003 and consequent loss of driving force for LNG displacement to storage tank		:See_38				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (4) 30/03/2023

Node: (11) LNG separator

Intention: S7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Parameter: Flow

 00, 1201 01	01110	
Equipment:	S7003,	EW9000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
	147. Misdirect Flow (cont.)	147.2. Unexpected opening of HV-715 (cont.)	resulting in level build up in S7003 (see no/less flow for overfilling in S7003 and consequent overpressurization)		: <u>See_38</u> (cont.)		
			147.2.3. Pressure decrease in S7003 and consequent loss of driving force for LNG displacement to storage tank resulting in level build up in S7003 and consequent possible overfilling leading to possible LNG carry over to cold flare KO drum V16000 resulting in operational upset (vaporization of LNG on cold flare header will lead to fluctuation in separator pressure and discontinuous discharge to tank)				
		147.3. Unexpected opening of HV-711	147.3.1. LNG routed to cold flare KO drum V16000 resulting in KO drum overfilling and possible liquid carry over to cold flare resulting in LNG outflow from flare tips with potential injuries to personnel	147.3.1.1. Discrepancy alarm on HVs	39. Add a high high level interlock on V16000 to activate closure of HV-700 (relevant set point to be defined to allow adequate residual volume preventing overfilling after HV-700 closure)	SIAD MI	
		147.4. Unexpected opening of HV-916	147.4.1. Not condensable gas routed to cold flare instead of to thermal oxidizer leading to minor environmental concern	147.4.1.1. Valve is FC and has discrepancy alarm on HVs			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (11) LNG separator

Intention: \$7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Parameter: Temperature Equipment: S7003, EW9000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
ess	148. Lower Temperature	148.1. Loss of LP steam in EW9000 including malfunction of TIC-952 closing TV-952	148.1.1. Natural gas routed to thermal oxidizer inlet line at - 168°C instead of 20°C with possible embrittlement of piping resulting in mechanical and injuries to personnel (fire/explosion hazard) 148.1.2. Freezing in EW9000 is not expected due to limited flowrate of cryogenic gas and continuous circulation of water through EW9000	148.1.1.1. TALL-915 activate closure HV-721			
		148.2. Low ambient temperature	148.2.1. Possible freezing of stagnant piping on water side of EW9000	148.2.1.1. Electrical tracing and insulation provided on water piping (electrical tracing also supplied by EDG)	:See_8		
More	149. Higher Temperature	149.1. Higher temperature of natural gas from upstream section (see high temperature in node #9)					
		149.2. See higher temperature from node #10 (Inadequate cooling of dryer after refeneration (KV failure in close position))					
			149.3.1. Loss of cooling medium circulation through HX7000 with partial loss of LNG production (operation disruption/economical losses)	149.3.1.1. Event detectable by TI-705 149.3.1.2. Monitoring instrumentation provided			

PHAWorks by Primatech Inc.

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (11) LNG separator

Intention: S7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Parameter: Temperature Equipment: S7003, EW9000

aramoto							
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
lore cont.)	149. Higher Temperature (cont.)	149.3. Loss of cooling duty from primary heat exchanger HX7000 (any cause related to nodes #30 and #31) (cont.)		on cooling media (see nodes #30 and #31)			
		149.4. Loss of duty in LNG subcooler SC7001 (See any cause related to node #31)	149.4.1. Loss of cooling medium circulation through SC7001 with partial loss of LNG production (operation disruption/economical losses)	149.4.1.1. Event detectable by TI-718 149.4.1.2. Monitoring instrumentation provided on LNG subcooler SC7001 (see node #31)			
		149.5. Malfunction of TIC-952 fully opening TV-952 on LP steam to EW9000	149.5.1. Abnormal input to EW9000 resulting in increased temperature (max estimated < 90°C) of gas routed to thermal oxidizer with no impact				
			149.5.2. Higher temperature of water bath in EW9000 (max 100°C) with no impact on EW9000 and coils according to selected material (stainless steel)		40. Review design temperature of EW9000 from 90°C to 100°C	SIAD MI	
			149.5.3. Higher temperature of water bath in EW9000 leading to steam generation and consequent possible release from EW9000 atmospheric vent and potential injuries to personnel	149.5.3.1. TAH-953	41. Ensure safe location requirements of EW5000 and EW9000 atmospheric vent	SIAD MI	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (11) LNG separator Intention: S7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Parameter: Pressure Equipment: S7003, EW9000

r arameter.	Tameter. Pressure Equipment. 37003, EW9000								
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	ΒY	NOTES		
Less	150. Lower Pressure	 150.1. Refer to No/Less Flow in this node 150.2. Refer to Misdirect flow (opening of HV-715) 150.3. Malfunction of PIC-715 opening PV-715 when not required 	150.3.1. Pressure decrease in S7003 and consequent loss of driving force for LNG displacement to storage tank resulting in level build up in S7003 (see no/less flow for overfilling in S7003 and consequent overpressurization)						
More	151. Higher Pressure		151.2.1. LNG at 43 barg sent to LNG separator S7003 and associated piping (DP= 16 barg) leading to potential overpressurization, mechanical damage with possible operational disruption due to equipment damage and prolonged maintenance operation	151.2.1.1. PSH-715A activate opening HV-715 to cold flare KO drum V16000 (sized for JT valve PV-703 wide opening) 151.2.1.2. PAHH-717 activate closure of HV-700 151.2.1.3. PSV-705 sized including this scenario					
			151.2.2. LNG at 43 barg sent to LNG separator S7003 and associated piping (DP= 16 barg) leading to potential for LNG leakages inside the cold box with potential cold box	151.2.2.1. PSH-715A activate opening HV-715 to cold flare KO drum V16000 (sized for JT valve PV-703 wide opening)					

Page: 90 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023 Node: (11) LNG separator Intention: \$7003: OT = -166,53 °C EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Equipment: S7003, EW9000 Parameter: Pressure

			Equipine				
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	151. Higher Pressure	151.2. Malfunction of PIC-703	overpressurization, mechanical	151.2.2.2. PAHH-717			
(cont.)	(cont.)	fully opening PV-703 (cont.)	damage and injuries to personnel	activate closure of HV-700			
			(fire/explosion hazard)				
				151.2.2.3. PSV-705 sized			
				including this scenario			
				151.2.2.4. Overpressure hatch on cold box			
		151.3. External fire/Thermal expansion	involved equipment/piping with possible mechanical damage	151.3.1.1. All isolatable equipment and piping on LNG sections are protected by pressure relief devices sized for this case	: <u>See_7</u>		

Session: (5) 31/03/2023

Node: (11) LNG separator Intention: S7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Equipment: S7003, EW9000 Parameter: Level

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	152. No/less Level	152.1. Malfunction of LIC-715 fully opening LV-715	152.1.1. Loss of level in S7003 and consequent gas brekthrough (0,5 barg) to LNG VT19000 and VT19001 (DP=5barg) with no impact on mechanical integrity according to design criteria				
				152.1.2.1. LALL-716 activate closure of HV-717			

Page: 91 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (11) LNG separator

Intention: S7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Parameter: Level Equipment: S7003, EW9000

Parameter			Equipment. S7003, Evv9000				
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	152. No/less Level (cont.)	152.1. Malfunction of LIC-715 fully opening LV-715 (cont.)	(DP=5barg) resulting in uncondensable gas accumulation into BOG and relevant circuit and consequent operational upset overtime due to unstable operations	152.1.2.1. LALL-716 activate closure of HV-717 (cont.)			
			152.2.1. Inadequate water make up to EW9000 leading to loss of level and consequent loss of duty to regeneration gas stream (see lower temperature due to loss of steam to EW9000)				
More	153. Higher Level	153.1. Refer to No/Less and misdirect flow 153.2. Refer to low pressure					
		153.3. Malfunction of LSH-940 opening LV-940 when not required	153.3.1. Level build up in EW9000 resulting in overfilling and water carry over to drain collection pit at grade. Waste of water with no impact on personnel safety	153.3.1.1. TAL-953			
			153.3.2. Level build up in EW9000 resulting in overfilling and continuous water circulation through overflow line leading to lower temperature of cryogenic gas to thermal oxidizer (see low temperature for loss of steam but less critical)	153.3.2.1. TAL-953			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (11) LNG separator

Intention: S7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Parameter: Composition Equipment: S7003, EW9000

rarameter							
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	154. Different Composition	154.1. Presence of humidity/CO2 due to upset on upstream treatment sections (See nodes relevant to CO2 removal and to gas drying)	heat eschanger HX7000 resulting in plugging leading to	safeguards provided on			
		154.2. See no/less flow and lower level for inadequate displacement of not condensable gas (N2, H2, O2)					

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (11) LNG separator

Intention: S7003: OT = -166,53 °C

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes:

Drawings: I20784 Sh 20; I20784 Sh 22; I20784 Sh 23; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 70 Parameter: Services / Utilities Equipment: S7003, EW9000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No	155. No Services /	155.1. No additional cause					
	Utilities	identified					

Page: 94 of 161

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg VT19001: OT = -166,53 °C P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	156. No/less Flow	156.1. Unexpected closure of PV1910A (including PIC1910A malfunction) or unexpected closure of additional HV provided at liquid outlet from tank connected to BOG system	156.1.1. Low pressure on LNG storage tanks VT19000 and VT19001 (see node #13) 156.1.2. No impact expected on BOG compressor since when build-up vaporizer is required in operation, compressor is not foreasen to curt build up gas from				Additional HV will be provided on each tank liquid outlet to LNG build-up vaporizer
		156.2. Unexpected closure of PV1910B (including PIC1910B malfunction) or unexpected closure of HV939 or unexpected closure of HV900	foreseen to suct build up gas from tank VT19000 156.2.1. High pressure on LNG storage tanks VT19000 and VT19001 (see node #13) 156.2.2. Blocked outlet condition for truck loading BOG line only in case of closure oh HV-900 (See No/Less Flow in node #13 due to closure of FV-914) 156.2.3. Reduced BOG feed to	156.2.3.1. Recirculating by-			
			BOG compressor C9100 / Loss of BOG feed to BOG compressor C9100 (when truck loading is not in place) resulting in possible mechanical damage and economical losses 156.2.4. No impact on NG feed due to loss of BOG recovery stream (less than 5% of feed)				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg VT19001: OT = -166,53 °C P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B

Parameter: Flow

Equipment: VT19001, E19000, EW9000, C9100

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	156. No/less Flow (cont.)	156.3. Potential plugging of strainer K900NG	156.3.1. Decrease in compressor efficiency and consequent operational upset	156.3.1.1. Differential pressure gauge provided for K900NG (see dedicated P&ID for compressor C9100)			
		156.4. Compressor C9100 failure	156.4.1. High pressure on LNG storage tanks VT19000 and VT19001 (see node #13) 156.4.2. Blocked outlet condition for truck loading BOG line (See No/Less Flow in node #13 due to closure of FV-914)				
		156.5. Malfunction of compressor control system (PIC-900/PIC-904) reducing compressor motor speed to	156.4.3. No impact on NG feed due to loss of BOG recovery stream (less than 5% of feed)				
			156.5.1. High pressure on LNG storage tanks VT19000 and VT19001 (see node #13)				
	VFD	VFD	156.5.2. Blocked outlet condition for truck loading BOG line (See No/Less Flow in node #13 due to closure of FV-914)				
			156.5.3. No impact on NG feed due to loss of BOG recovery stream (less than 5% of feed)				
	157. No/less Flow (compressor discharge)	157.1. Plugging of compressor post filter F9101	157.1.1. Increased DP accross filter with operational upset	157.1.1.1. Differential pressure gauge provided			

PHAWorks by Primatech Inc.

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg VT19001: OT = -166,53 °C P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	157. No/less Flow (compressor discharge) (cont.)	157.1. Plugging of compressor post filter F9101 (cont.)	157.1.1. Increased DP accross filter with operational upset (cont.)	for F9101 (see dedicated P&ID for compressor C9100)			
		157.2. Unexpected closure of HV-904	 157.2.1. No impact on NG feed due to loss of BOG recovery stream (less than 5% of feed) 157.2.2. Pressure build up on LNG storage tanks VT19000 and VT19001 (see node #13) 				
			157.2.3. Pressure build up on compressor discharge system (DP=49 barg) and possible overpressurization leading to mechanical damage, loss of containment, potential for fire/explosion, injuries to personnel	157.2.3.1. PIC-904 to open PV-905 157.2.3.2. PAHH-911 activate trip of compressor 157.2.3.3. PSV-903			Each stage is provided with PSV sized for blocked outlet (PSV-901/902) and high high pressure interlock (PAHH-901/902)
More		158.1. Malfunction of compressor control system (PIC-900/PIC-904) increasing compressor motor speed to VFD	158.1.1. No impact on usptream section158.1.2. Lower pressure on compressor suction side with possible compressor motor overload leading to damage to motor (economical losses)	158.1.2.1. Overload protection for compressor motor activate trip of compressor motor 158.1.2.2. PALL-910 activate trip of compressor motor			
			158.1.3. No impact on NG feed				

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg VT19001: OT = -166,53 °C P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	158. More Flow (cont.)	158.1. Malfunction of compressor control system (PIC-900/PIC-904) increasing compressor motor speed to VFD (cont.)	due to transient increase of BOG recovery stream (less than 5% of feed)				
Reverse	159. Reverse Flow	159.1. Compressor trip/stop (any cause)	159.1.1. Reverse flow from compressor discharge system (OP=43 barg) toward compressor suction side (DP=5 barg for VT19000 and VT19001) has not been considered a credible scenario since compressor is reciprocating type and any cause of compressor trip/stop will lead to closure of HV-904, HV-900 and opening HV-905 (by-bass line through PV-905 is normally closed during normal operation)				
Misdirect	160. Misdirect Flow	160.1. PV-1910A suck in open position during compressor in operation (PV-1910B opened)	 160.1.1. Transient slight pressure build up on LNG storage tanks VT19000 and VT19001 160.1.2. Increased BOG flowrate through EW9000 coil and consequent lower temperature on downstream piping with possible embrittlement of piping leading to mechanical damage and loss of containment with possible fire/explosion hazard 	160.1.2.1. TALL-913 activate closure of HV-939			
			160.1.3. Increased LNG	160.1.3.1. TALL-913			

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg VT19001: OT = -166,53 °C P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect (cont.)	160. Misdirect Flow (cont.)	160.1. PV-1910A suck in open position during compressor in operation (PV-1910B opened) (cont.)	circulation through build up vaporizer E1900 leading to ice formation and inadequate vaporization resulting in possible LNG carry over to EW9000 leading to lower temperature of gas to compressor with possible damage (economical losses)	activate closure of HV- 939			
		160.2. Malfunction of PIC- 1900A opening HV-1912 when is not required	160.2.1. BOG routed to cold flare with minor environmental concern 160.2.2. BOG routed to cold flare resulting in loss of suction flowrate/pressure to compressor (see loss of compressor suction feed in no/less flow in this node)	160.2.1.1. HV-1912 reported to PLC screen			
		160.3. Unexpected opening of HV-915	160.3.1. BOG gas routed to cold flare instead of to compressor suction leading to minor environmental concern	160.3.1.1. Valve is FC and has discrepancy alarm on HVs			
			resulting in loss of suction	160.3.2.1. Valve is FC and has discrepancy alarm on HVs			
		160.4. Unexpected opening of HV-917		160.4.1.1. Valve is FC and has discrepancy alarm on HVs			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg VT19001: OT = -166,53 °C P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B

Parameter: Flow

Equipment: VT19001, E19000, EW9000, C9100

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect (cont.)	160. Misdirect Flow (cont.)	160.5. Malfunction PIC-900/PIC- 904 opening PV-905 when not required	recycle mode resulting in impact on upstream system (see compressor failure) and loss recovery BOG to NG feed 160.5.2. Possible pressure build up on compressor suction system (DP=6 barg) and possible overpressurization leading to mechanical damage, loss of	160.5.2.1. PAHH-911 activate trip of compressor			
		160.6. Unexpected opening of HV-905	containment, potential for fire/explosion, injuries to personnel 160.6.1. BOG gas routed to cold flare instead of to NG feed suction leading to minor environmental concern	160.6.1.1. Discrepancy alarm on HVs			
			160.6.2. BOG routed to cold flare resulting in loss of BOG recovery stream (less than 5% of feed)	160.6.2.1. Discrepancy alarm on HVs			

PHAWorks by Primatech Inc.

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg VT19001: OT = -166,53 °C P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B Parameter: Temperature Equipt

Equipment: VT19001, E19000, EW9000, C9100

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	161. Lower Temperature	161.1. Refer to More and Misdirect Flow in this node 161.2. Loss of duty in EW9000 (loss of LP steam supply including malfunction of TIC-	161.2.1. Lower temperature on downstream EW9000 coil and consequent lower temperature on	161.2.1.1. TALL-913 activate closure of HV-939 (same action initiated by			
		952)	downstream piping with possible embrittlement of piping leading to mechanical damage and loss of containment with possible fire/explosion hazard	TALL-952)			
More	162. Higher Temperature	162.1. TIC-952 malfunction increasing heat input to EW9000	162.1.1. Higher temperature (up to 100°C) of BOG gas to compressor resulting in possible overheating of EW9000 process gas coils (DT=65°C) resulting in mechanical damage and possible leak of natural gas with possible fire		:See_47		
		162.2. Loss of cooling water to HW9101	162.2.1. Higher temperature of natural gas to second stage of compressor resulting in potential damage to internals and consequent economical losses	162.2.1.1. TAHH-902 activate trip of compressor			
		162.3. Loss of cooling water to HW9102	162.3.1. Higher temperature of natural gas to third stage of compressor resulting in potential damage to internals and consequent economical losses	162.3.1.1. TAHH-903 activate trip of compressor			
		162.4. Loss of cooling water to	162.4.1. Higher temperature of		42. Add a high high	SIAD	

PHAWorks by Primatech Inc.

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg VT19001: OT = -166,53 °C P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B

Parameter: Temperature

Equipment: VT19001, E19000, EW9000, C9100

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	162. Higher Temperature (cont.)	HW9103	BOG recovery gas (estimated approximately 175°C) on equipment and piping on third stage discharge downstream aftercooler (DT=65°C) resulting in mechanical damage and possible leak of natural gas with possible fire		temperature interlock downstream HW9103 to activate trip of BOG compressor C9100	MI	
			162.4.2. No impact on natural gas feed due to increased temperature of BOG recovery gas stream due to limited flowrate from compressor (less than 5% of feed)				

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop

Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C

C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg

VT19001: OT = -166,53 °C

P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B Parameter: Pressure

Equipment: VT19001, E19000, EW9000, C9100

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less		163.1. Refer to No/Less and Misdirect flow in this node					
More	0	164.1. Refer to No/Less and Misdirect flow in this node					
		164.2. External fire/Thermal	164.2.1. Overpressurization of	164.2.1.1. All isolatable	:See 7		

PHAWorks by Primatech Inc.

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg VT19001: OT = -166,53 °C

P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B

Parameter: Pressure

Equipment: VT19001, E19000, EW9000, C9100

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	164. Higher Pressure (cont.)	expansion		LNG sections are protected by pressure relief devices sized for this case		SIAD MI	

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop

Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C

C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg

VT19001: OT = -166,53 °C

P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B

Parameter: Level

Equipment: VT19001, E19000, EW9000, C9100

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	165. No/less Level	165.1. Not applicable					
More	166. Higher Level	166.1. Not applicable					

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023 Node: (12) LNG storage tank including BOG loop Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg VT19001: OT = -166,53 °C P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B Parameter: Composition Equipm

Equipment: VT19001, E19000, EW9000, C9100

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	167. Different	167.1. By-pass of BOG	167.1.1. Possible carry over of				
	Composition	compressor post-filter F9101 left	piston ring wear material to NG				
		open after maintenance	feed with negligible impact				

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop

Intention: EW9000: OTin = -166,53 °C, OTout = 20 °C

C9100: OPsuction = 1,2 barg; OPdischarge = 44,5 barg

VT19001: OT = -166,53 °C

P19001: OPsuction = 1,5 barg; OPdischarge = 6,5 barg

Notes:

Drawings: I20784 Sh 10; I20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B

Parameter: Services / Utilities

Equipment: VT19001, E19000, EW9000, C9100

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No	168. No Services /	168.1. No additional cause					
	Utilities	identified					

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Flow

Equipment: VT19000, P19000

			1			r	
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	169. No/less Flow	169.1. Unexpected closure of HV-1902A during truck loading mode	169.1.1. No impact on LNG tank 169.1.2. Loss of suction feed to P19000 with possible pump damage due to dry running (economical losses with no safety impact since pump is submerged pump without seals)	169.1.2.1. PDALL-1938A activate trip of pump P19000			
			169.1.3. Interruption of truck loading operation with operational upset (loss of 50% capacity to be sent to truck)	169.1.3.1. Discrepancy alarm on HVs 169.1.3.2. Intervention of pump protection will freeze the loading sequence providing an alarm at loading area. On control room board operator will receive alarm associated to intervention of PDALL- 1938A			
		169.2. Failure of pump P19000 when required in operation	169.2.1. No impact on LNG tank 169.2.2. Interruption of truck loading operation with operational upset (loss of 50% capacity to be sent to truck)	169.2.2.1. Discrepancy alarm on pump status 169.2.2.2. Pump faulty status will freeze the loading sequence providing an alarm at loading area.			
		169.3. Malfunction of FIC-1950A acting on P19000 pump VFD resulting in reduced pump motor speed	truck loading operation and				

Page: 105 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Flow

Equipment: VT19000, P19000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	169. No/less Flow (cont.)	CAUSES 169.3. Malfunction of FIC-1950A acting on P19000 pump VFD resulting in reduced pump motor speed (cont.) 169.4. Unexpected closure of HV-1951A, FV-1950A, HV- 1952A	to truck) 169.4.1. Pressure build up on pump discharge line up to shut-off pressure of pump P19000 (estimated <15 barg) with no impact on mechanical integrity of piping according to design criteria 169.4.2. Overheating of LNG trapped in the pump (no safety		RECOMMENDATIONS	BY	NOTES
			pump without seals)	169.4.2.2. PDAHH-1938A activate trip of pump P19000 169.4.3.1. Discrepancy			
			loading operation with operational upset (loss of 50% capacity to be sent to truck)				
				providing an alarm at loading area. On control room board operator will receive alarm associated to intervention of PDALL- 1938A			
			169.4.4. Potential pressure surge resulting in mechanical damage		44. Surge study to be provided for LNG truck	SIAD MI	

Page: 106 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	169. No/less Flow (cont.)	169.4. Unexpected closure of HV-1951A, FV-1950A, HV- 1952A (cont.)	to LNG transfer line from pump to last on/off valve resulting in potential LNG leak and possible fire/explosion hazard		loading lines (including worst case scenario: closure of on/off valve on road tanker side)		
		169.5. Blocked inlet of LNG connection on road tanker	169.5.1. Pressure build up on pump discharge line up to shut-off pressure of pump P19000 (estimated <15 barg) with no impact on mechanical integrity of piping according to design criteria. No impact on flexible hoses according to design criteria (PN40)				
			trapped in the pump (no safety impact since pump is submerged pump without seals)	169.5.2.1. PDIC-1939A to open PDV-1939A to recycle LNG back to tank 169.5.2.2. PDAHH-1938A activate trip of pump P19000			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	169. No/less Flow (cont.)	1956A (when BOG is routed back to tank) or unexpected closure of PV-1959A, HV- 1958A, FV-914 (when BOG from road tanker is routed to BOG compressor)	169.6.1. Pressure build up in road tanker up to shut-off pressure of pump P19000 (estimated <15 barg) and potential overpressurization leading to mechanical damage, LNG leakage and possible fire/explosion hazard and injuries to personnel	169.6.1.1. PAHH-1960A to activate trip of pump P19000 and to close on/off pneumatic valve on truck inlet by means of SY- 1950AA (same actions initiated also by PAHH- 1961A, not effective only in case of blocked outlet on gas return line inside road tanker)	45. Set point of PAHH- 1960A and PAHH-1961A shall be defined taking into account lowest design pressure for road tankers (design pressure of road tankers to be checked by OGE, currently available value is 7 barg)	OGE	
More	170. More Flow	loading operation		170.1.1.1. PAHH-1960A to activate trip of pump P19000 and to close on/off pneumatic valve on truck inlet by means of SY- 1950AA (same actions initiated also by PAHH- 1961A)			
	171. More Flow (LNG loaded Amount)	required and increasing pump motor speed through VFD 171.1. Malfunction of WQ- 1900A leading to higher amount of LNG loaded on road tanker	 170.2.1. No significant consequences identified 171.1.1. Possible overfilling of road tanker with consequent overpressurization of road tanker leading to mechanical damage, LNG leakage and possible fire/explosion hazard and injuries 	171.1.1.1. FQI-1950A to provide alarm in case of discrepancy higher than 5% with WI-1900A (if loaded amount is above 80% of tanker capacity sequence is			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	171. More Flow (LNG loaded Amount) (cont.)	171.1. Malfunction of WQ- 1900A leading to higher amount of LNG loaded on road tanker	171.1.1. Possible overfilling of road tanker with consequent overpressurization of road tanker	171.1.1.2. PAHH-1960A to activate trip of pump P19000 and to close on/off			
		(cont.)	leading to mechanical damage, LNG leakage and possible fire/explosion hazard and injuries to personnel (cont.)	pneumatic valve on truck inlet by means of SY- 1950AA (same actions initiated also by PAHH- 1961A)			
			171.1.2. Possible overfilling of road tanker with consequent liquid carry over to BOG line back to heater EW9000 with possible embrittlement of downstream piping leading to mechanical damage and loss of containment	171.1.2.1. FQI-1950A to provide alarm in case of discrepancy higher than 5% with WI-1900A (if loaded amount is above 80% of tanker capacity sequence is stopped)			
				171.1.2.2. TALL-914 activate closure HV- 1958A/B			
Reverse	172. Reverse Flow	172.1. Failure of pump P19000 when required in operation	172.1.1. Possible back flow from road tanker to tank with no impact				
Misdirect	173. Misdirect Flow	173.1. HV-1932A stuck in open position	173.1.1. No impact expected	173.1.1.1. Discrepancy alarm on HVs			
		173.2. Malfunction of PDIC- 1939A opening PDV-1939A when not required	173.2.1. Reduced pressure and flowrate on P19000 discharge resulting in delayed operation and consequent operational upset. Potential damage to pump motor due to overload (possible economical losses)	173.2.1.1. Internal protection provided against pump motor overload 173.2.1.2. PDALL-1938A activate trip of pump P19000			
		173.3. HV-1950A stuck in	173.3.1. LNG partially routed				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Flow

alameter			Equiplin	ent. v i 19000, F 19000	1	1	1
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
lisdirect cont.)	173. Misdirect Flow (cont.)	open position after cooling (if required)	back to tank through BOG line with no impact on storage tank				
			173.3.2. Reduced flowrate to road tanker resulting in delayed operation and consequent operational upset. Potential damage to pump motor due to overload (possible economical losses)	 173.3.2.1. Discrepancy alarm on HVs 173.3.2.2. Internal protection provided against pump motor overload 173.3.2.3. PDALL-1938A activate trip of pump P19000 			
		173.4. HV-1953A stuck in open position after hose drain		173.4.1.1. Permissive to not			
		173.5. HV-1954A / HV-1955A stuck in open position after end of purging operation	173.5.1. Nitrogen at 9 barg enters into LNG loading / BOG lines and consequent pressure build up with no impact on mechanical integrity (DP=15 barg)				
			173.5.2. After the end of pressure test, in case of increased pressure on LNG loading / BOG lines, sequence will be stopped by PAHH-1960A / PAHH-1961A leading to delay in operation		46. Provide a PSV on nitrogen purging line to LNG / BOG lines (set at adequate value)	SIAD MI	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Flow

Equipment: VT19000, P19000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
lisdirect cont.)	173. Misdirect Flow (cont.)	173.6. Unexpected opening of HV-1959A	173.6.1. BOG routed to cold flare and possible minor environmental concern				
	173.7. Malfunction of PIC- 1959AB opening PV-1959 when not required	173.7.1. BOG routed to BOG compressor instead that directly to tank with minor operational upset					
		173.8. Unexpected opening of HV-1963A	173.8.1. Nitrogen entrainment on BOG stream routed to compressor suction side with increased content of nitrogen in process flow (minor operational upset)	173.8.1.1. Discrepancy alarm on HVs			
				and managed by depressurization/purging			
				173.8.2.2. Discrepancy alarm on HVs			
				173.8.2.3. PAH-900			
				173.8.2.4. PAHH-910 activate trip of compressor C9100			
			173.8.3. After compressor shut down pressure build up (OP of nitrogen =9barg) on blocked in suction system (DP=10 barg) with no impact on mechanical integrity				

Page: 111 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Temperature

Equipment: VT19000, P19000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	174. Lower Temperature	174.1. No causes identified for tank VT19000, pump P19000 and truck loading bay TL19000 174.2. See overfilling scenario for road tanker (More flow)					
		174.3. Loss of LP steam in EW9000 including malfunction of TIC-952 closing TV-952	174.3.1. BOG routed to BOG compressor inlet line at -168°C instead of 20°C with possible embrittlement of piping resulting in mechanical and injuries to personnel (fire/explosion hazard) 174.3.2. Freezing in EW9000 is not expected due to limited flowrate of BOG and continuous	174.3.1.1. TALL-914 activate closure HV- 1958A/B			
More	175. Higher	175.1. No causes identified for	circulation of water through EW9000				
	Temperature	tank VT19000 175.2. Loss of pump cool down (HV-1932A not open on demand including TSL-1932A malfunction)	175.2.1. Loss of pump cooling down with possible pump damage due to cavitation (economical losses with no safety impact since pump is submerged pump without seals)	P19000			
		175.3. See more flow to road tanker during loading operation					
		175.4. Inadequate cooling of LNG line (HV-1950 not opening on demand including TSL	175.4.1. At the beginning of road tanker loading, possible increased of generation of BOG	175.4.1.1. PAHH-1960A activate trip of pump P19000 and to close			

PHAWorks by Primatech Inc.

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system

Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Temperature

Equipment: VT19000, P19000

i urumotoi							
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	175. Higher Temperature (cont.)	1951 malfunction) 175.5. TIC-952 malfunction increasing heat input to EW9000	resulting in pressure build up in road tanker and potential overpressurization leading to mechanical damage, LNG leakage and possible fire/explosion hazard and injuries to personnel 175.5.1. Higher temperature (up to 100°C) of BOG gas to compressor resulting in possible overheating of EW9000 process gas coils (DT=65°C) resulting in mechanical damage and possible leak of natural gas with possible fire	on/off pneumatic valve on truck inlet by means of SY- 1950AA (same actions initiated also by PAHH- 1961A)	47. Review design temperature of EW9000 coils up to 100°C	SIAD MI	

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system

Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	176. Lower Pressure	1910A to not open PV-1910A on demand	176.1.1. Pressure decrease in VT-19000, no impact expected on VT19000 operation according to NPSH requirement				
		176.2. See Misdirect and No/Less flow in this node					
		176.3. PIC-1959AB malfunction fully opening PV-1959A	176.3.1. No impact on loading operation				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system

Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Pressure

Equipment: VT19000, P19000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less (cont.)	176. Lower Pressure (cont.)	176.3. PIC-1959AB malfunction fully opening PV-1959A (cont.)	176.3.2. Transient increase overall BOG flowrate to compressor suction side managed by FV-914				
More	177. Higher Pressure	177.1. See flow parameter and high temperature					
		177.2. Malfunction PIC-1910 to improperly manage BOG system or any other upset on BOG loop (including compressor C9100 failure)	177.2.1. Pressure build up in VT19000 leading to potential overpressurization (DP=5 barg) leading to mechanical damage, LNG leakage and possible fire/explosion hazard and injuries to personnel	177.2.1.1. PAH1900A and operator response / to open HV1912 to cold flare 177.2.1.2. PSV 1AB/ 1AA or PSV 2AA/ 2AB (2x100%)			
		177.3. Loss of vacuum on V19000 jacket	177.3.1. Loss of insulation capacity and consequent operational upset	177.3.1.1. Event detectable by ice formation on VT19000			
		177.4. Undetected leakage on VT19000	177.4.1. LNG entrainment on V19000 jacket resulting in potential overpressurization and mechanical damage	177.4.1.1. Rupture disk DS1A sized according to design code for cryogenic tank EN13458			
		177.5. External fire/Thermal expansion	177.5.1. Overpressurization of involved equipment/piping with possible mechanical damage	177.5.1.1. All isolatable equipment and piping on LNG sections are protected by pressure relief devices sized for this case	:See.7		

Page: 114 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Level

Equipment: VT19000, P19000

			I I				
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	178. No/less Level	tank level including LI-1900A or LI-1901A malfunction		178.1.1.1. LALL-1900A or LALL1901A to trip pump P19000 (at least one is available since level transmitter are fully independent)			
				178.1.1.2. PDALL-1938A activate trip of pump P19000			
More	179. Higher Level		VT19000 and consequent overfilling leading to blocked outlet condition for LNG separator bottom line resulting in level build	179.1.1.1. LAHH-1900A or LAHH1901A activate closure of HV-1913A (after closure of HV-1913A all LNG production will be diverted to VT19001) 179.1.1.2. See dedicated			
				safeguard against overfilling provided for S7003 (node #11) in case second tank is not available to accommodate overall LNG			

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system

Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Composition

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	180. Different	180.1. No causes identified					
	Composition						

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system

Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg

EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Services / Utilities

Equipment: VT19000, P19000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No	181. No Services /	181.1. No additional cause					
	Utilities	identified					

Session: (5) 31/03/2023

- Node: (13) LNG tank and truck loading system
- Intention: P19000: OPsuction = 1,5 barg, OPdischarge = 6,5 barg EW9000: OTin = -166,53 °C, OTout = 20 °C

Notes: During normal operation both tanks are in filling mode and simultaneous truck loading mode

Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Other

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
	182. Other Than Other		182.1.1. Release of LNG on loading area with possible fire/explosion hazard	182.1.1.1. PALL-1960A activate trip of pump P19000, close HV-1952A and SY-1950AA	48. Shut down of LNG loading shall be also activated by LNG high flow gradient according to requirement of TRGS 751	SIAD MI	
					4.1.6 paragraph 6 codes		

Intention:

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023 Node: (14) Heavy HCs KO drum Notes: Drawings: I20784 Sh 70

Parameter: Flow

E

Equipment: V16200

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	183. No/less Flow	183.1. Loss of gas stream from analyzers fast loop to V16200 or loss of stream from EW9000 (not condensable gas from LNG separator) to V16200	183.1.1. No impact on this node				
			183.2.1. Blocked outlet for stripping condensate separator S2011 (see no/less flow in node #6 due to PV-275 unexpected closure)				
			183.2.2. No impact on this node				
		183.3. No HC flow from S1003 (any cause relative to node #03)	183.3.1. No impact on this node				
		183.4. Unexpected closure of HV-1645	183.4.1. Pressure build up in V16200 leading to increase back pressure for incoming streams (see blocked outlet scenario for node #11 and #06)		49. PAHH-1640 shall also close HV-1646 to segregate stripper condensate separator S2011 from heavy HC KO drum V16200	SIAD MI	
			183.4.2. Pressure build up in V16200 leading to increase back pressure for analyzers fast loop. No impact on mechanical integrity according to design criteria				
			183.4.3. Pressure build up in V16200 due to vaporization of liquid and possible overpressurization resulting in		50. PSV-914 shall be verified for blocked outlet condition on V16200	SIAD MI	
			possible mechanical damage leading to injuries to personnel/leakages and fire hazard		51. PAHH-1640 shall also close HV-721 and trip H16200/H16201	SIAD MI	

Page: 117 of 161

Intention:

Equipment: V16200

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023 Node: (14) Heavy HCs KO drum Notes: Drawings: I20784 Sh 70

Parameter: Flow

CONSEQUENCES SAFEGUARDS RECOMMENDATIONS NOTES GW DEVIATION CAUSES ΒY 183.4. Unexpected closure of 183.4.4. No impact on thermal No/less 183. No/less Flow HV-1645 (cont.) (cont.) oxidizer (cont.) 184.1. Gas breakthrough from More 184. More Flow 184.1.1. See node #03 for impact S1003 (see Low level in node on V16200 mechanical integrity #03) 184.1.2. Pressure build up in :See 49 V16200 leading to potential increase back pressure for incoming streams (see blocked outlet scenario for node #11 and #06) 185. Reverse Flow 185.1. Refer to no/less flow and Reverse more flow in this node 185.2. No causes identified for backflow from thermal oxidizer IN16200 Misdirect 186. Misdirect Flow 186.1. No causes identified

Session: (7) 04/04/2023

Node: (14) Heavy HCs KO drum Notes: Drawings: I20784 Sh 70

Intention:

Equipment: V16200

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	187. Lower Temperature	187.1. No causes identified for low temperature on incoming streams	:				Even in case of upset in EW9000 significant temperature decrease in not expected taking into account limited flowrate compared to CO2 incoming

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023 Node: (14) Heavy HCs KO drum Notes: Drawings: I20784 Sh 70

Parameter: Temperature

GW DEVIATION CAUSES **CONSEQUENCES** SAFEGUARDS RECOMMENDATIONS ΒY NOTES Less 187. Lower 187.1. No causes identified for (cont.) ..flowrate at Temperature (cont.) low temperature on incoming approximately 100°C (cont.) streams (cont.) 187.2. See more level in this node (Failure on demand of H16200) SIAD 187.3. Failure on demand of 187.3.1. Lower temperature of 52. Investigate impact of H16201 including TDY-1644 stream routed to thermal oxidizer liquid carry over to thermal MI oxidizer in case of malfunction to switch off inlet resulting in possible H16201 or to not switch on on condensation and droplets carry unavailability of demand over to thermal oxidizer leading to superheater H16201 or in operational upset / possible case of loss of heater damage H16200 188.1. Higher temperature of 188.1.1. No impact on this node More 188. Higher Temperature gas stream from EW9000 (<100°C) (see node #11) 188.2. Higher temperature of 188.2.1. No impact on this node CO2 vent stream S2011/H2001 (see node #06) 188.3. No causes identified for higher temperature from flash vessel S1003 188.4. Malfunction of LI-1641 to 188.4.1. Loss of level in V16200 188.4.1.1. LALL-1640 switch on H16200 when not leading to dry running of H16200 activate trip of H16200 required or to not stop on with consequent potential (same action is initiated by overheating of electrical bundles demand TAHH-1640) and damage (economical losses) 188.5. Malfunction of TDY-1644 53. Relocate TI-1644 SIAD 188.5.1. Higher temperature of to not switch off H16201 on gas routed to thermal oxidizer and downstream H16201 and MI demand or to switch on when potential for damage to internals add a high high (economical losses) temperature interlock to ... not required

Page: 119 of 161

Intention:

Equipment: V16200

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023 Node: (14) Heavy HCs KO drum Notes: Drawings: I20784 Sh 70

Intention:

	Temperature		Equipme	ent: V16200			
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
	188. Higher Temperature (cont.)	188.5. Malfunction of TDY-1644 to not switch off H16201 on demand or to switch on when not required (cont.)	188.5.1. Higher temperature of gas routed to thermal oxidizer and potential for damage to internals (economical losses) (cont.)		trip H16201		
			188.5.2. Higher temperature of gas on V16200 overhead line. According to limited duty of H16201 temperature build up is estimated in approximately 10 °C with no impact on mechanical integrity of piping		: <u>See_5</u> 3		
			188.5.3. Possible overheating of H16201 electrical bundle leading to mechanical damage and economical losses	188.5.3.1. TAHH-1641 activate trip of H16201			

Session: (8) 05/04/2023 Node: (14) Heavy HCs KO drum

Notes:

Drawings: I20784 Sh 70 Parameter: Pressure

Intention:

Equipment: V16200

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	189. Lower Pressure	189.1. No causes identified					
More		190.1. Refer to no/less and more flow in this node					
			190.2.1. Overpressurization of involved equipment	190.2.1.1. PSV-914 to protect V16200 including fire scenario			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023 Node: (14) Heavy HCs KO drum Notes: Drawings: I20784 Sh 70

Parameter: Level

GW DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS ΒY NOTES 191.1. See higher temperature No/less 191. No/less Level in this node 192.1. Failure on demand of 192.1.1.1. LAHH-1640 More 192. Higher Level 192.1.1. Liquid accumulation on :See 52 H16200 including malfunction of V16200 resulting in possible activate trip of thermal LI-1641 overfilling and liquid carry over to oxidizer and close HV-1645 54. LAHH-1640 shall also SIAD thermal oxidizer leading to close HV-1646 to prevent MI operational upset/possible potential liquid backflow to S2011 and trip H16201 to damage prevent thermal expansion of trapped material

Session: (8) 05/04/2023

Node: (14) Heavy HCs KO drum

Notes:

Drawings: I20784 Sh 70

Parameter: Composition

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	193. Different	193.1. No causes identified					
	Composition						

Session: (8) 05/04/2023

Node: (14) Heavy HCs KO drum

Notes:

Drawings: I20784 Sh 70

Parameter: Other

GW DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS ΒY NOTES Other 194. Other Than Other 194.1. Corrosion due to presence of CO2 is not Than expected according to operating condition (low partial pressure) and material selection (stainless steel)

Page: 121 of 161

Intention:

Equipment: V16200

Intention:

Equipment: V16200

Intention:

Equipment: V16200

Intention:

Equipment: V16000 EI 16000

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (15) LNG drain KO drum and cold flare Notes:

Drawings: I20784 Sh 39A

Parameter: Flow

Parameter.			Equipment. V 16000, FL 16000				
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	195. No/less Flow	195.1. No cause identified (during normal operation)					
	196. No/less Flow (nitrogen flushing)	196.1. Refer To node #32					
More	197. More Flow	197.1. Relief scenario - worst case (PV-703 wide opening leading to intervention of PV- 705 or HV-715)	197.1.1. No impact since cold flare and cold flare header are sized according to worst relief scenario				
Reverse	198. Reverse Flow	198.1. Refer <u>To node</u> #32 for potential air entrainment in case of loss of flushing nitrogen					
Misdirect	199. Misdirect Flow	199.1. Unexpected intervention of snuffing gas system	199.1.1. Emptying of snuffing gas cylinders leading to unavailability on demand	199.1.1.1. Weight scale provided including alarm to detect emptying of cylinders (minimum requirement to vendor)			
			199.2.1. Continuous leakage of nitrogen during normal operation. Potential hydrocarbon leak with fire hazard in case of relief on cold flare header		55. Provide additional positive isolation device on cold flare bottom drain line	SIAD MI	

Session: (7) 04/04/2023

Node: (15) LNG drain KO drum and cold flare Intention: Notes: Drawings: I20784 Sh 39A Parameter: Temperature Equipment: V16000, FL16000 GW DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS ΒY NOTES 200. Lower 200.1. Cold relief 200.1.1. No consequences since Less flare header material is compliant Temperature

with cryogenic service

Page: 122 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (15) LNG drain KO drum and cold flare Notes:

Drawings: I20784 Sh 39A

Parameter: Temperature

Intention:

Equipment: V16000, FL16000

	1						
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less (cont.)	200. Lower Temperature (cont.)	200.2. Low ambient temperature	200.2.1. In case of injection of snuffing gas (CO2) potential condensation leading to potential mechanical damage of cold flare tip		56. Investigate if CO2 is suitable for snuffing purpose on cold flare, taking into account minimum ambient temperature and possibility of condensation	SIAD MI	
More	201. Higher Temperature	scenario	201.1.1. No impact on mechanical integrity of flare header according to relevant design temperature (260°C) defined taking into account worst case for relief scenario in case of external fire				
		flare tip during relief scenario	damage of cold flare tip leading to	201.2.1.1. TAHH-1600 activate snuffing system by opening solenoid valves provided on each cylinder (3 cylinder in operation and 3 in stand-by)			No injuries to personnel expected since flare elevation has been defined to not exceed 3 kW/m2 at 1.5 m above ground level, at 1 m from flare stack

Session: (7) 04/04/2023

Node: (15) LNG drain KO drum and cold flare Notes: Drawings: I20784 Sh 39A Parameter: Pressure

Intention:

Equipment: V16000, FL16000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	202. Lower Pressure	202.1. See no/less and misdirect flow					
		202.2. See no/less flow of nitrogen (node #32)					

Intention:

Intention:

Intention:

Equipment: V16000, FL16000

Equipment: V16000, FL16000

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (15) LNG drain KO drum and cold flare Notes:

Drawings: I20784 Sh 39A

Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More		case (PV-703 wide opening leading to intervention of PV- 705 or HV-715)	203.1.1. Increase back pressure on cold flare header up to 1 barg with no impact on functionality of pressure relief devices since they're designed taking into account maximum back pressure on cold flare header				

Session: (7) 04/04/2023

Node: (15) LNG drain KO drum and cold flare Notes:

Drawings: I20784 Sh 39A

Parameter: Level

Equipment: V16000, FL16000 CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS ΒY NOTES GW DEVIATION 204. No/less Level 204.1. No causes identified No/less 205.1. Refer to misdirect flow in More 205. Higher Level node #11 (opening of HV-711) for massive incoming liquid flowrate from LNG separator S7003

Session: (7) 04/04/2023

Node: (15) LNG drain KO drum and cold flare

Notes:

Drawings: I20784 Sh 39A

Parameter: Composition

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different		206.1. No additional causes identified					

Page: 124 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023

Node: (20) Cooling water circuit

Notes:

Drawings: I20784 Sh 50; I20784 Sh 51; I20784 Sh 65; I20784 Sh 66; I20784 Sh 67; I20784 Sh 68

Parameter: Composition

Equipment:	F8000	F8001	P8000A/B	V8000
Equipritorita	,			

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	207. Different	207.1. Injection of biocide agent	:		57. Properties of biocide	SIAD	
	Composition				agent and potential	MI	
					associated hazards to be		
					investigated		

Session: (8) 05/04/2023

Node: (20) Cooling water circuit Notes:

Intention: OT to process = 40 °C , OT return = 50 °C

Intention: OT to process = 40 °C , OT return = 50 °C

Drawings: I20784 Sh 50; I20784 Sh 51; I20784 Sh 65; I20784 Sh 66; I20784 Sh 67; I20784 Sh 68 Parameter: Services / Utilities Equ

Equipment: E8000, E8001, P8000A/B, V8000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES		
No	208. No Services / Utilities		water and loss of circulation	208.1.1.1. Cooling water pumps P8000A/B are					
				supplied by EDG (automatically started in case of black out)					

Session: (8) 05/04/2023

Node: (20) Cooling water circuit

Notes:

Intention: OT to process = 40 °C , OT return = 50 °C

Drawings: I20784 Sh 50; I20784 Sh 51; I20784 Sh 65; I20784 Sh 66; I20784 Sh 67; I20784 Sh 68 Parameter: Other Equipment:

Equipment: E8000, E8001, P8000A/B, V8000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Other Than	209. Other Than Other	protection from air cooler fans	209.1.1. No impact expected under safety prospective since area underneath air coolers is not accessible (damage to personnel in case of fan mechanical failure is not possible)				
		water circuit (loss of circulation or higher temperature due to air	209.2.1. See nodes relevant to cooling water users for impact on process in case of unavailability of cooling water				

Page: 125 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023 Node: (21) Steam generation

Notes:

Intention:

Drawings: I20784 Sh 10; I20784 Sh 15; I20784 Sh 37; I20784 Sh 38; I20784 Sh 50

Parameter: Other

Equipment: V15100, P15100A/B, SG15200

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	ΒY	NOTES
Other Than		circuit (loss of circulation)	210.1.1. See nodes relevant to steam users for impact on process in case of unavailability of steam				

Page: 126 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023 Node: (22) Condensate collection

Notes:

Drawings: I20784 Sh 10; I20784 Sh 16; I20784 Sh 37; I20784 Sh 38; I20784 Sh 50

Parameter: Level

Equipment: HW15000, P15000

Intention:

				,			
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	211. Higher Level	211.1. Unavailability of	211.1.1. Level build up in		58. Ensure condensate	SIAD	
		condensate pump P15000	condensate collection drum,		collection drum vent to be	MI	
			leading to potential overfilling and		routed to safe location		
			release of hot condensate (85°C)				
			from vent leading to possible				
			injuries to personnel				

Page: 127 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023

Node: (23) Chilled water circuit Notes:

Drawings: I20784 Sh 15; I20784 Sh 25; I20784 Sh 36; I20784 Sh 51

Parameter: Temperature

Intention: P11000A/B: OPsuction = 2 barg, OPdischarge = 4 barg

Intention: P11000A/B: OPsuction = 2 barg, OPdischarge = 4 barg

Intention: P11000A/B: OPsuction = 2 barg, OPdischarge = 4 barg

Equipment: P11000A/B, V11000, FRU11000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less			5	212.1.1.1. Adequate glycol content to prevent freezing			
			package due to thermal inertia of chiller	of chilled water			

Session: (8) 05/04/2023

Node: (23) Chilled water circuit Notes:

Drawings: I20784 Sh 15; I20784 Sh 25; I20784 Sh 36; I20784 Sh 51 Parameter: Services / Utilities

Equipment: P11000A/B, V11000, FRU11000

				,			
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No	213. No Services /	213.1. Loss of electrical power	213.1.1. Unavailability of chilled	213.1.1.1. Chilled water			
	Utilities		water and loss of circulation	pumps P11000A/B are			
			leading to potential freezing	supplied by EDG			
				(automatically started in			
				case of black out)			

Session: (8) 05/04/2023

Node: (23) Chilled water circuit

Notes:

Drawings: I20784 Sh 15; I20784 Sh 25; I20784 Sh 36; I20784 Sh 51

Parameter: Other

Equipment: P11000A/B, V11000, FRU11000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Other	214. Other Than Other	214.1. Unavailability of chilled	214.1.1. See nodes relevant to				
Than		water circuit (loss of circulation	chilled water users for impact on				
		or higher temperature due to	process in case of unavailability				
		chiller failure)	of chilled water				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023 Node: (24) Demi water package Notes: Drawings: I20784 Sh 68

Parameter: Composition

Equipment: NOTES GW DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS ΒY 215.1. Higher salt (conductivity) 215.1.1. Possible off spec stream 59. Investigate potential OGE More 215. High impact of waste water from (TPLT) Concentration on reverse osmosis drain to downstream treatment unit demi water package routed to waste water collection/treatment system

Session: (8) 05/04/2023 Node: (24) Demi water package Notes: Drawings: I20784 Sh 68 Parameter: Other

Equipment: RECOMMENDATIONS GW DEVIATION CAUSES CONSEQUENCES SAFEGUARDS ΒY NOTES 216. Other Than Other 216.1. Handling of chemicals Other 216.1.1. Possible injuries to 60. Investigate OGE requirement for emergency (TZSA) harmful for eye and skin personnel in case of leakage Than showers/eye showers on demi water package due to presence of harmful . chemicals

Page: 129 of 161

Intention:

Intention:

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023 Node: (25) Instrument air production Notes:

Drawings: I20784 Sh 42; I20784 Sh 43; I20784 Sh 60 Parameter: Pressure

Intention:

Equipment: F7701, V7701, V7703, V7702

raiametei.	11035010		Equipline	FIIL F7701, V7701, V7703, V7	102		
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	217. Lower Pressure	217.1. Upset on instrument air package	217.1.1. Loss of instrument air to users resulting in taking of fail safe position for each pneumatic valve leading to unexpected plant shut-down	217.1.1.1. Nitrogen back up activated by any malfunction on the package (to open HV-1601 (FO) and consequent nitrogen injection through PCV- 1612)			
More	218. Higher Pressure	218.1. Malfunction of PCV-770 (fully open)	 218.1.1. IA supplied to header at 12 barg instead of 7 barg. No impact on mechanical integrity of piping according to relevant schedule (DP = 16 barg) 218.1.2. IA supplied to pneumatic valves at 12 barg instead of 7 barg with consequent possible damage of valve actuator and economical losses 	218.1.2.1. PSV-771			
		218.2. Malfunction of dedicated inlet filter reducer on single pneumatic valve	218.2.1. Possible damage of actuator on involved pneumatic valve with economical losses / impact on operation	218.2.1.1. Pneumatic valves provided with inlet filter reducer are protected by dedicated PSVs to prevent damage in case of inlet filter reducer failure			

Session: (8) 05/04/2023 Node: (25) Instrument air production Notes:

Intention:

Equipment: F7701, V7701, V7703, V7702

Drawings: I20784 Sh 42; I20784 Sh 43; I20784 Sh 60

Parameter: Composition

GW DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS ΒY NOTES 219.1. Upset in instrument air 219.1.1. Possible presence of 219.1.1.1. Dew point Different 219. Different analyzer provided on Al package leading to inadequate humidity on IA supply to Composition pneumatic valve leading to package as minimum drying of air accumulation on valve pressure.. requirement for vendor

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023 Node: (25) Instrument air production Notes:

Drawings: I20784 Sh 42; I20784 Sh 43; I20784 Sh 60 Parameter: Composition Intention:

Equipment: F7701, V7701, V7703, V7702

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	219. Different	219.1. Upset in instrument air	reducer drainage pot and	219.1.1.1. Dew point			
(cont.)		drying of air (cont.)		analyzer provided on Al package as minimum requirement for vendor (cont.)			

Page: 131 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31

Parameter: Flow

Equipment: CB7000, SE7400, C7400, E7400, E7401, C7500, E7500, C7600, E7600, HW7601, SE7500, T7600

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	220. No/less Flow	220.1. Malfunction of PIC-740A closing PV-740A on nitrogen make up stream or any other cause for loss of nitrogen make- up or unexpected closure of HV- 714, HV-706					
			220.1.2. In case of unexpected closure of HV-714, HV-706, loss of nitrogen purging to cold box resulting in potential humidity entrainment and consequent freezing and potential ice formation on perlite pellet leading to decrease in efficiency of primary exchanger overtime	220.1.2.1. Nitrogen back-up through PCV-737 220.1.2.2. Routine inspection on PDI-735 and PDI-739			
		220.2. Unexpected closure of PCV-736	220.2.1. In case of unexpected closure of HV-714, HV-706, loss of nitrogen purging to cold box resulting in potential humidity entrainment and consequent freezing and potential ice formation on perlite pellet	220.2.1.1. Routine inspection on PDI-735 and PDI-739			

Page: 132 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Flow

Equipment: CB7000, SE7400, C7400, E7400, E7401, C7500, E7500, C7600, E7600, HW7601, SE7500, T7600

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	220. No/less Flow (cont.)	220.2. Unexpected closure of PCV-736 (cont.)	leading to decrease in efficiency of primary exchanger overtime	220.2.1.1. Routine inspection on PDI-735 and PDI-739 (cont.)			
		220.3. Potential plugging of temporary strainer on compressor C7400 suction	220.3.1. No impact during normal operation since this strainer will be removed after start-up phase				
		220.4. Compressor failure/stop (any cause)	220.4.1. Loss of circulation for cooling medium resulting in loss of LNG production (see higher temperature in node #11)				
			220.4.2. Lower suction pressure/flowrate for C7500/C7600 turbines boosters resulting in lower speed on turbines T7500/T7600 and potential for mechanical stress leading to reduction in equipment lifetime (economical losses)	220.4.2.1. PALL-750 activate shut-down of turbines T7500/T7600 and relevant boosters (through closure of HV-710/712 and opening UV-760)			
			220.4.3. Lower suction pressure/flowrate for C7500/C7600 turbines boosters resulting in potential surge condition leading to turbines	220.4.3.1. Anti surge control system opening UV- 760 220.4.3.2. PALL-750			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Flow

Equipment: CB7000, SE7400, C7400, E7400, E7401, C7500, E7500, C7600, E7600, HW7601, SE7500, T7600

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	220. No/less Flow (cont.)	220.4. Compressor failure/stop (any cause) (cont.)	boosters damage and consequent extensive damage (major economical losses including operation disruption)/ possible impact on personnel in case of nitrogen leakage into the building (asphyxiation hazard)	activate shut-down of turbines T7500/T7600 and relevant boosters (through closure of HV-710/712 and opening UV-760) 220.4.3.3. Oxygen monitoring inside building to give alarm (inside horn and outside light)			
		220.5. Malfunction of compressor capacity control system leading to closure of compressor IGV	220.5.1. Possible reduced suction pressure/flowrate resulting in potential surge condition leading to compressor damage and consequent extensive damage (major economical losses including operation disruption)/ possible impact on personnel in case of nitrogen leakage into the building (asphyxiation hazard)	 220.5.1.1. Anti surge control system to open compressor by-pass valve (PCV) 220.5.1.2. USPM system to trip compressor in case of surge conditions 220.5.1.3. Oxygen monitoring inside building to give alarm (inside horn and outside light) 			These safeguards are reported in detailed P&IDs of nitrogen compressor loop
			220.5.2. Reduction of circulation for cooling medium resulting in				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Flow

Equipment: CB7000, SE7400, C7400, E7400, E7401, C7500, E7500, C7600, E7600, HW7601, SE7500, T7600

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	220. No/less Flow (cont.)	220.5. Malfunction of compressor capacity control system leading to closure of compressor IGV (cont.)	reduced efficiency of LNG production (see higher temperature in node #11)				
		220.6. Potential plugging of strainer on turbine boosters C7500/7600 suction	220.6.1. Slight reduction on turbine boosters C7500/7600 efficiency and consequent potential minor operational upset		61. Provide differential pressure measurements accross filters on turbine boosters C7500/7600 suctions by using existing instrumentation	SIAD MI	Additional temporary filter is provided for commissioning phase only. This temporary filter will be removed for normal operation as per SIAD commissioning procedure
		220.7. Unexpected closure of UV-761	 220.7.1. Lower speed on turbines T7500/T7600 and potential for mechanical stress leading to reduction in equipment lifetime (economical losses) 220.7.2. Loss of circulation for cooling medium resulting in loss of LNG production (see higher temperature in node #11) 	220.7.1.1. Low low speed interlock protection SALL 9B on cold turbine and SALL 9A on warm turbine to close HV-712/HV-710			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Flow

Equipment: CB7000, SE7400, C7400, E7400, E7401, C7500, E7500, C7600, E7600, HW7601, SE7500, T7600

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	220. No/less Flow (cont.)	220.7. Unexpected closure of UV-761 (cont.)	220.7.3. Blocked outlet condition for compressor resulting in potential surge condition leading to compressor damage and consequent extensive damage (major economical losses including operation disruption)/ possible impact on personnel in case of nitrogen leakage into the building (asphyxiation hazard)	 220.7.3.1. Anti surge control system to open compressor by-pass valve (PCV) 220.7.3.2. USPM system to trip compressor in case of surge conditions 220.7.3.3. Oxygen monitoring inside building to give alarm (inside horn and outside light) 			
			220.7.4. Blocked outlet condition for boosters resulting in potential pressure build up on boosters discharge side leading to potential overpressurization (DP=31 barg), mechanical damage and potential injuries to personnel/nitrogen accumulation inside building with asphyxiation hazard	 220.7.4.1. Anti surge control system opening UV- 760 220.7.4.2. PSV-755 (warm booster outlet) and PSV- 765 (cold booster outlet) 			
		220.8. Potential plugging of strainer on turbine	220.8.1. Slight reduction on turbine T7500/7600 efficiency		62. Provide differential pressure measurements	SIAD MI	Additional temporary filter is provided for

Page: 136 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Flow

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	220. No/less Flow (cont.)	T7500/7600 suctions	and consequent potential minor operational upset		accross filters on turbines T7500/7600 suctions by using existing instrumentation		commissioning phase only. This temporary filter will be removed for normal operation as per SIAD commissioning procedure
		220.9. Unexpected closure of HV-712 or HV-710 (quick closing valves)	220.9.1. Loss of circulation for cooling medium resulting in loss of LNG production (see higher temperature in node #11) 220.9.2. Blocked outlet condition for compressor resulting in potential surge condition leading to compressor damage and consequent extensive damage (major economical losses including operation disruption)/	220.9.2.1. Anti surge control system to open compressor by-pass valve (PCV) 220.9.2.2. USPM system to trip compressor in case of			Any iniziator that lead to turbine trip will also will also unload the compressor and open the by-pass valve UV-760 on
			possible impact on personnel in case of nitrogen leakage into the building (asphyxiation hazard)	220.9.2.3. Oxygen monitoring inside building to give alarm (inside horn and outside light)			boosters by-pass lines

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Flow

Equipment: CB7000, SE7400, C7400, E7400, E7401, C7500, E7500, C7600, E7600, HW7601, SE7500, T7600

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	221. More Flow	221.1. Malfunction of compressor capacity control system leading to opening of compressor IGV more than required	221.1.1. No significant consequences expected on process side and machine integrity				
			221.1.2. Possible overload of C7400 compressor motor resulting in damage with economical losses	221.1.2.1. Overload protection (high windings temperature) provided on compressor motor to trip the motor itself			
		221.2. Control room operator to increase opening of IGV on warm or cold turbine	221.2.1. Increased speed of turbine with potential overspeed and possible damage to turbine with economical losses	221.2.1.1. High high speed interlock protection SAHH 9B on cold turbine and SAHH 9A on warm turbine to close HV-712/HV-710			
			221.2.2. Increased speed of turbine with loss of efficiency in cooling capacity (see impact on node #11)				
Reverse	222. Reverse Flow	222.1. No causes identified					
			222.2.1. Possible counter rotation of boosters and turbine. Damage is not expected since lubrication				

Page: 138 of 161

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Reverse (cont.)	222. Reverse Flow (cont.)	222.2. UV-761 doesn't close on demand (section shut down and depressurization) (cont.)	is ensured by electrical driven lube oil pump (as per minimum requirement to vendor)				
Misdirect	223. Misdirect Flow	223.1. Malfunction of PIC-740B opening PV-740B when not required	223.1.1. Nitrogen partially routed to atmosphere (safe location) leading to lower suction pressure/flowrate for C7500/C7600 turbines boosters resulting in potential surge condition leading to turbines boosters damage and consequent extensive damage (major economical losses including operation disruption)/ possible impact on personnel in case of nitrogen leakage into the building (asphyxiation hazard) 223.1.2. Loss of nitrogen to atmosphere resulting in reduced circulation of cooling medium resulting in loss of LNG production (see higher temperature in node #11)	223.1.1.1. Anti surge control system opening UV- 760 223.1.1.2. PALL-750 activate shut-down of turbines T7500/T7600 and relevant boosters (through closure of HV-710/712 and opening UV-760) 223.1.1.3. Oxygen monitoring inside building to give alarm (inside horn and outside light)			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
GW Misdirect (cont.)	223. Misdirect Flow (cont.)	223.2. Malfunction of compressor antisurge control system opening PCV	223.2.1. Lower speed on turbines T7500/T7600 and potential for mechanical stress leading to reduction in equipment lifetime (economical losses) 223.2.2. Loss of circulation for cooling medium resulting in loss of LNG production (see higher temperature in node #11) 223.2.3. Pressure build up on compressor suction side leading to potential overpressurization, mechanical damage and potential injuries to personnel/nitrogen accumulation inside building with asphyxiation hazard		RECOMMENDATIONS	ВҮ	NOTES
		223.3. Tube rupture in HW7400	223.3.1. Nitrogen at 27 barg enters into HW7400 and chilled	223.3.1.1. PSV-746 sized including this scenario			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect (cont.)	223. Misdirect Flow (cont.)	223.3. Tube rupture in HW7400 (cont.)	water circuit (DP=8 barg) with potential mechanical damage and potential injuries to personnel	223.3.1.1. PSV-746 sized including this scenario (cont.)			
		223.4. Tube rupture in HW7601	223.4.1. Nitrogen at 70 barg enters into HW7601 and chilled water circuit (DP=8 barg) with potential mechanical damage and potential injuries to personnel	223.4.1.1. PSV-763 sized including this scenario			
		223.5. Unexpected opening of UV-760	223.5.1. Unloading condition for turbine booster resulting in loss of efficiency of cold turbine and reduction of cooling capacity (see impact on node #11)				
			mechanical damage and potential				
			injuries to personnel/nitrogen accumulation inside building with asphyxiation hazard	223.5.2.2. USPM system to trip compressor in case of surge conditions 223.5.2.3. PSV-749 sized			
				including this scenario			

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect (cont.)	223. Misdirect Flow (cont.)	223.6. Unexpected opening of UV-763	223.6.1. Nitrogen partially routed to atmosphere (safe location) leading to lower suction pressure/flowrate for C7500/C7600 turbines boosters resulting in potential surge condition leading to turbines boosters damage and consequent extensive damage (major economical losses including operation disruption)/ possible impact on personnel in case of nitrogen leakage into the building (asphyxiation hazard)	223.6.1.1. Anti surge control system opening UV- 760 223.6.1.2. PALL-750 activate shut-down of turbines T7500/T7600 and relevant boosters (through closure of HV-710/712 and opening UV-760) 223.6.1.3. Oxygen monitoring inside building to give alarm (inside horn and outside light)			
			223.6.2. Loss of nitrogen to atmosphere resulting in reduced circulation of cooling medium resulting in loss of LNG production (see higher temperature in node #11)				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	224. Lower Temperature	224.1. Malfunction of TIC-747 or TIC-748 increasing speed of fan E7400/E7401 224.2. Malfunction of TIC-754 or TIC-764 increasing speed of fan E7500/E7600 224.3. No causes identified for	process side 224.2.1. Negligible impact on				
		warm turbine T7500 224.4. No causes identified for cold turbine T7600 during normal operation					
		for cold turbine T7600 including malfunction of TIC-712 closing	224.5.1. Possible liquid nitrogen formation at turbine outlet resulting in potential damage to turbine impeller (economical losses including potential for major operation disruption)	224.5.1.1. TALL-714/713 activate closure of HV- 710/712			
		224.6. Refer to More Level in node #31 for liquid nitrogen carry over from LNG subcooler from primary heat exchanger					

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	225. Higher Temperature	225.1. Malfunction of TIC-747 or TIC-748 reducing speed of fan E7400/E7401 or air coolers E7400/E7401 failure	225.1.1. Temperature build up on compressor second stage suction (approximately 106°C instead of 40°C) with potential overheating and mechanical damage (possible damage to impeller bearings and motor overload, economical losses)				TAHH-3101 represented in detailed P&ID of nitrogen compressor
			225.1.2. Higher temperature of nitrogen sent to downstream sections (DT = 65° C) with possible mechanical damage of piping overtime leading to loss of containment resulting in possible impact on personnel in case of nitrogen leakage into the building (asphyxiation hazard)/possible injuries due to contact with hot product	225.1.2.1. TAHH- 749/TAHH-3101 activate trip of compressor 225.1.2.2. Oxygen monitoring inside building to give alarm (inside horn and outside light)			
			225.1.3. Higher temperature of stream routed to primary heat exchanger (DT=65°C) resulting in possible mechanical damage due to overheating and consequent economical losses/operation				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	225. Higher Temperature (cont.)	225.1. Malfunction of TIC-747 or TIC-748 reducing speed of fan E7400/E7401 or air coolers E7400/E7401 failure (cont.)	disruption 225.1.4. Higher temperature of stream routed to primary heat exchanger (DT=65°C) resulting in possible mechanical damage due to overheating leading to possible leakages of pressurized nitrogen inside cold box with potential overpressurization and mechanical damage (injuries to	225.1.3.1. TAHH-708 activate trip of compressor (cont.) 225.1.4.1. TAHH-708 activate trip of compressor 225.1.4.2. Overpressure			
		225.2. Loss of chilled water to HW7400	personnel) 225.2.1. Higher temperature of nitrogen stream at the outlet of HW7400 (40°C instead of 10°C) with no impact on mechanical integrity downstream equipment 225.2.2. Loss of efficiency of primary heat exchanger resulting in higher temperature in node #11 (partial loss of LNG production)	225.2.2.1. TAHH-708 activate trip of compressor			
		225.3. Malfunction of TIC-754	225.3.1. Higher temperature of	225.3.1.1. Oxygen	63. Relocate TAHH-752	SIAD	Additional

Session: (7) 04/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	225. Higher Temperature (cont.)	or TIC-764 reducing speed of fan E7500/E7600 or air coolers E7500/E7600 failure	stream routed to downstream	monitoring inside building to give alarm (inside horn and outside light)	downstream E7500 and TAHH-762 downstream E7600	MI SIAD MI	temperature monitoring at warm and cold boosters outlet is provided as per scope of work of relevant manufacturer (see detailed machine P&ID)
			225.3.2. Higher temperature of stream routed to cold booster C7600 inlet (approximately 90°C instead of 40°C) and potential damage due to overheating and economical losses		:See_63		Action of TAHH-752 is to close quick closing valves HV- 710/712
				225.3.3.1. TAHH-709 activate closure of HV- 710/712			
			225.3.4. Higher temperature of	225.3.4.1. TAHH-709			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = - 160 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31

Parameter: Temperature Equipment: CB7000, SE7400, C7400, E7400, E7401, C7500, E7500, C7600, E7600, HW7601, SE7500, T7600

GW DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS More 225. Higher 225.3. Malfunction of TIC-754 or ...stream routed to primary heat ...activate closure of HV-(cont.) Temperature (cont.) TIC-764 reducing speed of fan exchanger (DT=65°C) resulting in 710/712 E7500/E7600 or air coolers possible mechanical damage due

E7500/E7600 failure (cont.)	to overheating leading to possible leakages of pressurized nitrogen inside cold box with potential overpressurization and mechanical damage (injuries to personnel)	225.3.4.2. Overpressure hatch provided on cold box	
225.4. Loss of chilled water to HW7601	225.4.1. Higher temperature of nitrogen stream at the outlet of HW7601 (40°C instead of 10°C) with no impact on mechanical integrity downstream equipment		
		225.4.2.1. TAHH-709 activate closure of HV- 710/712	
225.5. Malfunction of TIC-712 opening TV-712 when not required	5 1	225.5.1.1. Event detectable by TI-714/713	

NOTES

ΒY

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Pressure

Equipment: CB7000, SE7400, C7400, E7400, E7401, C7500, E7500, C7600, E7600, HW7601, SE7500, T7600

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
_ess	226. Lower Pressure	226.1. Refer to no/less and misdirect flow					
/lore	227. Higher Pressure	227.1. Refer to no/less flow					
		227.2. Malfunction of PIC-740A fully opening PV-740A on nitrogen make-up	227.2.1. Pressure build up overtime on compressor suction side with consequent possible mechanical stress and damage to rotating parts of first stage (economical losses)	227.2.1.1. Independent pressure monitoring at compressor suction including high high pressure trip (see detailed compressor P&ID) 227.2.1.2. PSV-741 sized			
				including this scenario			
			227.2.2. Pressure build up overtime on compressor suction side with no impact on mechanical integrity of piping and compressor casing according to design criteria				
		227.3. Malfunction of PCV-736 (fully opening)	227.3.1. Nitrogen sent to cold box casing at 10 barg instead of 0,2 barg with potential	monitoring on cold box			
			overpressurization, mechanical damage and economical	227.3.1.2. Overpressure hatch provided on cold box			

PHAWorks by Primatech Inc.

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More (cont.)	227. Higher Pressure (cont.)	227.3. Malfunction of PCV-736 (fully opening) (cont.)	losses/injuries to personnel	227.3.1.2. Overpressure hatch provided on cold box (cont.)			
		227.4. Thermal expansion of trapped liquid/cold gas	227.4.1. Possible mechanical damage on involved pipe/equipment	227.4.1.1. PSV-706 (pass N), PSV-709 (pass HPN2) on nitrogen side to protect primary exchanger			
				227.4.1.2. PSV-763 on HW7601 shell side			
				227.4.1.3. PSV-746 on HW7004 shell side			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = 10 °C

T7600: OPsuction = 68,4 barg, OPdischarge = 6,6 barg

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31

Parameter: Level

Equipment: CB7000, SE7400, C7400, E7400, E7401, C7500, E7500, C7600, E7600, HW7601, SE7500, T7600

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	228. No/less Level	228.1. Not applicable					
More	229. Higher Level	229.1. Not applicable					

Session: (7) 04/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Intention: HX7000: OTin = -168 °C, OTout = 8,1 °C C7400: OPsuction = 6,1 barg, OPdischarge = 28,3 barg E7400/E7401: OTin = 126 °C, OTout = 40 °C C7500: OPsuction = 28,2 barg, OPdischarge = 42 barg E7500: OTin = 88,2 °C, OTout = 40 °C C7600: OPsuction = 41,9 barg, OPdischarge = 69 barg E7600: OTin = 105,4 °C, OTout = 40 °C HW7601: OTin = 40 °C, OTout = 40 °C CB7000: OTin = 10 °C, OTout = 10 °C CB7000: OTin = 10 °C, OTout = - 160 °C

Notes:

Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Composition

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	Composition	230.1. No causes identified for make-up nitrogen (supplied by					
		cryogenic storage)					

Session: (6) 03/04/2023 Node: (31) LNG subcooler Intention: T7500: OPsuction = 28,12 barg, OPdischarge = 6,5 barg HW7400: OTin = 40 °C, OTout = 10 °C HX7000: OTin = -160,42 °C, OTout = 8,1 °C Notes:

Drawings: I20784 Sh 23

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	231. No/less Flow	231.1. Malfunction of LIC-719 closing LV-719	 231.1.1. No significant consequences expected on Nitrogen compressor since liquid stream to LNG subcooler SC7001 is approximately 2.5% of overall compressor capacity 231.1.2. No liquid nitrogen carry over from HPN2_2 is expected since according to operating condition liquid nitrogen vaporizes in HPN2_2 				
		231.2. Malfunction of PIC-719 closing PV-719	231.1.3. Loss of cooling medium circulation through SC7001 with partial loss of LNG production (operation disruption/economical losses) 231.2.1. Pressure build up in SC7001 leading to potential overpressurization (DP=8 barg) with mechanical damage and consequent economical losses/operation disruption (LNG subcooler is located within cold	231.1.3.1. Event detectable by TI-718 231.1.3.2. LALL-720 activate closure of HV-700 231.2.1.1. PAHH-722 activate closure of HV-700 231.2.1.2. PSV-718 sized including this scenario			
			box) 231.2.2. Pressure build up in SC7001 leading to potential overpressurization (DP=8 barg) with mechanical damage and consequent leakage of liquefied nitrogen inside cold box leading to vaporization and potential	231.2.2.1. PAHH-722 activate closure of HV-700 231.2.2.2. PSV-718 sized including this scenario 231.2.2.3. Overpressure			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023 Node: (31) LNG subcooler Intention: T7500: OPsuction = 28,12 barg, OPdischarge = 6,5 barg HW7400: OTin = 40 °C, OTout = 10 °C HX7000: OTin = -160,42 °C, OTout = 8,1 °C Notes:

Drawings: I20784 Sh 23

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	231. No/less Flow (cont.)	231.2. Malfunction of PIC-719 closing PV-719 (cont.)	overpressurization of cold box with mechanical damage (injuries to personnel)	hatch on cold box			Notes
		231.3. No causes identified for subcooler bottom line (NNF)					
More	232. More Flow	232.1. No causes identified					
Reverse	233. Reverse Flow	233.1. No causes identified					
Misdirect	234. Misdirect Flow	234.1. Inadvertent opening of HV-720	234.1.1. Nitrogen vaporized and sent to safe location with loss of nitrogen and economical losses		65. Provide a PLC function to not allow manual selection of HV-720 if plant is detected in operating mode	SIAD MI	
			234.1.2. Nitrogen vaporized and sent to safe location with loss of nitrogen with loss of level in SC7001 (loss of cooling medium through SC7001) with partial loss of LNG production (operation disruption/economical losses)	234.1.2.1. LALL-720 activate closure of HV-700			

Session: (6) 03/04/2023 Node: (31) LNG subcooler Intention: T7500: OPsuction = 28,12 barg, OPdischarge = 6,5 barg HW7400: OTin = 40 °C, OTout = 10 °C HX7000: OTin = -160,42 °C, OTout = 8,1 °C Notes:

Drawings: I20784 Sh 23

Parameter: Temperature

Equipment: SC7001, E7001, T7500, HW7400, HX7000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	235. Lower	235.1. No causes identified					
	Temperature						
More	236. Higher Temperature	236.1. See No/Less flow in this node					

Session: (6) 03/04/2023

Node: (31) LNG subcooler

Intention: T7500: OPsuction = 28,12 barg, OPdischarge = 6,5 barg HW7400: OTin = 40 °C, OTout = 10 °C

HX7000: OTin = -160,42 °C, OTout = 8,1 °C

Notes:

Drawings: I20784 Sh 23

Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	237. Lower Pressure	237.1. Malfunction of PIC-719 fully opening PV-719	-	237.1.1.1. Event detectable by PI-722			
More	238. Higher Pressure	238.1. Refer to no/less flow in this node 238.2. Malfunction of LIC-719 wide opening LV-719		238.2.1.1. PSV-718 sized for this scenario			PAHH-722 would not be 100% effective in this case to prevent overpressurization
		238.3. External fire/Thermal expansion		238.3.1.1. PSV-718 sized including this scenario			

Session: (6) 03/04/2023 Node: (31) LNG subcooler Intention: T7500: OPsuction = 28,12 barg, OPdischarge = 6,5 barg HW7400: OTin = 40 °C, OTout = 10 °C HX7000: OTin = -160,42 °C, OTout = 8,1 °C Notes:

Drawings: I20784 Sh 23

Parameter: Level

Equipment: SC7001, E7001, T7500, HW7400, HX7000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES		
No/less	239. No/less Level	239.1. Refer to no/less and misdirect flow in this node							
More	240. Higher Level	240.1. Malfunction of LIC-719 opening LV-719 more than required	240.1.1. No impact on LNG temperature since LNG subcooler operates submerged						
			240.1.2. Level build up in SC7001 resulting in possible overfilling and consequent liquid nitrogen carry over to main exchanger HX7000 resulting in lower temperature affecting recycling nitrogen stream to compressor suction (lower temperature of this stream) possibly damaging the compressor due to thermal stress (economical losses)	activate closure of HV-700 (leading to trip of turbine through quick closure valve HV-710 and HV-712) 240.1.2.2. TALL-707 activate trip of compressor C7400					

Session: (6) 03/04/2023

Node: (31) LNG subcooler Intention: T7500: OPsuction = 28,12 barg, OPdischarge = 6,5 barg HW7400: OTin = 40 °C, OTout = 10 °C

HX7000: OTin = -160,42 °C, OTout = 8,1 °C

Notes:

Drawings: I20784 Sh 23 Parameter: Composition

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	241. Different	241.1. No causes identified					
	Composition						

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023 Node: (31) LNG subcooler Intention: T7500: OPsuction = 28,12 barg, OPdischarge = 6,5 barg HW7400: OTin = 40 °C, OTout = 10 °C HX7000: OTin = -160,42 °C, OTout = 8,1 °C Notes:

Drawings: I20784 Sh 23

Parameter: Services / Utilities

Equipment: SC7001, E7001, T7500, HW7400, HX7000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No	-	242.1. No additional causes					
	Utilities	identified					

Page: 155 of 161

Session: (7) 04/04/2023

Node: (32) Liquid nitrogen vaporizers, nitrogen heater and distribution Intention: H17000: OTin = 10 °C, OTout (min/max) = -35/25 °C

E17002A/B: OTin (min/max) = -35/25 °C, OTout = -168 °C

Notes:

Drawings: I20784 Sh 22; I20784 Sh 25; I20784 Sh 34; I20784 Sh 37A; I20784 Sh 38A; I20784 Sh 38B; I20784 Sh 40; I20784 Sh 41; I20784 Sh 42 Parameter: Flow Equipment: E17002A/B, H17000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	243. No/less Flow	243.1. Unexpected closure of HV-1700 or unexpected closure of KV-1700 A/B	243.1.1. No impact on upstream nitrogen storage tank				
			243.1.2. Possible overheating of nitrogen back-up trim heater H17000 with possible damage of electrical bundles (economical losses)	243.1.2.1. TAHH-1700 activate trip of H17000			
			243.1.3. Loss of nitrogen to loading bay for purging purposes (see relevant node #13) resulting in delay in loading operation (stop of loading phase)	243.1.3.1. PAL-1711			
			243.1.4. Unavailability of back-up nitrogen on demand resulting in delay on compressor start-up	243.1.4.1. PAL-1711			
			243.2.1. No impact on upstream nitrogen storage tank				
			243.2.2. Possible overheating of nitrogen back-up trim heater H17000 with possible damage of electrical bundles (economical losses)	243.2.2.1. TAHH-1700 activate trip of H17000			
			243.2.3. Loss of nitrogen to loading bay for purging purposes (see relevant node #13) resulting in delay in loading operation (stop of loading phase)	243.2.3.1. PAL-1711			
			243.2.4. Unavailability of back-up nitrogen on demand resulting in	243.2.4.1. PAL-1711			

Session: (7) 04/04/2023

Node: (32) Liquid nitrogen vaporizers, nitrogen heater and distribution Intention: H17000: OTin = 10 °C, OTout (min/max) = -35/25 °C

E17002A/B: OTin (min/max) = -35/25 °C, OTout = -168 °C

Notes:

Drawings: I20784 Sh 22; I20784 Sh 25; I20784 Sh 34; I20784 Sh 37A; I20784 Sh 38A; I20784 Sh 38B; I20784 Sh 40; I20784 Sh 41; I20784 Sh 42 Parameter: Flow Equipment: E17002A/B, H17000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less (cont.)	243. No/less Flow (cont.)	243.2. Unexpected closure of TV-1705 (cont.)	delay on compressor start-up	243.2.4.1. PAL-1711 (cont.)			
		243.3. Loss of level in nitrogen storage tank	243.3.1. Possible overheating of nitrogen back-up trim heater H17000 with possible damage of electrical bundles (economical losses)	243.3.1.1. Each LIN tank is provided with low level alarm and level gauge 243.3.1.2. TAHH-1700 activate trip of H17000			
			243.3.2. Loss of nitrogen to loading bay for purging purposes (see relevant node #13) resulting in delay in loading operation (stop of loading phase)	243.3.2.1. Each LIN tank is provided with low level alarm and level gauge 243.3.2.2. PAL-1711			
			243.3.3. Unavailability of back-up nitrogen on demand resulting in delay on compressor start-up	243.3.3.1. Each LIN tank is provided with low level alarm and level gauge			
		243.4. Loss of nitrogen supply to cold flare header due to compressor shut down	243.4.1. Inadequate purging of cold flare header leading to potential for ambient air entrainment and consequent formation of flammable mixture inside cold flare header with potential explosion hazard	243.3.3.2. PAL-1711 243.4.1.1. Back-up nitrogen injection to cold flare header through PCV-1708 243.4.1.2. Status of TV- 1702 reported to DCS			
More	244. More Flow	244.1. Higher demand rate during emergency shut down	244.1.1. Possible inadequate purging of equipment/piping	244.1.1.1. Sequence to open KV stand by valve (to operate both vaporizers in parallel mode) and to open HV-1702			

Session: (7) 04/04/2023

Node: (32) Liquid nitrogen vaporizers, nitrogen heater and distribution Intention: H17000: OTin = 10 °C, OTout (min/max) = -35/25 °C

E17002A/B: OTin (min/max) = -35/25 °C, OTout = -168 °C

Notes:

Drawings: I20784 Sh 22; I20784 Sh 25; I20784 Sh 34; I20784 Sh 37A; I20784 Sh 38A; I20784 Sh 38B; I20784 Sh 40; I20784 Sh 41; I20784 Sh 42 Parameter: Flow Equipment: E17002A/B, H17000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Reverse	245. Reverse Flow	245.1. No cause identified					
Misdirect	246. Misdirect Flow	open position during vaporizer switch over (every 8 hours)	246.1.1. Inadequate ice removal from vaporizer left in service, during normal operation according to limited flowrate of LIN through vaporizers, no significant consequences are expected	246.1.1.1. Discrepancy alarm on KVs			
			246.2.1. Nitrogen sent to cold flare header when not required leading to increased back pressure on LIN stream through primary exchanger with consequent reduced efficiency. Minor economical losses due to loss of nitrogen to cold flare	246.2.1.1. Discrepancy alarm on HVs			
			246.3.1. Nitrogen sent to cold flare header when not required leading to increased back pressure on LIN stream through primary exchanger with consequent slight reduction of efficiency. Negligible impact				The purpose of PCV- 1708 is to segregate nitrogen stream on primary exchanger (vaporized LIN in cold box) from back- up nitrogen
			246.4.1. No consequences as long as instrument air system is working properly (OP=7 barg vs set point of PCV-1712 = 5 barg)				

Page: 158 of 161

Session: (7) 04/04/2023

Node: (32) Liquid nitrogen vaporizers, nitrogen heater and distribution Intention: H17000: OTin = 10 °C, OTout (min/max) = -35/25 °C

E17002A/B: OTin (min/max) = -35/25 °C, OTout = -168 °C

Notes:

Drawings: I20784 Sh 22; I20784 Sh 25; I20784 Sh 34; I20784 Sh 37A; I20784 Sh 38A; I20784 Sh 38B; I20784 Sh 40; I20784 Sh 41; I20784 Sh 42 Parameter: Temperature Equipment: E17002A/B, H17000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	247. Lower Temperature	247.1. Higher LIN demand rate during maintenance (cold box defrosting)	247.1.1. Lower temperature of nitrogen downstream vaporizer E17002A/B with possible damage of piping downstream TV-1702 and TV-1705 due to embrittlement with possible injuries to personnel/economical losses	247.1.1.1. TALL-1707 activate closure of HV-1700			
		247.2. Failure of H17000 including TIC-1703 malfunction reducing heat input to H17000	247.2.1. Lower temperature of nitrogen downstream heater H17000 with possible damage of piping downstream TV-1702 and TV-1705 due to embrittlement with possible injuries to personnel/economical losses	247.2.1.1. TALL-1704 activate closure of TV-1702 and TV-1705			
More	248. Higher Temperature	248.1. Refer to no/less flow in this node					
		248.2. TIC-1703 malfunction increasing heat input to H17000	248.2.1. Possible overheating of nitrogen back-up trim heater H17000 with possible damage of electrical bundles (economical losses)	248.2.1.1. TAHH-1700 activate trip of H17000			
			248.2.2. Higher temperature of nitrogen stream at outlet of H17000 with no impact during normal operation. Possible damage to turbine seal package during shut-down/start-up (economical losses)			SIAD MI	

Session: (7) 04/04/2023

Node: (32) Liquid nitrogen vaporizers, nitrogen heater and distribution Intention: H17000: OTin = 10 °C, OTout (min/max) = -35/25 °C

E17002A/B: OTin (min/max) = -35/25 °C, OTout = -168 °C

Notes:

Drawings: I20784 Sh 22; I20784 Sh 25; I20784 Sh 34; I20784 Sh 37A; I20784 Sh 38A; I20784 Sh 38B; I20784 Sh 40; I20784 Sh 41; I20784 Sh 42 Parameter: Pressure Equipment: E17002A/B, H17000

T arameter	. 1 1000010		Equipina	SIII. E 17002A/D, 1117000			
GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	249. Lower Pressure	249.1. Refer to no/less flow in this node					
More	250. Higher Pressure	250.1. Malfunction of PCV-1712 (fully open)	 250.1.1. During normal operation pressure build up to 10 barg between PCV-1712 and HV-1701. No impact on mechanical integrity according to design criteria. Possible nitrogen losses to atmosphere due to intervention of PSV-1713 set at 10 barg 250.1.2. In case nitrogen is required as back-up for instrument air, possible pressure build up on instrument air pipe up to 10 barg. No impact on mechanical integrity according to design criteria. 		67. Increase set point of PSV-1713 at 13 barg (to guarantee also protection for fire scenario according to pipe schedule)	SIAD MI	
		250.2. Malfunction of PCV-742 (fully open)	250.2.1. Possible pressure build up on seal gas line between PCV- 742 and next PCV included on compressor package. No impact on mechanical integrity according to design criteria.				Refer to detailed P&ID of nitrogen compressor
		250.3. Malfunction of PCV-743 (fully open)	250.3.1. Higher consumption of back up nitrogen with no significant impact				
		250.4. External fire/Thermal expansion	250.4.1. Possible overpressurization of involved equipment/piping	250.4.1.1. All isolatable equipment/piping are protected by PSVs sized for fire or thermal expansion case depending on			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (32) Liquid nitrogen vaporizers, nitrogen heater and distribution

Intention: H17000: OTin = 10 °C, OTout (min/max) = -35/25 °C

E17002A/B: OTin (min/max) = -35/25 °C, OTout = -168 °C

Notes:

Drawings: I20784 Sh 22; I20784 Sh 25; I20784 Sh 34; I20784 Sh 37A; I20784 Sh 38A; I20784 Sh 38B; I20784 Sh 40; I20784 Sh 41; I20784 Sh 42 Parameter: Pressure Equipment: E17002A/B, H17000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	250. Higher Pressure	250.4. External fire/Thermal	250.4.1. Possible	relevant service			
(cont.)	(cont.)	expansion (cont.)	overpressurization of involved				
			equipment/piping (cont.)				

Session: (7) 04/04/2023

Node: (32) Liquid nitrogen vaporizers, nitrogen heater and distribution

Intention: H17000: OTin = 10 °C, OTout (min/max) = -35/25 °C

E17002A/B: OTin (min/max) = -35/25 °C, OTout = -168 °C

Notes:

Drawings: I20784 Sh 22; I20784 Sh 25; I20784 Sh 34; I20784 Sh 37A; I20784 Sh 38A; I20784 Sh 38B; I20784 Sh 40; I20784 Sh 41; I20784 Sh 42 Parameter: Level Equipment: E17002A/B, H17000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	251. No/less Level	251.1. Not applicable					
More	252. Hiaher Level	252.1. Not applicable					

Session: (7) 04/04/2023

Node: (32) Liquid nitrogen vaporizers, nitrogen heater and distribution

Intention: H17000: OTin = 10 °C, OTout (min/max) = -35/25 °C

E17002A/B: OTin (min/max) = -35/25 °C, OTout = -168 °C

Notes:

Drawings: I20784 Sh 22; I20784 Sh 25; I20784 Sh 34; I20784 Sh 37A; I20784 Sh 38A; I20784 Sh 38B; I20784 Sh 40; I20784 Sh 41; I20784 Sh 42 Parameter: Composition Equipment: E17002A/B, H17000

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	253. Different Composition	253.1. No causes identified					

Node 00: General issues	1
Parameter: Flow	1
Node 01A: Fiscal metering station	2
Parameter: Flow	2
Parameter: Temperature	3
Parameter: Pressure	5
Parameter: Level	6
Parameter: Composition	6
Parameter: Services / Utilities	7
Node 01B: Natural gas supply, preheating, HG removal and absorption	8
Parameter: Flow	8
Parameter: Temperature	11
Parameter: Pressure	13
Parameter: Level	14
Parameter: Composition	15
Parameter: Services / Utilities	15
Node 02: Natural gas supply to steam generator	16
Parameter: Flow	16
Parameter: Temperature	18
Parameter: Pressure	19
Parameter: Level	20
Parameter: Composition	20
Parameter: Services / Utilities	20
Node 03: Flash vessel	21
Parameter: Flow	21
Parameter: Temperature	23
Parameter: Pressure	24
Parameter: Level	25
Parameter: Composition	26
Node 04: NG stream to dryers and condensate separator	27
Parameter: Flow	27
Parameter: Temperature	28
Parameter: Pressure	29
Parameter: Level	29
Parameter: Composition	30
Node 05: MDEA Storage tank and dosing	31
Parameter: Flow	31
Parameter: Temperature	32
Parameter: Pressure	32
Parameter: Level	33
Parameter: Composition	33
Parameter: Services / Utilities	33
Node 06: MDEA stripping column	34
Parameter: Flow	34
Parameter: Temperature	39
Parameter: Pressure	42
Parameter: Level	45

Parameter: Composition	46
Parameter: Services / Utilities	46
Node 07: MDEA blowdown tank	47
Parameter: Flow	47
Parameter: Temperature	48
Parameter: Pressure	48
Parameter: Level	40
Parameter: Composition	50
Node 08: Antifoam dosing package	51
Parameter: Flow	51
Parameter: Temperature	51
Parameter: Pressure	51
Parameter: Level	52
Parameter: Composition	53
Node 09: Natural gas precooling, drying and liquefaction	54
Parameter: Flow	54
Parameter: Temperature	58
Parameter: Pressure	59
Parameter: Level	60
Parameter: Composition	60
Node 10: Natural gas dryers regeneration loop	61
Parameter: Flow	61
Parameter: Temperature	71
Parameter: Pressure	76
Parameter: Level	76
Parameter: Composition	81
Parameter: Services / Utilities	82
Node 11: LNG separator	83
Parameter: Flow	83
Parameter: Temperature	88
Parameter: Pressure	90
Parameter: Level	91
Parameter: Composition	93
Parameter: Services / Utilities	94
Node 12: LNG storage tank including BOG loop	95
Parameter: Flow	95
Parameter: Temperature	101
Parameter: Pressure	102
Parameter: Level	103
Parameter: Composition	104
Parameter: Services / Utilities	104
Node 13: LNG tank and truck loading system	105
Parameter: Flow	105
Parameter: Temperature	112
Parameter: Pressure	113
Parameter: Level	115
Parameter: Composition	115
	115

Parameter: Services / Utilities	116
Parameter: Other	116
Node 14: Heavy HCs KO drum	117
Parameter: Flow	117
Parameter: Temperature	118
Parameter: Pressure	120
Parameter: Level	121
Parameter: Composition	121
Parameter: Other	121
Node 15: LNG drain KO drum and cold flare	122
Parameter: Flow	122
Parameter: Temperature	122
Parameter: Pressure	123
Parameter: Level	124
Parameter: Composition	124
Node 20: Cooling water circuit	125
Parameter: Composition	125
Parameter: Services / Utilities	125
Parameter: Other	125
Node 21: Steam generation	126
Parameter: Other	126
Node 22: Condensate collection	127
Parameter: Level	127
Node 23: Chilled water circuit	128
Parameter: Temperature	128
Parameter: Services / Utilities	128
Parameter: Other	128
Node 24: Demi water package	129
Parameter: Composition	129
Parameter: Other	129
Node 25: Instrument air production	130
Parameter: Pressure	130
Parameter: Composition	130
Node 30: Liquid Nitrogen supply to cold box and nitrogen recycle compressor	132
Parameter: Flow	132
Parameter: Temperature	143
Parameter: Pressure	148
Parameter: Level	150
Parameter: Composition	150
Node 31: LNG subcooler	151
Parameter: Flow	151
Parameter: Temperature	153
Parameter: Pressure	153
Parameter: Level	154
Parameter: Composition	154
Parameter: Services / Utilities	155
Node 32: Liquid nitrogen vaporizers, nitrogen heater and distribution	156

Parameter: Flow Parameter: Temperature Parameter: Pressure Parameter: Level Parameter: Composition

LNG liquefaction p	lant		
HAZOP and SIL Allocation Report	PROJECT 23123I	DATE April 2023	PAGE 4 di 7

ATTACHMENT 4

HAZOP Action List

Company: SIAD / OGE / BIOPLUS GmbH Location: Renzenhof, Germany Facility: LNG liquefaction plant PHA Method: HAZOP PHA Type: Initial
Process:
File Description:
Date:
Process Description:
Chemicals:
Purpose:
Scope:
Objectives:
Project Notes:

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023 Node: (00) General issues Drawings: Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect	1. Misdirect Flow	_	1.1.1. Potential overpressurization of hot flare header		1. Mode of operation of hot flare and potential overpressurization scenario due to inadvertent opening of manual vent valves to be investigated once design of hot flare will be finalized (e. g. increasing DP of hot flare header, etc)	SIAD MI / OGE	
			1.1.2. Possible unexpected routing of gas to hot flare when not in operation with possible environmental concern/ complains from authorities		2. Appropriate isolation philosophy to be investigated for drains and vents on LNG/NG high pressure vents and drains to hot flare used for maintenance purposes only	SIAD MI / OGE	

Page: 1 of 28

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (1) 27/03/2023 Node: (01A) Fiscal metering station Drawings: I20784 Sh 10 Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	6. Lower Temperature	6.2. Failure of heater W-B41 or failure of relevant temperature control system (TT-B40621)	6.2.1. Lower temperature of natural gas at the outlet of fiscal metering station (estimated -2 °C instead of 10°C) with no impact on mechanical integrity of piping and potential operational upset on downstream sections.		3. Ensure that signal from TT-B41320 and TT- B42320 are reported to DCS including high and low temperature alarm	OGE (TPG)	
More	7. Higher Temperature	7.2. Higher heat input from heater W-B41 due to failure of relevant temperature control system (TT-B40621)	7.2.1. Increase of natural gas temperature and potential overheating of downstream piping (DT=80°C) with potential mechanical damage and loss of containment (possible fire/explosion)	7.2.1.1. Internal independent high high temperature interlock provided for heater W-B41 (Minimum requirement included on data sheet for vendor)	4. Ensure provision for internal independent high high temperature interlock provided for heater W-B41 to protect heater itself and downstream piping from overheating scenario	OGE (TPG)	

Session: (1) 27/03/2023

Node: (01A) Fiscal metering station Drawings: I20784 Sh 10

Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	5	(fully open), including PT- B40622 malfunction	9.3.1. Pressure build-up dowstream valve PCV-B41540 up to 65 barg and potential overpressurization (DP=52 barg) with mechanical damage, loss of containment and potential for fire/explosion	9.3.1.1. SSV- B41520/B41530 (mechanical/pneumatical devices to cut off natural gas supply)	5. Ensure adequate set point for SSV- B41520/B41530 intervention to prevent opening of PSVs located on downstream piping (set at 52 barg)	OGE (TPG)	
		open)	9.4.1. Higher pressure of natural gas routed to analyser (44 barg instead of 1 barg) with potential overpressurization of analysers (AI-1001, 1010, 1011, 1016) and associated items (DP= 0.5 barg) with mechanical damage and potential injuries to personnel		6. Ensure provision for pressure release devices to protect analysers Al- 1001, 1010, 1011, 1016 and associated items in case of wide opening of pressure let down valve PCV-610/602	SIAD MI	Tubing and first valve downstream PCV-610 are rated to withstand 65 barg

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (1) 27/03/2023 Node: (01A) Fiscal metering station Drawings: I20784 Sh 10 Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	9. Higher Pressure	9.5. External fire	:		7. Investigate requirement	OGE	
(cont.)	(cont.)					(TPG)	
					for external fire case in		
					compliance with criteria		
					adopted for production		
					plant		

Page: 3 of 28

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (1) 27/03/2023 Node: (01B) Natural gas supply, preheating, HG removal and absorption Drawings: 2220698-0C-10-001 Sh 2; I20784 Sh 10; I20784 Sh 15

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	21. Lower Temperature	21.3. Low ambient temperature	21.3.1. Possible freezing of	21.3.1.1. Electrical tracing	8. Investigate appropriate	SIAD	
			stagnant piping on rich amine	and insulation provided on	monitoring system to	MI	
			side	rich amine piping (electrical	check		
				tracing also supplied by	functionality/effectiveness		
				EDG)	of electrical tracing		
					systems		

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (2) 28/03/2023

Node: (04) NG stream to dryers and condensate separator Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 5 Parameter: Temperature

NOTES GW CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS ΒY DEVIATION 62. Lower Temperature 62.2. Low ambient temperature 62.2.1. Possible freezing of 62.2.1.1. Electrical tracing 9. Provide winterization on SIAD Less stagnant piping on condensate and insulation provided on low points where MI side condensate piping condensation may happen (electrical tracing also on naturale gas line from supplied by EDG) TW1002 to HW4001

Session: (2) 28/03/2023

Node: (04) NG stream to dryers and condensate separator Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 5 Parameter: Level

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	66. Lower Level	66.1. Malfunction of LIC-419 fully opening LV-419	66.1.1. Loss of level on ST-4001 and consequent gas breakthrough (44 barg) to flash	66.1.1.1. LALL-472 activate closure of LV-413	10. Closure of LV-413	SIAD MI	NOTES
			amine, potential fire/explosion and injuries to personnel due to mechanical damage				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (2) 28/03/2023 Node: (05) MDEA Storage tank and dosing Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Level

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	77. No/less Level	77.1. Unappropriate monitoring	77.1.1. Emptying of IBC during		11. Provide additional	SIAD	
		of level in IBC	fresh amine transfer and potential		gauging system to monitor	MI	
			damage to P3001 due to dry		level inside amine IBC		
			running, economical losses		(e.g. pressure gauge on		
					bottom outlet line to P3001		
					pump suction, etc.)		

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (2) 28/03/2023 Node: (06) MDEA stripping column Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	81. No/less Flow (lean amine to TW1002)		81.2.1. Reduced of lean amine supply to TW1002 and consequent inadequate CO2 removal and consequent CO2 slippage to cold box (see relevant node)	81.2.1.1. AI-1012 to provide a high CO2 concentration alarm and to close HV-700 on high high CO2 concentration through ESD		SIAD MI	
	83. No/less Flow (Overhead circuit)	closing PV-275 on CO2 vent to thermal oxidizer	83.1.1. Pressure build up on TW2008 and S2011 (DP=2barg) leading to potential overpressurization overtime,	83.1.1.1. PAHH-282 activate closure of FV-204 83.1.1.2. PSV-271 sized	13. Add closure of LV-151 among actions initiated by PAHH-282		
			mechanical damage and injuries to personnel	including this scenario	14. Investigate appropriate routing of PSV-271 (currently routed to atm at safe location) taking into account either potential presence of amine and requirements from national regulation	SIAD MI / OGE	
	84. No/less Flow (Bottom circuit)		84.1.1. Level build up in S2011 leading to possible overfilling resulting in HW2010 flooding, loss of condensation and pressure build up on TW2008 and S2011 (DP=2barg) leading to potential ovepressurization overtime, damage and injuries to personnel	pump	15. Add closure of LV-151 among actions initiated by LAHH-279		
Reverse	86. Reverse Flow	86.1. Failure of pump P2005A/B	86.1.1. Possible natural gas reverse flow from TW1002 (44barg) to TW2008 (DP=2barg) leading to pressure build up in stripping column, mechanical damage and potential for	including this scenario 86.1.1.1. Discrepancy signal from onduty P2005A/B starting stand-by pump	16. Add dedicated interlock to shut down HV- 138 in case of back flow due to both P2005A/B not running (e.g. high high pressure detected on	SIAD MI	

Page: 7 of 28

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (2) 28/03/2023 Node: (06) MDEA stripping column Drawings: 2220698-0C-10-001 Sh 2; 2220698-0C-10-001 Sh 3; I20784 Sh 15 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Reverse	86. Reverse Flow	· ·	injuries to personnel including fire/explosion hazard	86.1.1.1. Discrepancy signal from onduty P2005A/B starting stand-by pump (cont.)	common pump suction line)	SIAD MI	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	96. More Flow	96.1. Operator mistake starting simultaneous drainage of different equipment	96.1.1. Possible level increase in V3004 leading to possible	96.1.1.1. Specific maintenance procedures	18. Provide overflow line	SIAD MI	
Reverse		97.1. Failure of pump P3002 during trasfer to truck	97.1.1. Possible reverse flow from truck to MDEA blow down tank with negligible impact (delay in operation). Overfilling is not expected according to tank elevation.		truck loading (downstream recirculation line)	SIAD MI	
Misdirect		98.2. Inadvertent opening of valve X318 or valve passing	98.2.1. Possible contamination of fresh amine and consequent operational upset		20. Specify NC valve X307 on IBC bottom	SIAD MI	

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4 Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	100. Higher	100.1. Operator mistake	100.1.1. Possible overheating of	100.1.1.1. Specific drainage	21. Relocate TAL to give	SIAD	
	Temperature	draining hot amine from	V3004 (DT=60°C) resulting in	procedure which foresees	permission to pump P3002	MI	
		TW2008 bottom (120 °C)	mechanical damage and possible	adequate amine cooling	to start from TT-214 to TT-		
			leakages (injuries to	before transfer to V3004	127		
			personnel/economical losses)				
				100.1.1.2. TAL-214 to give	22. Review V3004 design	SIAD	
				permission to pump	temperature up to 100 °C	MI	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	100. Higher	100.1. Operator mistake	100.1.1. Possible overheating of	P3002 to start only if	22. Review V3004 design		
(cont.)	Temperature (cont.)	draining hot amine from	V3004 (DT=60°C) resulting in	temperature is adequate for	temperature up to 100 °C		
		TW2008 bottom (120 °C) (cont.)	mechanical damage and possible	transfer to blowdown tank	(cont.)		
			leakages (injuries to				
			personnel/economical losses)				
			(cont.)				

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4 Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	102. Higher Pressure		102.2.1. Pressure buil up on blocked in piping (including flexible hoses) up to pump sut-off pressure (approximately 4 barg). No impact on mechanical integrity of piping according to design criteria. Possible overpressurization of flexible hose resulting in amine solution leak and possible injuries to personnel/soil contamination		23. Ensure that flexible hoses used for amine transfer to truck have adequate design pressure to cope with shut-off pressure of P3002	OGE (TBF)	

Session: (3) 29/03/2023

Node: (07) MDEA blowdown tank

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 4

Parameter: Level

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
-	103. No/less Level	103.1. Operator does not stop P3002 on low level in V3004 (including LT-305 failure)	103.1.1. Possible damage to P3002 due to dry running with minor economical losses and delay in operation	103.1.1.1. LALL-305 activate the trip of pump (not effective in case of LT- 305 failure) 103.1.1.2. Event detectable by PI-306 (operator is in	24. Add a level gauge on V3004	SIAD MI	
				place during transfer)			

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023 Node: (08) Antifoam dosing package Drawings: 2220698-0C-10-001 Sh 3 Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	_		113.1.1. Possible damage to pump (economical losses)/potential overpressurization of downstream piping resulting in mechanical	113.1.1.1. Specific provedure for line up of antifoam agent injection line	25. Add pressure relief device on P2013	SIAD MI	
			damage and potential injuries to personnel				

Page: 11 of 28

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect	120. Misdirect Flow	120.3. Unexpected opening of	120.3.1. Natural gas sent to cold	120.3.1.1. Discrepancy	26. Specify FO valve HV-	SIAD	
		HV-705	flare with environmental concern	alarm on HVs	705 since it is blow down	MI	
					valve for emergency		
				120.3.1.2. PDAHH-708	purposes		
				activate closure of HV-600			
				and HV-602			

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20 Pa

Parameter:	lemperature	
014		

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	122. Higher	122.1. Loss of chilled water to	122.1.1. Natural gas routed to	122.1.1.1. TI-485	27. Add a high	SIAD	
	Temperature	HW4002	downstream equipment at 25°C		temperature alarm on TI-	MI	
			instead of 10°C resulting in		485		
			reduction of efficiency in				
			liquefaction process				

Session: (3) 29/03/2023

Node: (09) Natural gas precooling, drying and liquefaction Drawings: 2220698-0C-10-001 Sh 5; I20784 Sh 15; I20784 Sh 20

Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	3	124.1. PCV-700 malfunction (fully open)	124.1.1. Higher pressure of natural gas routed to analyser (44 barg instead of 1 barg) with potential overpressurization of analysers (AI-1013A, 1012) and associated items (DP= 0.5 barg) with mechanical damage and potential injuries to personnel		28. Ensure provision for pressure release devices to protect analysers Al- 1013A, 1012 and associated items in case of wide opening of pressure let down valve PCV-700	SIAD MI	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (3) 29/03/2023

Node: (10) Natural gas dryers regeneration loop Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
lo/less	132. No/less Flow (compressor discharge)	132.3. Unexpected closure of HV-511	132.3.1. Unavailability of bleed valve on demand		- 1 3	SIAD MI	
<i>A</i> isdirect	135. Misdirect Flow	135.4. Unexpected opening of TV-530B	135.4.1. During dryer heating mode, higher temperature of natural gas to downstream section (220°C instead of 10°C) due to by-pass of HW5000, with possible overheating (DT=65°C for EW5000) resulting in mechanical damage and possible leak of natural gas with possible fire		5 5	SIAD MI	
		135.5. Tube rupture in HW5000	135.5.2. In case of possible natural gas entrainment in chilled water circuit no significant consequences are expected during normal operation; accumulation of natural gas can lead to potential exposure of maintenance operator to flammable mixture		31. Maintenance procedure for chilled water circuit shall include actions and safeguards to avoid personnel exposure to natural gas possibly present	OSE (TZSA)	
		135.7. Inadvertent opening of separators drain valve	135.7.1. Potential operational upset due to unexpected trip of compressor due to PALL intervention/leakage of NG and potential for personnel exposure to fire/explosion hazards		32. Specify manual valves on recycle gas compressor separators drains as LC		

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (4) 30/03/2023

Node: (10) Natural gas dryers regeneration loop

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	137. Higher Temperature		137.6.1. Higher temperature (up to 100°C) of regeneration gas to compressor resulting in possible overheating of EW5000 process gas coils (DT=65°C) resulting in mechanical damage and possible leak of natural gas with possible fire		33. Review design temperature of EW5000 process gas coils up to 100°C	SIAD MI	
			137.9.1. Higher temperature of natural gas (estimated approximately 137°C) on equipment and piping on third stage discharge downstream aftercooler (DT=65°C) resulting in mechanical damage and possible leak of natural gas with possible fire		34. Add a high high temperature interlock downstream HW5503 to activate trip of compressor C5500	SIAD MI	

Session: (4) 30/03/2023

Node: (10) Natural gas dryers regeneration loop

Drawings: 2220698-0C-10-001 Sh 3; 2220698-0C-10-001 Sh 5; I20784 Sh 10; I20784 Sh 15; I20784 Sh 36; I20784 Sh 37; I20784 Sh 37A; I20784 Sh 37B; I20784 Sh 39B Parameter: Level

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	140. No/less Level	140.4. Malfunction of LIC-501A not closing DV-501 on demand		140.4.1.1. LALL-501B activate closure of HV-515	35. Investigate additional	SIAD MI	
			fire		(e.g. PSV routed to cold flare located downstream HV-515, additional PAHH on drain line to S2011 acting on additional on/off valve etc)		

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (4) 30/03/2023 Node: (11) LNG separator

Drawings: 120784 Sh 20; 120784 Sh 22; 120784 Sh 23; 120784 Sh 30; 120784 Sh 31; 120784 Sh 38; 120784 Sh 70

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less		144.5. Malfunction of LIC-715A closing LV-715 or unexpected closure of HV-717 or HV- 1913A/B	over to EW9000 with consequent vaporization resulting in pressure build up in EW9000 and	144.5.4.1. LAHH-716 activate closure of HV-700 (same actions activated by PAHH-717) 144.5.4.2. PSH-715A activate opening HV-715 to cold flare KO drum V16000 144.5.4.3. Overpressure device provided on cold box	36. PSV-914 shall be verified for LNG vaporization in EW9000	SIAD MI	
Reverse	146. Reverse Flow	146.1. Shut-down of thermal oxidizer	146.1.1. Possible CO2 stream at 0,9 barg (from S2011) back flow from V16200 to LNG separator S7003 (OP = 0,5 barg) leading to possible LNG contamination and off spec products		37. PAHH-1640 shall close HV-1646 to avoid LNG contamination by CO2 in case of thermal oxidizer shut-down possibly leading to CO2 backflow from V16200 to LNG separator S7003	МІ	
Misdirect	147. Misdirect Flow	147.2. Unexpected opening of HV-715	147.2.1. Possible continuous NG routed to cold flare with environmental concern and loss of product		38. Provide alarm on HZI- 715 for loss of closed position of HV-715	SIAD MI	
		147.3. Unexpected opening of HV-711	147.3.1. LNG routed to cold flare KO drum V16000 resulting in KO drum overfilling and possible liquid carry over to cold flare resulting in LNG outflow from flare tips with potential injuries to personnel	147.3.1.1. Discrepancy alarm on HVs	39. Add a high high level interlock on V16000 to activate closure of HV-700 (relevant set point to be defined to allow adequate residual volume preventing overfilling after HV-700 closure)	SIAD MI	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023 Node: (11) LNG separator

Drawings: 120784 Sh 20; 120784 Sh 22; 120784 Sh 23; 120784 Sh 30; 120784 Sh 31; 120784 Sh 38; 120784 Sh 70

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	-	steam to EW9000	149.5.2. Higher temperature of water bath in EW9000 (max 100°C) with no impact on EW9000 and coils according to selected material (stainless steel)		- 3	SIAD MI	
			149.5.3. Higher temperature of water bath in EW9000 leading to steam generation and consequent possible release from EW9000 atmospheric vent and potential injuries to personnel			SIAD MI	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop

Drawings: Ì20784 Sh 10; Ĭ20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More		HW9103	162.4.1. Higher temperature of BOG recovery gas (estimated approximately 175°C) on equipment and piping on third stage discharge downstream aftercooler (DT=65°C) resulting in mechanical damage and possible leak of natural gas with possible fire		42. Add a high high temperature interlock downstream HW9103 to activate trip of BOG compressor C9100	SIAD MI	

Session: (6) 03/04/2023

Node: (12) LNG storage tank including BOG loop

Drawings: Ì20784 Sh 10; Ĭ20784 Sh 30; I20784 Sh 31; I20784 Sh 38; I20784 Sh 38A; I20784 Sh 38B

Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	164. Higher Pressure	expansion	involved equipment/piping with possible mechanical damage	equipment and piping on LNG sections are protected by pressure relief devices sized for this case	43. Provide additional pressure relief device against External fire/Thermal expansion on LNG build up line between last block valve and new HV	SIAD MI	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	169. No/less Flow		169.4.4. Potential pressure surge resulting in mechanical damage to LNG transfer line from pump to last on/off valve resulting in potential LNG leak and possible fire/explosion hazard		44. Surge study to be provided for LNG truck loading lines (including worst case scenario: closure of on/off valve on road tanker side)	SIAD MI	
		1956A (when BOG is routed back to tank) or unexpected closure of PV-1959A, HV- 1958A, FV-914 (when BOG from road tanker is routed to BOG compressor)	169.6.1. Pressure build up in road tanker up to shut-off pressure of pump P19000 (estimated <15 barg) and potential overpressurization leading to mechanical damage, LNG leakage and possible fire/explosion hazard and injuries to personnel	169.6.1.1. PAHH-1960A to activate trip of pump P19000 and to close on/off pneumatic valve on truck inlet by means of SY- 1950AA (same actions initiated also by PAHH- 1961A, not effective only in case of blocked outlet on gas return line inside road tanker)	45. Set point of PAHH- 1960A and PAHH-1961A shall be defined taking into account lowest design pressure for road tankers (design pressure of road tankers to be checked by OGE, currently available value is 7 barg)	OGE	
Misdirect	173. Misdirect Flow	of purging operation	173.5.2. After the end of pressure test, in case of increased pressure on LNG loading / BOG lines, sequence will be stopped by PAHH-1960A / PAHH-1961A leading to delay in operation		46. Provide a PSV on nitrogen purging line to LNG / BOG lines (set at adequate value)	SIAD MI	

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system Drawings: I20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38 Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	175. Higher	175.5. TIC-952 malfunction	175.5.1. Higher temperature (up		47. Review design	SIAD	
	Temperature	increasing heat input to	to 100°C) of BOG gas to		temperature of EW9000	MI	
		EW9000	compressor resulting in possible		coils up to 100°C		
			overheating of EW9000 process				
			gas coils (DT=65°C) resulting in				
			mechanical damage and possible				
			leak of natural gas with possible				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system

Drawings: Ì20784 Sh 30; I20784 Sh 32; I20784 Sh 34; I20784 Sh 38

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	175. Higher	175.5. TIC-952 malfunction	fire		47. Review design		
(cont.)	Temperature (cont.)	increasing heat input to			temperature of EW9000		
		EW9000 (cont.)			coils up to 100°C (cont.)		

Session: (5) 31/03/2023

Node: (13) LNG tank and truck loading system

Drawings: 120784 Sh 30; 120784 Sh 32; 120784 Sh 34; 120784 Sh 38

Parameter: Other

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Other Than	182. Other Than Other		loading area with possible fire/explosion hazard	activate trip of pump P19000, close HV-1952A and SY-1950AA		SIAD MI	

Page: 19 of 28

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023 Node: (14) Heavy HCs KO drum Drawings: I20784 Sh 70 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less			183.4.1. Pressure build up in V16200 leading to increase back pressure for incoming streams (see blocked outlet scenario for node #11 and #06)		49. PAHH-1640 shall also close HV-1646 to segregate stripper condensate separator S2011 from heavy HC KO drum V16200	SIAD MI	
			183.4.3. Pressure build up in V16200 due to vaporization of liquid and possible overpressurization resulting in possible mechanical damage leading to injuries to personnel/leakages and fire		50. PSV-914 shall be verified for blocked outlet condition on V16200 51. PAHH-1640 shall also close HV-721 and trip H16200/H16201	SIAD MI SIAD MI	
			hazard				

Session: (7) 04/04/2023 Node: (14) Heavy HCs KO drum Drawings: I20784 Sh 70 Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less		H16201 including TDY-1644 malfunction to switch off H16201 or to not switch on on demand	187.3.1. Lower temperature of stream routed to thermal oxidizer inlet resulting in possible condensation and droplets carry over to thermal oxidizer leading to operational upset / possible damage		52. Investigate impact of liquid carry over to thermal oxidizer in case of unavailability of superheater H16201 or in case of loss of heater H16200	SIAD MI	
More	1	to not switch off H16201 on	188.5.1. Higher temperature of gas routed to thermal oxidizer and potential for damage to internals (economical losses)		53. Relocate TI-1644 downstream H16201 and add a high high temperature interlock to trip H16201	SIAD MI	

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023 Node: (14) Heavy HCs KO drum Drawings: I20784 Sh 70 Parameter: Level

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	192. Higher Level	192.1. Failure on demand of	192.1.1. Liquid accumulation on	192.1.1.1. LAHH-1640	54. LAHH-1640 shall also	SIAD	
		H16200 including malfunction of	V16200 resulting in possible	activate trip of thermal	close HV-1646 to prevent	MI	
		LI-1641	overfilling and liquid carry over to	oxidizer and close HV-1645	potential liquid backflow to		
			thermal oxidizer leading to		S2011 and trip H16201 to		
			operational upset/possible		prevent thermal expansion		
			damage		of trapped material		

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023 Node: (15) LNG drain KO drum and cold flare Drawings: I20784 Sh 39A Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect	199. Misdirect Flow	199.2. Cold flare drain valve left	199.2.1. Continuous leakage of		55. Provide additional	SIAD	
		open after maintenance or valve	nitrogen during normal operation.		positive isolation device on	MI	
		passing	Potential hydrocarbon leak with		cold flare bottom drain line		
		-	fire hazard in case of relief on				
			cold flare header				

Session: (7) 04/04/2023

Node: (15) LNG drain KO drum and cold flare Drawings: I20784 Sh 39A

Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Less	200. Lower	200.2. Low ambient temperature	200.2.1. In case of injection of		56. Investigate if CO2 is	SIAD	
	Temperature		snuffing gas (CO2) potential		suitable for snuffing	MI	
			condensation leading to potential		purpose on cold flare,		
			mechanical damage of cold flare		taking into account		
			tip		minimum ambient		
					temperature and possibility		
					of condensation		

Page: 22 of 28

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023 Node: (20) Cooling water circuit Drawings: I20784 Sh 50; I20784 Sh 51; I20784 Sh 65; I20784 Sh 66; I20784 Sh 67; I20784 Sh 68

Parameter: Composition

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Different	207. Different	207.1. Injection of biocide agent	:		57. Properties of biocide	SIAD	
	Composition				agent and potential	MI	
					associated hazards to be		
					investigated		

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023 Node: (22) Condensate collection Drawings: I20784 Sh 10; I20784 Sh 16; I20784 Sh 37; I20784 Sh 38; I20784 Sh 50

Parameter: Level

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	211. Higher Level	211.1. Unavailability of	211.1.1. Level build up in		58. Ensure condensate	SIAD	
		condensate pump P15000	condensate collection drum,		collection drum vent to be	MI	
			leading to potential overfilling and		routed to safe location		
			release of hot condensate (85°C)				
			from vent leading to possible				
			injuries to personnel				

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (8) 05/04/2023 Node: (24) Demi water package Drawings: I20784 Sh 68 Parameter: Composition

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	215. High	215.1. Higher salt (conductivity)	215.1.1. Possible off spec stream		59. Investigate potential	OGE	
	Concentration	on reverse osmosis drain	to downstream treatment unit		impact of waste water from	(TPLT)	
					demi water package		
					routed to waste water		
					collection/treatment		
					system		

Session: (8) 05/04/2023 Node: (24) Demi water package Drawings: I20784 Sh 68 Parameter: Other

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Other		5	216.1.1. Possible injuries to		60. Investigate	OGE	
Than		harmful for eye and skin	personnel in case of leakage		requirement for emergency	(TZSA)	
					showers/eye showers on		
					demi water package due to		
					presence of harmful		
					chemicals		

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
No/less	220. No/less Flow	220.6. Potential plugging of strainer on turbine boosters C7500/7600 suction	220.6.1. Slight reduction on turbine boosters C7500/7600 efficiency and consequent potential minor operational upset		61. Provide differential pressure measurements accross filters on turbine boosters C7500/7600 suctions by using existing instrumentation	SIAD MI	Additional temporary filter is provided for commissioning phase only. This temporary filter will be removed for normal operation as per SIAD commissioning procedure
		220.8. Potential plugging of strainer on turbine T7500/7600 suctions	220.8.1. Slight reduction on turbine T7500/7600 efficiency and consequent potential minor operational upset		62. Provide differential pressure measurements accross filters on turbines T7500/7600 suctions by using existing instrumentation	SIAD MI	Additional temporary filter is provided for commissioning phase only. This temporary filter will be removed for normal operation as per SIAD commissioning procedure

Session: (7) 04/04/2023

Node: (30) Liquid Nitrogen supply to cold box and nitrogen recycle compressor Drawings: I20784 Sh 22; I20784 Sh 23; I20784 Sh 25; I20784 Sh 26; I20784 Sh 27; I20784 Sh 30; I20784 Sh 31 Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	225. Higher	225.3. Malfunction of TIC-754 or	225.3.1. Higher temperature of	225.3.1.1. Oxygen	63. Relocate TAHH-752	SIAD	Additional
	Temperature	TIC-764 reducing speed of fan	stream routed to downstream	monitoring inside building to	downstream E7500 and	MI	temperature
		E7500/E7600 or air coolers	systems leading to possible	give alarm (inside horn and	TAHH-762 downstream		monitoring at warm
		E7500/E7600 failure	overheating on downstream	outside light)	E7600		and cold boosters
			sections leading to loss of				outlet is provided as
			containment resulting in possible		64. Consider to review DT	SIAD	per scope of work of
			impact on personnel in case of		of piping dowstream	MI	relevant
			nitrogen leakage into the building		aircoolers		manufacturer (see
			(asphyxiation hazard)/possible		E7400/7401/7500/7600		detailed machine
			injuries due to contact with hot		taking into account air		P&ID)
			product		cooler failure scenario		

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (6) 03/04/2023 Node: (31) LNG subcooler Drawings: I20784 Sh 23 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
Misdirect	234. Misdirect Flow	234.1. Inadvertent opening of	234.1.1. Nitrogen vaporized and		65. Provide a PLC function	SIAD	
		HV-720	sent to safe location with loss of		to not allow manual	MI	
			nitrogen and economical losses		selection of HV-720 if plant		
					is detected in operating		
					mode		

Page: 27 of 28

Company: SIAD / OGE / BIOPLUS GmbH Facility: LNG liquefaction plant

Session: (7) 04/04/2023

Node: (32) Liquid nitrogen vaporizers, nitrogen heater and distribution

Drawings: 120784 Sh 22; 120784 Sh 25; 120784 Sh 34; 120784 Sh 37A; 120784 Sh 38A; 120784 Sh 38B; 120784 Sh 40; 120784 Sh 41; 120784 Sh 42 Parameter: Temperature

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More	248. Higher	248.2. TIC-1703 malfunction	248.2.2. Higher temperature of	248.2.2.1. TAHH-1700	66. Add a high high	SIAD	
	Temperature	increasing heat input to H17000	nitrogen stream at outlet of	activate trip of H17000	temperature interlock	MI	
			H17000 with no impact during		initiated by TI-1704 to trip		
			normal operation. Possible		H17000		
			damage to turbine seal package				
			during shut-down/start-up				
			(economical losses)				

Session: (7) 04/04/2023

Node: (32) Liquid nitrogen vaporizers, nitrogen heater and distribution

Drawings: 120784 Sh 22; 120784 Sh 25; 120784 Sh 34; 120784 Sh 37A; 120784 Sh 38A; 120784 Sh 38B; 120784 Sh 40; 120784 Sh 41; 120784 Sh 42 Parameter: Pressure

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	RECOMMENDATIONS	BY	NOTES
More		(fully open)	250.1.1. During normal operation pressure build up to 10 barg between PCV-1712 and HV-1701. No impact on mechanical integrity according to design criteria. Possible nitrogen losses to atmosphere due to intervention of PSV-1713 set at 10 barg			SIAD MI	

Node 00: General issues	1
Parameter: Flow	1
Node 01A: Fiscal metering station	2
Parameter: Temperature	2
Parameter: Pressure	2
Node 01B: Natural gas supply, preheating, HG removal and absorption	4
Parameter: Temperature	4
Node 04: NG stream to dryers and condensate separator	5
Parameter: Temperature Parameter: Level	5
Node 05: MDEA Storage tank and dosing	
Parameter: Level	C F
Node 06: MDEA stripping column	7
Parameter: Flow	7
Node 07: MDEA blowdown tank	ç
Parameter: Flow	ç
Parameter: Temperature	ç
Parameter: Pressure	10
Parameter: Level	10
Node 08: Antifoam dosing package	11
Parameter: Pressure	11
Node 09: Natural gas precooling, drying and liquefaction Parameter: Flow	12 12
Parameter: Temperature	12
Parameter: Pressure	12
Node 10: Natural gas dryers regeneration loop	13
Parameter: Flow	13
Parameter: Temperature	14
Parameter: Level	14
Node 11: LNG separator	15
Parameter: Flow	15
Parameter: Temperature	16
Node 12: LNG storage tank including BOG loop Parameter: Temperature	17 17
Parameter: Pressure	17
Node 13: LNG tank and truck loading system	18
Parameter: Flow	18
Parameter: Temperature	18
Parameter: Other	19
Node 14: Heavy HCs KO drum	20
Parameter: Flow	20
Parameter: Temperature	20
Parameter: Level	21
Node 15: LNG drain KO drum and cold flare	22
Parameter: Flow Parameter: Temperature	22 22
Node 20: Cooling water circuit	23
Node 20. Ooding water circuit	ZC

Parameter: Composition	23
Node 22: Condensate collection	24
Parameter: Level	24
Node 24: Demi water package	25
	-
Parameter: Composition	25
Parameter: Other	25
Node 30: Liquid Nitrogen supply to cold box and nitrogen recycle compressor	26
Parameter: Flow	26
Parameter: Temperature	26
Node 31: LNG subcooler	27
Parameter: Flow	27
Node 32: Liquid nitrogen vaporizers, nitrogen heater and distribution	28
Parameter: Temperature	28
Parameter: Pressure	28

LNG liq	uefaction plant		
HAZOP and SIL Allocation Report	PROJECT	DATE	PAGE
	23123I	April 2023	5 di 7

ATTACHMENT 5

SIL Worksheet

Study	SIL Allocation			Project	LNG liquefaction plant		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	S1001		
Session/Date	#1/05/04/23			Parameter		Flow	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	Misdirect		
Team	Refer to SIL Attendance List			HAZOP Reference	cau	ise 20.3	
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF PDAHH-105 #			1
P&ld n.	2220698-0C-10-001 Sh 2	rev.	0C	- SIF PDAHH-105 #		#	1

Safety Instrumented Function Description						
Initiator PDT-105						
Logic Solver	-	ESD				
Final elements	HV-105 HV-106	activate closure of HV-105, HV-106 in case of high high DP				

Scenario description					
Initiating events Unexpected opening of HV-164					
Consequences Significant portion of natural gas sent to cold flare resulting in possible environmental concern					

	SIL Allocation							
Consequences to People	s	S0 - No consequences	0					
Consequences to Environment	E	E2 - Release within the fence with significant damage	2	SIL (People) -				
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1					
Probability of avoiding the hazardous situation	Ρ	P1 - Hazardous situation can be avoided	1	SIL (Environmental)		а		
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2		Calculated (max)	а		
Independent Protection Layer	IPL	IPL = 10	10	SIL Selected		а		

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	Discrepancy alarm on HVs and operator response
Selected SIL	
Action	

Study	SIL Allocation			Project	LNG liqu	efaction pl	ant
Client	SIAD / OGE / BIOPLUS GmbH			ltem	TW1002		
Session/Date	#1/05/04/23			Parameter	l	_evel	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	Low		
Team	Refer to SIL Attendance List			HAZOP Reference	cau	ise 25.1	
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	LALL-144	#	2
P&ld n.	2220698-0C-10-001 Sh 2	rev.	0C	3 <i>1</i> 7	LALL-144	#	2

Safety Instrumented Function Description						
Initiator	LSLL-144					
Logic Solver	-	ESD				
Final elements	LV-146	activate closure of LV-146				

Scenario description				
Initiating events	Malfunction of LIC-152 fully opening LV-152 on TW1002 bottom side			
Consequences	Loss of level on TW-1002 and consequent gas breakthrough (44 barg) to flash vessel S1003 (DP=10 barg) leading to potential overpressurization with mechanical damage and loss of containment of natural gas/rich amine, potential fire/explosion and injuries to personnel due to mechanical damage			

SIL Allocation							
Consequences to People	s	S3 - Severe injuries/single fatality	3				
Consequences to Environment	Е	E0 - No impact	0	S	а		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (I	-		
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2	Calculated (max)		а	
Independent Protection Layer	IPL	IPL = 100	100	SIL Selected		а	

Notes	Same function is also initiated by PSHH-172
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSV-167 on S1003 sized including gas breakthrough scenario
Selected SIL	
Action	

Study	SIL Allocation	Project	LNG liquefaction pla				
Client	SIAD / OGE / BIOPLUS GmbH	ltem	M	DL6000			
Session/Date	#1/05/04/23	Parameter	Pr	essure			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	cau	ise 36.1	
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	PAHH-601	#	3
P&ld n.	I20784 Sh 11	rev.	0C		FANN-001	#	3

Safety Instrumented Function Description						
Initiator PT-601						
Logic Solver	-	ESD				
Final elements	HV-600	activate closure of HV-600				

Scenario description				
Initiating events	Malfunction of pressure controller on feed gas module			
Consequences	Higher pressure of natural gas at feed gas module outlet resulting in potential overpressurization, mechanical damage, natural gas leak and fire / explosion hazard			

SIL Allocation							
Consequences to People	s	S3 - Severe injuries/single fatality	3				
Consequences to Environment	Е	E0 - No impact	0	SIL (People)			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (I	-		
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3	Calculated (max)		а	
Independent Protection Layer	IPL	IPL = 1000	1000	SIL Selected		а	

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	Shut-off valves provided within MDL6000 as per national regulation (RRF=10) PSV-605 sized including this scenario (RRF=100)
Selected SIL	
-	
Action	

Study	SIL Allocation	Project	LNG liquefa		ant		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	S	61003	
Session/Date	#1/05/04/23	Parameter	Pr	essure			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	cau	ise 41.1	
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	PAHH-172	#	4
P&ld n.	2220698-0C-10-001 Sh 2	rev.	0C		PARR-1/2		4

Safety Instrumented Function Description					
Initiator PSHH-172					
Logic Solver	-	ESD			
Final elements	LV-146	activate closure of LV-146			

Scenario description				
Initiating events	Malfunction of PIC-171 closing PV-171 or PV spurious closure			
Consequences	Pressure build up in S1003 leading to potential overpressurization with mechanical damage and loss of containment of natural gas/rich amine, potential fire/explosion and injuries to personnel due to mechanical damage			

	SIL Allocation							
Consequences to People	S	S3 - Severe injuries/single fatality	3					
Consequences to Environment	Е	E0 - No impact	0	S	1			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1					
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (I	-			
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3	Calculated (max)		1		
Independent Protection Layer	IPL	IPL = 100	100	SIL Selected		1		

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSV-167 sized including this scenario
Selected SIL	
Action	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	T۱	W2008	
Session/Date	#1/05/04/23			Parameter	I	_evel	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	Low		
Team	Refer to SIL Attendance List			HAZOP Reference	causes	s 43.1, 92.2	2
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	LALL-209	#	5
P&ld n.	2220698-0C-10-001 Sh 3	rev.			LALL-209	#	5

Safety Instrumented Function Description							
nitiator LT-209							
Logic Solver	-	ESD					
Final elements	P-2005A/B	activate trip of pump P-2005A/B					

	Scenario description					
Initiating events	 Malfunction of LIC-163 closing LV-163 or not opening on demand or spurious closure of LV-151 Malfunction of LIC202/TIC-272 leading to reduced condensation rate in HW2010/inadequate demi water make-up through TV-291 					
Consequences	Loss of level in TW2008 and potential damage to P-2005A/B due to dry-running with potential localized NG leakage due to backflow from TW1002 resulting in possible fire and injuries to personnel					

	SIL Allocation								
Consequences to People S		S2 - Injuries with reversible effects	2						
Consequences to Environment	Е	E0 - No impact	0	SIL (People)		а			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1						
Probability of avoiding the hazardous situation	Ρ	P1 - Hazardous situation can be avoided	1	SIL (Environmental)		-			
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3	Calculated (max)		а			
Independent Protection Layer	IPL	IPL = 10	10	SIL	Selected	а			

Notes	
S selection	S2 selected taking into account additional check valve dissimilar type as per HAZOP Recommendation N 17
E selection	
F selection	
P selection	Presence of gas detection system including on site acoustic and visual alarm warning
W selection	
IPL	Additional high high pressure interlock provided on P2005A/B suction as per HAZOP Recommendation N 16, assumed RRF=10
Selected SIL	
Action	

Study	SIL Allocation			Project	LNG liqu	efaction pl	ant
Client	SIAD / OGE / BIOPLUS GmbH			ltem	S	61003	
Session/Date	#1/05/04/23			Parameter	l	_evel	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	Low		
Team	Refer to SIL Attendance List			HAZOP Reference	cau	ise 54.1	
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF LALL-164 #		#	6
P&ld n.	2220698-0C-10-001 Sh 2	rev.	0C		LALL-104	#	0

Safety Instrumented Function Description					
Initiator	LSLL-164				
Logic Solver	-	ESD			
Final elements	LV-151	activate closure of LV-151			

Scenario description					
Initiating events	Malfunction of LIC-163 fully opening LV-163				
Consequences	Loss of amine level on S1003 and consequent gas breakthrough (5 barg) to stripping column TW2008 (DP= 2 barg) with potential mechanical damage and loss of containment of natural gas/rich amine, potential fire/explosion and injuries to personnel due to mechanical damage				

	SIL Allocation								
Consequences to People S		S3 - Severe injuries/single fatality	3						
Consequences to Environment	Е	E0 - No impact	0	SIL (People)					
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1						
Probability of avoiding the hazardous situation	Р	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)		-			
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3	Calculated (max)		1			
Independent Protection Layer	IPL	IPL = 100	100	SIL	Selected	1			

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSV-271 sized including gas breakthrough scenario
Selected SIL	
Action	

Study	SIL Allocation			Project	LNG liqu	efaction pl	ant
Client	SIAD / OGE / BIOPLUS GmbH			ltem	S	T4001	
Session/Date	#1/05/04/23			Parameter	l	_evel	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	Low		
Team	Refer to SIL Attendance List			HAZOP Reference	cau	ise 66.1	
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	LALL-472	#	7
P&ld n.	2220698-0C-10-001 Sh 5	rev.	0C			#	/

Safety Instrumented Function Description				
Initiator	LSLL-472			
Logic Solver	-	ESD		
Final elements	LV-413	activate closure of LV-413		

Scenario description					
Initiating events	Malfunction of LIC-419 fully opening LV-419				
Consequences	Loss of level on ST4001 and consequent gas breakthrough (44 barg) to flash vessel S1003 (DP=10 barg) leading to potential overpressurization with mechanical damage and loss of containment of natural gas/rich amine, potential fire/explosion and injuries to personnel due to mechanical damage				

		SIL Allocation				
Consequences to People	S	S3 - Severe injuries/single fatality	3			
Consequences to Environment	Е	E0 - No impact	0	SIL (People) a		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Р	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2		Calculated (max)	а
Independent Protection Layer	IPL	IPL = 100	100	SIL Selected		а

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSV-167 on S1003 sized including gas breakthrough scenario
Selected SIL	
Action	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH	ltem	S	62011			
Session/Date	#1/xx/04/23			Parameter	Pr	essure	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	causes	s 83.1, 87. ⁻	1
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	PAHH-282	#	8
P&ld n.	2220698-0C-10-001 Sh 3	rev.	0C	SIF	PANN-282	#	0

Safety Instrumented Function Description					
Initiator	PT-282				
Logic Solver	-	ESD			
Final elements	FV-204, LV-151	activate closure of FV-204 and closure of LV-151			

Scenario description					
Initiating events	1) Malfunction of PIC-275 closing PV-275 on CO2 vent to thermal oxidizer 2) Tube rupture in HW2009				
Consequences	Pressure build up on TW2008 and S2011 (DP=2barg) leading to potential ovepressurization overtime, mechanical damage and injuries to personnel				

		SIL Allocation				
Consequences to People	s	S2 - Injuries with reversible effects	2			
Consequences to Environment	E	E0 - No impact	0	SIL (People)		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2		Calculated (max)	-
Independent Protection Layer	IPL	IPL = 100	100	SIL Selected		-

ected considering low operating pressure and not hazardous materials presence
71 sized including this scenario
).

Action

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH	ltem	S	62011			
Session/Date	#2/17/04/23			Parameter	l	Level	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	More		
Team	Refer to SIL Attendance List			HAZOP Reference	causes	s 84.1, 87.2	2
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	LAHH-279	#	9
P&ld n.	2220698-0C-10-001 Sh 3	rev.	0C	SIF	LANN-279	#	9

Safety Instrumented Function Description					
Initiator	LSHH-279				
Logic Solver	-	ESD			
Final elements	FV-204, LV-151	activate closure of FV-204 and closure of LV-151			

Scenario description					
Initiating events	1) Failure of pump P2012A/B 2) Malfunction of LIC-202 leading to unexpected opening of LV-291 on demi water supply to S2011				
	Level build up in S2011 leading to possible overfilling resulting in HW2010 flooding, loss of condensation and pressure build up on TW2008 and S2011 (DP=2barg) leading to potential ovepressurization overtime, damage and injuries to personnel				

SIL Allocation							
Consequences to People	S	S2 - Injuries with reversible effects	2				
Consequences to Environment	E	E0 - No impact	0	SIL (People) a			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -			
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3		Calculated (max)	а	
Independent Protection Layer	IPL	IPL = 100	100	SIL	Selected	а	

Notes	Same action is initiated by PAHH-282						
	See Recommendation N 15: Add closure of LV-151 among actions initiated by LAHH-279						
S selection	S2 selected considering low operating pressure and not hazardous materials presence						
E selection							
F selection							
P selection							
W selection							
IPL	PSV-271 sized including this scenario						
Selected SIL							
Action							

Study	SIL Allocation			Project	LNG liquefaction plant		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	TW2008		
Session/Date	#2/17/04/23		Parameter	Pressure			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio		Deviation	High			
Team	Refer to SIL Attendance List			HAZOP Reference	cau	ise 86.1	
C&Ed n.	140REZH690010001PFS00101 rev. 0C		0C	SIF	РАНН	#	10
P&ld n.	2220698-0C-10-001 Sh 3	rev.	0C		ГАПП	#	10

Safety Instrumented Function Description					
Initiator	PT				
Logic Solver	-	ESD			
Final elements	HV-138	activate closure HV-138			

Scenario description					
Initiating events	Failure of pump P2005A/B Loss of power supply				
Consequences	Possible natural gas reverse flow from TW1002 (44barg) to TW2008 (DP=2barg) leading to pressure build up in stripping column, mechanical damage and potential for injuries to personnel including fire/explosion hazard				

SIL Allocation						
Consequences to People	s	S3 - Severe injuries/single fatality	3			
Consequences to Environment	E	E0 - No impact	0	SIL (People) 1		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2		Calculated (max)	1
Independent Protection Layer	IPL	IPL = 10	10	SIL	Selected	1

Notes	New SIF from HAZOP Recommendation N 16: Add dedicated interlock to shut down HV-138 in case of back flow due to both P2005A/B not running (e.g. high high pressure detected on common pump suction line)
S selection	
E selection	
F selection	
P selection	
W selection	W2 selected considering auto start of spare pump P2005A/B (Discrepancy signal from onduty P2005A/B starting stand-by pump)
IPL	IPL=10 taking into account HAZOP Recommendation N 17. Add additional check valve dissimilar type at lean amine injection line in TW1002
Selected SIL	

Action	1	Effectiveness of PSV-271 in case of back flow from TW1002 to TW2008 shall be verified considering presence of 2 check valves dissimilar type (reduced required discharge capacity according to reference standard API 521, chapter 4.4.9.3.3). If PSV is adequate, required SIL ca be derated by 1 level ensuring periodical testing on check valves. For this purpose it is suggested to install second dissimilar check valve on dedicated discharge line of each P2005A/B
--------	---	--

Study	SIL Allocation			Project	LNG liquefact		ant
Client	SIAD / OGE / BIOPLUS GmbH	ltem	F	12001			
Session/Date	#2/17/04/23			Parameter	Tem	perature	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation		High	
Team	Refer to SIL Attendance List			HAZOP Reference	cau	ise 89.6	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	ТАНН-211	#	11
P&ld n.	2220698-0C-10-001 Sh 3	rev.	0C	SIF	1400-211	#	11

Safety Instrumented Function Description					
Initiator	TT-211				
Logic Solver	-	ESD			
Final elements	H2001	activate trip of heater H2001			

	Scenario description					
Initiating events Blocked outlet condition for CO2 vent gas stream (PV275 closure)						
Consequences	Possible overheating of H2001 and piping (DT = 90°C) with potential mechanical damage and loss of containment of hot product with personnel injuries					

		SIL Allocation					
Consequences to People	S	S2 - Injuries with reversible effects	2				
Consequences to Environment	Е	E0 - No impact	0	SIL (People)			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Р	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		-	
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2		Calculated (max)	1	
Independent Protection Layer	IPL	IPL Not available	0	SIL	Selected	1	

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	
Selected SIL	
Action	

Study	SIL Allocation			Project	LNG liquefaction pla		ant
Client	SIAD / OGE / BIOPLUS GmbH			ltem	F2	001/2/3	
Session/Date	#2/17/04/23			Parameter	Pr	essure	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	cau	ıse 91.4	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	PAHH-289	#	12
P&ld n.	2220698-0C-10-001 Sh 3	rev.	0C		FAN11-209	y #	12

Safety Instrumented Function Description					
Initiator	PT-289				
Logic Solver	-	ESD			
Final elements	P-2005A/B	activate trip of P-2005A/B			

	Scenario description					
Initiating events	Malfunction of PCV-229 (fully open)					
Consequences	Lean amine at 44 barg sent to F2001, F2002 and F2003 (DP = 8 barg) resulting in possible overpressurization, mechanical damage and injuries to personnel					

SIL Allocation						
Consequences to People	uences to People S S3 - Severe injuries/single fatality		3			
Consequences to Environment	E	E0 - No impact	0	SIL (People) 1		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		-
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3 Calculated (max)		1	
Independent Protection Layer	IPL	IPL = 100	SIL Selected 1		1	

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSV-203 sized for this scenario
Selected SIL	
Action	

Study	SIL Allocation			Project	LNG liquefaction pl		ant
Client	SIAD / OGE / BIOPLUS GmbH			ltem	V	/3004	
Session/Date	#2/17/04/23			Parameter	I	_evel	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation		High	
Team	Refer to SIL Attendance List			HAZOP Reference	cau	ses 96.1	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	LAHH-305	#	13
P&ld n.	2220698-0C-10-001 Sh 4	rev.	0C	SIF	LANN-305	JO #	13

Safety Instrumented Function Description					
Initiator	LT-305				
Logic Solver	-	ESD			
Final elements	P.3UUZ	activate trip of pump P3002 (used for equipment drainage)			

Scenario description				
Initiating events	Operator mistake starting simultaneous drainage of different equipment			
Consequences	Possible level increase in V3004 leading to possible overfilling and amine release from vent line with possible injuries to personnel/soil contamination			

	SIL Allocation							
Consequences to People	s	S1 - Minor injuries	1					
Consequences to Environment	E	E0 - No impact	0	SIL (People)				
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1					
Probability of avoiding the hazardous situation	Ρ	P1 - Hazardous situation can be avoided	1	SIL (I	-			
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2	Calculated (max)		-		
Independent Protection Layer	IPL	IPL Not available	0	SIL	SIL Selected			

Notes	
S selection	S1 selected considering HAZOP Recommendation N 18. Provide overflow line for V3004 discharging to ground (located below inlet nozzle or PSV header)
E selection	Curbed and paved area, material selection is adequate to avoid soil contamination
F selection	
P selection	
W selection	
IPL	
Selected SIL	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH	ltem	ME	DL5000			
Session/Date	#2/17/04/23	Parameter	Pr	essure			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio	Deviation	High				
Team	Refer to SIL Attendance List	HAZOP Reference	cau	se 120.1			
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	PAHH-528	#	14
P&ld n.	I20784 Sh 36	rev.	0C	SIF	PAHH-328		14

Safety Instrumented Function Description					
Initiator	PT-528				
Logic Solver	-	ESD			
Final elements	PV-527	activate closure of PV-527 (for depressurization circuit)			

Scenario description				
Initiating events	Wrong position for any KV in the position between high pressure stream and low pressure stream			
Consequences	Natural gas in operating mode (44 barg, 20 °C) routed to NG regeneration module (16 barg) resulting in possible overpressurization, mechanical damage and natural gas leak (possible fire/explosion)			

	SIL Allocation							
Consequences to People	s	S3 - Severe injuries/single fatality	3					
Consequences to Environment	E	E0 - No impact	0	S	а			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1					
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (I	-			
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2	Calculated (max)		а		
Independent Protection Layer	IPL	IPL = 100	100	SIL Selected		а		

Notes	Same considerations for PAHH-531 to active closure of PV-527 (for regeneration circuit)
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSV-530 sized including this scenario
Selected SIL	
Action	

Study	SIL Allocation	Project	LNG liquefaction				
Client	SIAD / OGE / BIOPLUS GmbH	ltem	F	14006			
Session/Date	#2/17/04/23	Parameter	Tem	perature			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio	Deviation	High				
Team	Refer to SIL Attendance List	HAZOP Reference	causes 128.1, 2	129.1, 131 137.2	.1, 131.3,		
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	TAHH-466	#	15
P&ld n.	2220698-0C-10-001 Sh 5	rev.	0C	517	IANN-400	#	15

Safety Instrumented Function Description						
Initiator TT-466						
Logic Solver	-	ESD				
Final elements	H4006	activate trip of heater H4006				

	Scenario description				
Initiating events	 FIC-461 malfunction closing FV-461 or closure of any KV on regeneration gas loop Unexpected closure of TV-530A Unexpected closure of HV-500 Unexpected compressor stop (any cause) Failure of TI-483 leading to higher heat input in H4006 				
Consequences	Possible overheating of H4006 and piping (DT = 350°C) with potential mechanical damage and loss of containment of natural gas product with personnel injuries/fire/explosion hazard				

SIL Allocation							
Consequences to People	s	S3 - Severe injuries/single fatality	3				
Consequences to Environment	Е	E0 - No impact	0	S	1		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Р	P2 - Hazardous situation cannot be avoided	2	SIL (I	-		
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2	Calculated (max)		1	
Independent Protection Layer	IPL	IPL = 10	10	SIL Selected		1	

Notes	Same consideration applicable to TAHH-467 and TAHH-469
S selection	
E selection	
F selection	
P selection	
W selection	W2 selected since scenario with Severity S3 is expected only in case of ignition of gas leakage
IPL	Independent temperature transmitter with high temperature alarm as per following action
Selected SIL	
Anting	0 Drevide en additional independent terrenerature transmitten et 11/000 autlet with high terrenerature alarm

Action	
--------	--

Provide an additional independent temperature transmitter at H4006 outlet with high temperature alarm

2

Study	SIL Allocation	Project	LNG liquefaction p				
Client	SIAD / OGE / BIOPLUS GmbH			ltem	H4006		
Session/Date	#2/17/04/23			Parameter	Differen	tial pressu	re
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	Low		
Team	Refer to SIL Attendance List		HAZOP Reference	causes 128.1,	129.1, 131	.1, 131.3	
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	PDALL-481	#	16
P&ld n.	2220698-0C-10-001 Sh 5	rev.	0C	SIF PDALL-401	#	10	

Safety Instrumented Function Description					
Initiator	PDT-481				
Logic Solver	-	ESD			
Final elements	H4006	activate trip of heater H4006			

	Scenario description					
Initiating events	 1) FIC-461 malfunction closing FV-461 or closure of any KV on regeneration gas loop 2) Unexpected closure of TV-530A 3) Unexpected closure of HV-500 4) Unexpected compressor stop (any cause) 					
Consequences	Possible overheating of H4006 and piping (DT = 350°C) with potential mechanical damage and loss of containment of natural gas product with personnel injuries/fire explosion hazard					

SIL Allocation						
Consequences to People S		S0 - No consequences	0	SIL (People)		
Consequences to Environment	E	E0 - No impact				-
Occupancy F		F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the Phazardous situation		P1 - Hazardous situation can be avoided	1	SIL (Environmental)		-
Demand rate	w	W1 - Demand rate less than 0,1 D per year	1	Calculated (max)		-
Independent Protection Layer IF		IPL Not available	0	SIL	Selected	-

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	
Selected SIL	Since overheating protection for H4006 is ensured by TAHH-466, TAHH-467 and TAHH-469, SIL Allocation for this function has not been performed

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH	ltem	C55				
Session/Date	#2/17/04/23 F			Parameter	Pressure		
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List		HAZOP Reference	cau	se 132.2		
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	PAHH-511	#	17
P&ld n.	I20784 Sh 37B	rev.	0C	SIF	PANN-511	#	17

Safety Instrumented Function Description					
Initiator	PT-511				
Logic Solver	-	ESD			
Final elements	C5500	activate trip of compressor			

	Scenario description					
Initiating events	Unexpected closure of HV-504					
	Pressure build up on compressor discharge system (DP=49 barg) and possible overpressurization leading to mechanical damage, loss of containment, potential for fire/explosion, injuries to personnel					

SIL Allocation						
Consequences to People S		S3 - Severe injuries/single fatality	3			
Consequences to Environment	Е	E0 - No impact	0	S	ilL (People)	а
Occupancy F		F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the P hazardous situation		P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)		-
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3	Calculated (max)		а
Independent Protection Layer	IPL	IPL = 1000	1000	SIL	Selected	а

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PIC-504 to open PV-505 (RRF = 10) PSV-503 (RRF = 100)
Selected SIL	

Study	SIL Allocation			Project	LNG liquefaction plan		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	EW50	00 NG line	:
Session/Date	#2/17/04/23			Parameter	Tem	perature	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	cause 135.4		
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	TAHH-535	#	18
P&ld n.	I20784 Sh 37	rev.	0C	SIF	TAHH-535 #		10

Safety Instrumented Function Description					
Initiator TT-535					
Logic Solver	-	ESD			
Final elements	TV-530B	activate closure of TV-530B			

	Scenario description				
Initiating events	Unexpected opening of TV-530B				
Consequences	During dryer heating mode, higher temperature of natural gas to downstream section (220°C instead of 10°C) due to by-pass of HW5000, with possible overheating (DT=65°C for EW5000) resulting in mechanical damage and possible leak of natural gas with possible fire				

	SIL Allocation								
Consequences to People S		S3 - Severe injuries/single fatality	3						
Consequences to Environment	E	E0 - No impact	0	S	а				
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1						
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)		-			
Demand rate	w	W1 - Demand rate less than 0,1 D per year	1	Calculated (max)		а			
Independent Protection Layer	IPL	IPL = 10	10	SIL	Selected	а			

Notes	New SIF from HAZOP Recommendation 30. Add a high high temperature interlock initiated by TI-535 to close TV-530B
S selection	
E selection	
F selection	
P selection	
W selection	W1 selected since scenario with Severity S3 is expected only in case of ignition of gas leakage
IPL	Additional independent high temperature alarm considered implemented as per following action
Selected SIL	

Action	2	Provide an additional independent temperature transmitter on NG line upstream EW5000 including high temperature
ACUON	3	alarm

Study	SIL Allocation			Project	LNG liquefaction plant		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	HW5	000 outlet	
Session/Date	#2/17/04/23			Parameter	Tem	perature	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	cause 137.5		
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	TAHH-532	#	19
P&ld n.	I20784 Sh 36	rev.	0C		IANN-932	#	19

Safety Instrumented Function Description					
Initiator	TT-532				
Logic Solver	-	ESD			
Final elements	TV-530A	activate closure of TV-530A			

Scenario description				
Initiating events	Loss of chilled water supply to HW5000			
	During dryer heating mode, higher temperature of natural gas to downstream section (220°C instead of 10°C) with possible overheating (DT=65°C for EW5000) resulting in mechanical damage and possible leak of natural gas with possible fire			

	SIL Allocation								
Consequences to People	s	S3 - Severe injuries/single fatality	3						
Consequences to Environment	Е	E0 - No impact	0	S	а				
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1						
Probability of avoiding the hazardous situation	Р	P2 - Hazardous situation cannot be avoided	2	SIL (I	-				
Demand rate	w	W1 - Demand rate less than 0,1 D per year	1	Calculated (max)		а			
Independent Protection Layer		IPL = 10	10	SIL	Selected	а			

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	W1 selected since scenario with Severity S3 is expected only in case of ignition of gas leakage
IPL	TAH535 and operator response
Selected SIL	

Study	SIL Allocation			Project	LNG liquefaction plant		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	HW5	503 outlet	
Session/Date	#2/17/04/23			Parameter	Tem	perature	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	cause 137.9		
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	ТАНН	#	20
P&ld n.	I20784 Sh 37B	rev.	0C		ТАПП	#	20

Safety Instrumented Function Description				
Initiator	TT downstream HW5503			
Logic Solver	-	ESD		
Final elements	C5500	trip of compressor		

Scenario description					
Initiating events	Loss of cooling water to HW5503				
	Higher temperature of natural gas (estimated approximately 137°C) on equipment and piping on third stage discharge downstream aftercooler (DT=65°C) resulting in mechanical damage and possible leak of natural gas with possible fire				

	SIL Allocation						
Consequences to People	S	S3 - Severe injuries/single fatality	3				
Consequences to Environment	E	E0 - No impact	0	SIL (People)			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)		-	
Demand rate	w	W1 - Demand rate less than 0,1 D per year	1	Calculated (max)		1	
Independent Protection Layer	IPL	IPL Not available	0	SIL Selected		1	

Notes	New SIF from HAZOP Recommendation 34. Add a high high temperature interlock downstream HW5503 to activate trip of compressor
S selection	
E selection	
F selection	
P selection	
W selection	W1 selected since scenario with Severity S3 is expected only in case of ignition of gas leakage
IPL	
Selected SIL	

Study	SIL Allocation			Project	LNG liqu	efaction pl	ant
Client	SIAD / OGE / BIOPLUS GmbH			ltem	S	T5501	
Session/Date	#2/17/04/23			Parameter	l	_evel	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation		Low	
Team	Refer to SIL Attendance List			HAZOP Reference	caus	se 140.4	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	LALL-501B	#	21
P&ld n.	I20784 Sh 37A	rev.	0C	SIF	LALL-501B	#	21

Safety Instrumented Function Description				
Initiator	LT-501B			
Logic Solver	-	ESD		
Final elements	HV-515	activate closure of HV-515		

Scenario description					
Initiating events	Malfunction of LIC-501A not closing DV-501 on demand				
Consequences	Natural gas at 4.9 barg routed to S2011 (DP=2 barg) with pressure build up, potential overpressurization resulting in mechanical damage and possible leak of natural gas with possible fire				

		SIL Allocation				
Consequences to People	s	S3 - Severe injuries/single fatality				
Consequences to Environment	Е	E0 - No impact	0	SIL (People) 2		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)		
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2		Calculated (max)	2
Independent Protection Layer	IPL	IPL Not available	0	SIL Selected		2

Notes	See HAZOP Recommendation N 35 Investigate additional safeguard to prevent overpressurization in S2011 in case of gas breakthrough from compressor separators (e.g. PSV routed to cold flare located downstream HV-515, additional PAHH on drain line to S2011 acting on additional on/off valve etc)
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	
Selected SIL	Proposed solution for implementation of HAZOP Recommendation N 35 is to add an additional ON/OFF valve on the condensate connection line at the inlet of separator S2011 (CD-201-1/2"-A29-I) initiated by high high pressure detected by PI-282. By implementing this solution SIL can be derated from 2 to 1
Action	

SIF #21 - LALL501B

Study	SIL Allocation			Project	LNG liqu	efaction pl	ant
Client	SIAD / OGE / BIOPLUS GmbH	ltem	S	T5502			
Session/Date	#2/17/04/23			Parameter	l	_evel	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation		Low	
Team	Refer to SIL Attendance List			HAZOP Reference	caus	se 140.5	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	LALL-502B	#	22
P&ld n.	I20784 Sh 37A	rev.	0C	SIF	LALL-JUZD	#	22

Safety Instrumented Function Description				
Initiator	LT-502B			
Logic Solver	-	ESD		
Final elements	HV-515	activate closure of HV-515		

Scenario description				
Initiating events	Malfunction of LIC-502A not closing DV-502 on demand			
Consequences	Natural gas at 15 barg routed to S2011 (DP=2 barg) with pressure build up, potential overpressurization resulting in mechanical damage and possible leak of natural gas with possible fire			

		SIL Allocation				
Consequences to People	s	S3 - Severe injuries/single fatality	3			
Consequences to Environment	Ш	E0 - No impact	0	SIL (People) 2		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2		Calculated (max)	2
Independent Protection Layer	IPL	IPL Not available	0	SIL	Selected	2

Notes	See HAZOP Reccomendation N 35 Investigate additional safeguard to prevent overpressurization in S2011 in case of gas breakthrough from compressor separators (e.g. PSV routed to cold flare located downstream HV-515, additional PAHH on drain line to S2011 acting on additional on/off valve etc)
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	
Selected SIL	Proposed solution for implementation of HAZOP Recommendation N 35 is to add an additional ON/OFF valve on the condensate connection line at the inlet of separator S2011 (CD-201-1/2"-A29-I) initiated by high high pressure detected by PI-282. By implementing this solution SIL can be derated from 2 to 1

Study	SIL Allocation	Project	LNG liquefaction plant				
Client	SIAD / OGE / BIOPLUS GmbH	ltem	ST5503				
Session/Date	#2/17/04/23			Parameter	l	_evel	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	Low		
Team	Refer to SIL Attendance List			HAZOP Reference	caus	se 140.6	
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	LALL-503B	#	23
P&ld n.	I20784 Sh 37B	rev.	0C	SIF	LALL-503D	#	23

Safety Instrumented Function Description				
Initiator	LT-503B			
Logic Solver	-	ESD		
Final elements	HV-515	activate closure of HV-515		

Scenario description				
Initiating events	Malfunction of LIC-503A not closing DV-503 on demand			
Consequences	Natural gas at 43 barg routed to S2011 (DP=2 barg) with pressure build up, potential overpressurization resulting in mechanical damage and possible leak of natural gas with possible fire			

		SIL Allocation				
Consequences to People	s	S3 - Severe injuries/single fatality	3			
Consequences to Environment	Ш	E0 - No impact	0	SIL (People) 2		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2		Calculated (max)	2
Independent Protection Layer	IPL	IPL Not available	0	SIL	Selected	2

Notes	See HAZOP Reccomendation N 35 Investigate additional safeguard to prevent overpressurization in S2011 in case of gas breakthrough from compressor separators (e.g. PSV routed to cold flare located downstream HV-515, additional PAHH on drain line to S2011 acting on additional on/off valve etc)
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	
Selected SIL	Proposed solution for implementation of HAZOP Recommendation N 35 is to add an additional ON/OFF valve on the condensate connection line at the inlet of separator S2011 (CD-201-1/2"-A29-I) initiated by high high pressure detected by PI-282. By implementing this solution SIL can be derated from 2 to 1
Action	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	S7003		
Session/Date	#2/17/04/23			Parameter	Pr	essure	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	cause 1	144.4, 151.	.2
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	PAHH-717	#	24
P&ld n.	I20784 Sh 23	rev.	0C	SIF	PANN-/ 1/	#	24

Safety Instrumented Function Description				
Initiator	PT-717			
Logic Solver	-	ESD		
Final elements	HV-700	activate closure of HV-700		

Scenario description				
Initiating events	1) Malfunction of PIC-715A closing PV-715 2) Malfunction of PIC-703 fully opening PV-703			
Consequences	Pressure build up up to max 43 barg in LNG separator S7003 (DP=16 barg) leading to potential overpressurization, mechanical damage and potential for LNG leakages inside the cold box with potential cold box overpressurization, mechanical damage and injuries to personnel (fire/explosion hazard)			

		SIL Allocation				
Consequences to People	s	S3 - Severe injuries/single fatality	3			
Consequences to Environment	Е	E0 - No impact	0	SIL (People) 1		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3		Calculated (max)	1
Independent Protection Layer	IPL	IPL = 100	100	SIL	Selected	1

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSV-705 sized including this scenario
Selected SIL	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH	ltem	S	7003			
Session/Date	#2/17/04/23	Parameter	l	_evel			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	caus	se 144.5	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	LAHH-716	#	25a
P&ld n.	I20784 Sh 23	rev.	0C		LANN-/10	#	238

Safety Instrumented Function Description					
Initiator	LT-716				
Logic Solver	-	ESD			
Final elements	HV-700	activate closure of HV-700			

	Scenario description					
Initiating events Malfunction of LIC-715A closing LV-715 or unexpected closure of HV-717 or HV1913A/B						
Consequences	Level build up in LNG separator S7003 resulting in possible overfilling and LNG carry over to EW9000 with possible embrittlement of downstream piping leading to mechanical damage and loss of containment					

	SIL Allocation						
Consequences to People	o People S S3 - Severe injuries/single fatality 3		3				
Consequences to Environment	E	E0 - No impact	0	SIL (People)			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)		-	
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2	2 Calculated (max)		1	
Independent Protection Layer	IPL	IPL = 10	10	SIL	Selected	1	

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	W2 selected since scenario with Severity S3 is expected only in case of ignition of gas leakage
IPL	TALL-915 activate closure HV-721 (not rated, RRF=10)
Selected SIL	

Study	SIL Allocation	Project	LNG liquefaction pla				
Client	SIAD / OGE / BIOPLUS GmbH	ltem	S	7003			
Session/Date	#2/17/04/23	Parameter	l	_evel			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	caus	se 144.5	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	LAHH-716	#	25b
P&ld n.	I20784 Sh 23	rev.	0C		LANN-/10	10 #	230

Safety Instrumented Function Description					
Initiator	LT-716				
Logic Solver	-	ESD			
Final elements	HV-700	activate closure of HV-700			

	Scenario description					
Initiating events Malfunction of LIC-715A closing LV-715 or unexpected closure of HV-717 or HV1913A/B						
Consequences	Level build up in LNG separator S7003 resulting in possible overfilling and LNG carry over to EW9000 with consequent vaporization resulting in pressure build up in EW9000 and associated piping (DP=16 barg) leading to potential overpressurization, mechanical damage and potential for LNG leakages with possible injuries to personnel (fire/explosion hazard)					

SIL Allocation						
Consequences to People	s	S3 - Severe injuries/single fatality	ality 3			
Consequences to Environment	E	E0 - No impact	0	SIL (People) a		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)		-
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3		Calculated (max)	а
Independent Protection Layer IPL		IPL = 1000	1000	SIL	Selected	1

Notes	Same actions activated by PAHH-717
	See HAZOP Recommendation 36 - PSV-914 shall be verified for LNG vaporization in EW9000
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSH-715A activate opening HV-715 to cold flare KO drum V16000 (RRF =10); PSV-914 considered verified for LNG vaporization in EW9000 as per HAZOP recommendation N 36 (RRF =100)
Selected SIL	Selected SIL 1 according to worksheet SIF#25a

Study	SIL Allocation			Project	LNG liquefaction pla		ant
Client	SIAD / OGE / BIOPLUS GmbH	ltem	V	16000			
Session/Date	#2/17/04/23			Parameter	l	_evel	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	cau	se 147.3	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	LAHH	#	26
P&ld n.	I20784 Sh 39A	rev.	0C		LANN	#	20

Safety Instrumented Function Description					
Initiator	LT				
Logic Solver	-	ESD			
Final elements	HV-700	activate closure of HV-700			

Scenario description				
Initiating events	Unexpected opening of HV-711			
Consequences	LNG routed to cold flare KO drum V16000 resulting in KO drum overfilling and possible liquid carry over to cold flare resulting in LNG outflow from flare tips with potential injuries to personnel			

SIL Allocation							
Consequences to People	s	S2 - Injuries with reversible effects	2				
Consequences to Environment	E	E0 - No impact	0	SIL (People)			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (I	-		
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3	Calculated (max)		1	
Independent Protection Layer	IPL	IPL = 10	10	SIL Selected		1	

Notes	New SIF from HAZOP Recommendation N 39: Add a high high level interlock on V16000 to activate closure of HV-700 (relevant set point to be defined to allow adequate residual volume preventing overfilling after HV-700 closure)
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	Discrepancy alarm on HVs
Selected SIL	
Action	

Study	SIL Allocation	Project	LNG liquefaction pla				
Client	SIAD / OGE / BIOPLUS GmbH			ltem	TL19000 (Tr	uck loadin	g bay)
Session/Date	#2/17/04/23			Parameter	Pr	essure	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	causes 169.6,	170.1, 171	.1, 175.4
C&Ed n.	140REZH690010001PFS00101	40REZH690010001PFS00101 rev. 0C				#	27
P&ld n.	I20784 Sh 34	rev.	0C	SIF PAHH-1960A		#	21

Safety Instrumented Function Description					
Initiator	PT-1960A				
Logic Solver	-	ESD			
Final elements		PAHH-1960A activate closure of on/off pneumatic valve on truck inlet by means of SY1950AA and closure HV- 1952A			

Scenario description				
Initiating events	 Unexpected closure of HV-1957A, PV-1958A, HV1956A (when BOG is routed back to tank) or Unexpected closure of PV-1959A, HV-1958A (when BOG from road tanker is routed to BOG compressor) Malfunction of FIC-1950A opening more than required FV1950A at the beginning of loading operation Malfunction of WQ1900A leading to higher amount of LNG loaded on road tanker Inadequate cooling of LNG line (HV-1950 not opening on demand including TSL-1951 malfunction) 			
Consequences	Pressure build up in road tanker up and potential overpressurization leading to mechanical damage, LNG leakage and possible fire/explosion hazard and injuries to personnel			

	SIL Allocation							
Consequences to People	S	S3 - Severe injuries/single fatality	3					
Consequences to Environment	E	E0 - No impact	0	SIL (People)				
Occupancy	F	F2 - Frequent to permanent exposure	2					
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (I	-			
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2	Calculated (max)		2		
Independent Protection Layer	IPL	IPL = 10	10	SIL Selected		2		

Notes	Same actions initiated also by PAHH-1961A, not effective only in case of blocked outlet on gas return line inside road tanker
	See HAZOP recommendation N 45: Set point of PAHH-1960A and PAHH-1961A shall be defined taking into account lowest design pressure for road tankers (design pressure of road tankers to be checked by OGE, currently available value is 7 barg)
S selection	
E selection	
F selection	F2 selected considering continuous presence of operator/driver during transfer
P selection	
W selection	W2 selected taking into account operating factor for truck loading
IPL	Action 4 assumed as implemented providing RRF = 10
Selected SIL	

Action 4 Provide an independent function (additional pressure transmitter) to trip P19000 and to close HV-1902A in case of high pressure (set point lower than PAHH-1960A)

Study	SIL Allocation	Project	LNG liquefaction pla				
Client	SIAD / OGE / BIOPLUS GmbH	ltem	Truck lo	ading stati	on		
Session/Date	#2/17/04/23	Parameter	Pr	essure			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio	Deviation	Low				
Team	Refer to SIL Attendance List	HAZOP Reference	caus	se 182.1			
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	PALL-1960A	#	28
P&ld n.	I20784 Sh 34	rev.	0C		FALL-1900A	#	20

Safety Instrumented Function Description					
Initiator	PT-1960A				
Logic Solver	-	ESD			
Final elements		activate trip of pump P19000, close HV-1952A and SY- 1950AA			

	Scenario description				
Initiating events	Hose failure				
Consequences	Release of LNG on loading area with possible fire/explosion hazard				

SIL Allocation							
Consequences to People	s	S3 - Severe injuries/single fatality	3				
Consequences to Environment	E	E0 - No impact	0	SIL (People)			
Occupancy	F	F2 - Frequent to permanent exposure	2				
Probability of avoiding the hazardous situation	Ρ	P1 - Hazardous situation can be avoided	1	SIL (Environmental)		-	
Demand rate	w	W1 - Demand rate less than 0,1 D per year	1	Calculated (max)		1	
Independent Protection Layer	IPL	IPL Not available	0	SIL Selected		1	

Notes	Same actions initiated also by PALL-1961A
S selection	
E selection	
F selection	F2 selected considering continuous presence of operator/driver during transfer
P selection	P1 selected considering event detectable
W selection	
IPL	
Selected SIL	

Intervention of PALL-1961A shall also close HV-1957A and HV-1958A

5

Study	SIL Allocation	Project	LNG liquefaction plant				
Client	SIAD / OGE / BIOPLUS GmbH	ltem	EW9000 BOG I		е		
Session/Date	#2/17/04/23			Parameter	Temperature		
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	Low		
Team	Refer to SIL Attendance List	HAZOP Reference	causes 171	.1, 173.4,	174.3		
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	TALL-914	#	29
P&ld n.	I20784 Sh 38	rev.	0C		IALL-914	#	29

Safety Instrumented Function Description						
nitiator TT-914						
Logic Solver	-	ESD				
Final elements	HV-1958A/B	activate closure HV-1958A/B				

	Scenario description
Initiating events	 Malfunction of WQ-1900A leading to higher amount of LNG loaded on road tanker HV-1953A stuck in open position after hose drain Loss of LP steam in EW9000 including malfunction of TIC-952 closing TV-952
Consequences	 Possible overfilling of road tanker with consequent liquid carry over to BOG line back to heater EW9000 with possible embrittlement of downstream piping leading to mechanical damage and loss of containment During next loading operation, LNG partially routed to BOG line with consequent liquid carry over to heater EW9000 with possible embrittlement of downstream piping leading to mechanical damage and loss of containment BOG routed to BOG compressor inlet line at -168°C instead of 20°C with possible embrittlement of piping resulting in mechanical and injuries to personnel (fire/explosion hazard)

	SIL Allocation						
Consequences to People S		S3 - Severe injuries/single fatality	3	3 SIL (People)			
Consequences to Environment	E	E0 - No impact				1	
Occupancy F		F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the P		P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)		-	
Demand rate V V V2 - Demand rate between 0.1 D and 1 D per year 2		Calculated (max)	1				
Independent Protection Layer	IPL	IPL = 10	10	SIL	Selected	1	

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	W2 selected since scenario with Severity S3 is expected only in case of ignition of gas leakage
IPL	Independent temperature transmitter with low temperature alarm as per following action
Selected SIL	

Action 6 Provide an additional independent temperature transmitter at EW9000 outlet (road tanker BOG line) with low temperature alarm	
---	--

Study	SIL Allocation	Project	LNG liqu	ant			
Client	SIAD / OGE / BIOPLUS GmbH	ltem	VT19000				
Session/Date	#2/17/04/23			Parameter	Level		
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List	HAZOP Reference	cau	se 179.1			
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	LAHH-1900A	#	30
P&ld n.	I20784 Sh 30	rev.	0C			#	30

Safety Instrumented Function Description						
Initiator	LIT-1900A					
Logic Solver	-	ESD				
Final elements	HV-1913A	activate closure of HV-1913A (after closure of HV-1913A all LNG production will be diverted to VT19001)				

	Scenario description						
Initiating events	Inadequate monitoring of tank level including LI-1900A or LI-1901A malfunction						
Consequences	Level build up in VT19000 and consequent overfilling leading to blocked outlet condition for LNG separator bottom line resulting in level build up in S7003 (see no/less flow in node #11). Possible liquid carry over to EW9000.						

		SIL Allocation				
Consequences to People	S	S0 - No consequences	0			
Consequences to Environment	Е	E0 - No impact	0	S	ilL (People)	-
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the Fazardous situation		P1 - Hazardous situation can be avoided	1	SIL (Environmental)		-
Demand rate W		W1 - Demand rate less than 0,1 D per year	1		Calculated (max)	-
Independent Protection Layer	IPL	IPL Not available	0	SIL	Selected	-

Notes	Same consideration for LAHH1901A
	Scenario already protected by LAHH-716 (rated SIL1) on S7003
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	
Selected SIL	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH	ltem	C	5500			
Session/Date	#2/17/04/23	Parameter	Pr	essure			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation		High	
Team	Refer to SIL Attendance List			HAZOP Reference	cau	se 135.8	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	PAHH-510	#	31
P&ld n.	I20784 Sh 37A	rev.	0C	SIF	PANN-310	#	31

Safety Instrumented Function Description					
Initiator	PT-510				
Logic Solver	-	ESD			
Final elements	C5500	activate trip of compressor C5500			

	Scenario description					
Initiating events	Malfunction of PIC-500/PIC-504 opening PV-505 when not required					
Consoquioncos	Pressure build up on C5500 suction (DP=10 barg) resulting in possible overpressurization leading to mechanical damage, loss of containment, potential for fire/explosion, injuries to personnel					

		SIL Allocation				
Consequences to People	s	S3 - Severe injuries/single fatality	Severe injuries/single fatality 3			
Consequences to Environment	E	E0 - No impact	0	SIL (People) a		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		-
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2		Calculated (max)	а
Independent Protection Layer IPL IPL = 100		100	SIL	Selected	а	

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSV-501, PSV-530
Selected SIL	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH	ltem	C	9100			
Session/Date	#2/17/04/23			Parameter	Pr	essure	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	caus	es 157.2	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	PAHH-911	#	32
P&ld n.	I20784 Sh 38B	rev.	0C	SIF	РАПП-ЭП	#	52

Safety Instrumented Function Description					
Initiator	PT-911				
Logic Solver	-	ESD			
Final elements	C9100	activate trip of compressor			

	Scenario description					
Initiating events	Unexpected closure of HV-904					
Consequences	Pressure build up on compressor discharge system (DP=49 barg) and possible overpressurization leading to mechanical damage, loss of containment, potential for fire/explosion, injuries to personnel					

		SIL Allocation				
Consequences to People	s to People S S3 - Severe injuries/single fatality 3		3			
Consequences to Environment	Е	E0 - No impact	0	SIL (People)		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		-
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3	Calculated (max)		1
Independent Protection Layer IPL		IPL = 100	SIL 100 Selected		1	

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSV-903
Selected SIL	
Action	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH	ltem	EW9000 NC	G line (from	n tank)		
Session/Date	#2/17/04/23			Parameter	Tem	perature	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	Low		
Team	Refer to SIL Attendance List			HAZOP Reference	causes	160.1, 161	.2
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	TALL-913	#	33
P&ld n.	I20784 Sh 38	rev.	0C		TALL-913	#	53

Safety Instrumented Function Description					
Initiator	TT-913				
Logic Solver	-	ESD			
Final elements	HV-939	activate closure of HV-939			

Scenario description					
Initiating events	1) PV-1910A stuck in open position during compressor in operation (PV-1910B opened) 2) Loss of duty in EW9000 (loss of LP steam supply including malfunction of TIC-952)				
Consequences	Lower temperature on downstream EW9000 coil and consequent lower temperature on downstream piping with possible embrittlement of piping leading to mechanical damage and loss of containment with possible fire/explosion hazard				

SIL Allocation							
consequences to People S		S3 - Severe injuries/single fatality	3				
Consequences to Environment	Е	E0 - No impact	0	SIL (People)			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)		-	
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2	Calculated (max)		1	
Independent Protection Layer	IPL	IPL = 10	10	SIL Selected		1	

Notes	Same function is also initiated by TALL-953						
S selection							
E selection							
F selection							
P selection							
W selection	W2 selected since scenario with Severity S3 is expected only in case of ignition of gas leakage						
IPL	dependent temperature transmitter with low temperature alarm as per following action						
Selected SIL							
Action	7 Provide an additional independent temperature transmitter at EW9000 outlet (storage tank BOG line) with low temperature alarm						

Study	SIL Allocation			Project	LNG liqu	efaction pl	ant
Client	SIAD / OGE / BIOPLUS GmbH			ltem	EW90	00 NG line	;
Session/Date	#2/17/04/23			Parameter	Tem	perature	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation		Low	
Team	Refer to SIL Attendance List			HAZOP Reference	cau	se 148.1	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	TALL-915	#	34
P&ld n.	I20784 Sh 38	rev.	0C		TALL-915	#	54

Safety Instrumented Function Description				
Initiator	TT-915			
Logic Solver	-	ESD		
Final elements	HV-721	activate closure HV-721		

Scenario description					
Initiating events	Loss of LP steam in EW9000 including malfunction of TIC-952 closing TV-952				
	Natural gas routed to thermal oxidizer inlet line at -168°C instead of 20°C with possible embrittlement of piping resulting in mechanical and injuries to personnel (fire/explosion hazard)				

		SIL Allocation				
Consequences to People S		S3 - Severe injuries/single fatality	3	3		
Consequences to Environment	Ш	E0 - No impact	0	SIL (People)		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)		
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2	Calculated (max)		1
Independent Protection Layer	IPL	IPL = 10	10	10 SIL Selected		1

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	W2 selected since scenario with Severity S3 is expected only in case of ignition of gas leakage
IPL	Independent temperature transmitter with low temperature alarm as per following action
Selected SIL	
A	Provide on additional independent temperature transmitter at FW0000 outlet (NC line) with law temperature clarm

Action	8	Provide an additional independent temperature transmitter at EW9000 outlet (NG line) with low temperature alarm
--------	---	---

Study	SIL Allocation			Project	LNG liqu	efaction pl	ant
Client	SIAD / OGE / BIOPLUS GmbH			ltem	HW9103 d	ownstrean	n line
Session/Date	#2/17/04/23			Parameter	Tem	perature	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	cau	se 162.4	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	ТАНН	#	35
P&ld n.		rev.		SIF	ΙΑΠΠ	#	35

Safety Instrumented Function Description				
Initiator	TT			
Logic Solver	-	ESD		
Final elements	C9100	trip of BOG compressor C9100		

Scenario description					
Initiating events	Loss of cooling water to HW9103				
	Higher temperature of BOG recovery gas (estimated approximately 175°C) on equipment and piping on third stage discharge downstream aftercooler (DT=65°C) resulting in mechanical damage and possible leak of natural gas with possible fire				

SIL Allocation						
Consequences to People	s	S3 - Severe injuries/single fatality	3			
Consequences to Environment	Е	E0 - No impact	0	SIL (People) 1		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		
Demand rate	w	W1 - Demand rate less than 0,1 D per year	1		Calculated (max)	1
Independent Protection Layer	IPL	IPL Not available	0	SIL	Selected	1

Notes	New SIF from HAZOP Recommendation N 42 Add a high high temperature interlock downstream HW9103 to activate trip of BOG compressor C9100
S selection	
E selection	
F selection	
P selection	
W selection	W1 selected since scenario with Severity S3 is expected only in case of ignition of gas leakage
IPL	
Selected SIL	
Action	

Study	SIL Allocation	Project	LNG liquefaction plan				
Client	SIAD / OGE / BIOPLUS GmbH	ltem	C7500/7600				
Session/Date	#2/17/04/23			Parameter	Pr	essure	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	Low		
Team	Refer to SIL Attendance List			HAZOP Reference	causes 220	.4, 223.1, 2	223.6
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	PALL-750	#	36
P&ld n.	I20784 Sh 26	rev.	0C	SIF	PALL-750	#	30

Safety Instrumented Function Description				
Initiator	PT-750			
Logic Solver	-	ESD		
Final elements	HV-710/712, UV-760	activate shut-down of turbines T7500/T7600 and relevant boosters (through closure of HV-710/712 and opening UV- 760)		

Scenario description			
Initiating events	 Compressor failure/stop (any cause) Malfunction of PIC-740B opening PV-740B when not required Unexpected opening of UV-763 		
•	Lower suction pressure/flowrate for C7500/C7600 turbines boosters resulting in potential surge condition leading to turbines boosters damage and consequent extensive damage. Possible impact on personnel in case of nitrogen leakage into the building (asphyxiation hazard)		

		SIL Allocation				
Consequences to People	s	S3 - Severe injuries/single fatality	3			
Consequences to Environment	Е	E0 - No impact	0	SIL (People)		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P1 - Hazardous situation can be avoided	1	SIL (Environmental) -		
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3		Calculated (max)	1
Independent Protection Layer	IPL	IPL = 10	10	SIL	Selected	1

Notes	
S selection	
E selection	
F selection	
P selection	P1 selected considering presence of Oxygen monitoring inside building to give alarm (inside horn and outside light)
W selection	
IPL	Anti surge control system opening UV-760
Selected SIL	

Study	SIL Allocation	Project	LNG liquefaction plant				
Client	SIAD / OGE / BIOPLUS GmbH	ltem	SC7001				
Session/Date	#2/17/04/23			Parameter	Pr	essure	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List	HAZOP Reference	cau	se 231.2			
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	PAHH-722	#	37
P&ld n.	I20784 Sh 23	rev.	0C		#	37	

Safety Instrumented Function Description				
Initiator	PT-722			
Logic Solver	-	ESD		
Final elements	HV-700	activate closure of HV-700		

Scenario description				
Initiating events	Malfunction of PIC-719 closing PV-719			
Consequences	Pressure build up in SC7001 leading to potential overpressurization (DP=8 barg) with mechanical damage and consequent leakage of liquefied nitrogen inside cold box leading to vaporization and potential overpressurization of cold box with mechanical damage (injuries to personnel)			

		SIL Allocation				
Consequences to People	s	S3 - Severe injuries/single fatality	3			
Consequences to Environment	Е	E0 - No impact	0	SIL (People)		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Р	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3		Calculated (max)	1
Independent Protection Layer	IPL	IPL = 100	100	SIL	Selected	1

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSV-718 sized including this scenario
Selected SIL	
Action	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	C	7400	
Session/Date	#2/17/04/23	Parameter	Tem	perature			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	caus	se 225.1	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	TAHH-749	"	38
P&ld n.	I20784 Sh 25	rev.	0C	SIF	1400-749	HH-749 #	38

Safety Instrumented Function Description					
Initiator	TT-749				
Logic Solver	-	ESD			
Final elements	C7400	activate trip of compressor			

	Scenario description					
Initiating events	Malfunction of TIC-747 or TIC-748 reducing speed of fan E7400/E7401 or air coolers E7400/E7401 failure					
	Higher temperature of nitrogen sent to downstream sections (DT = 65°C) with possible mechanical damage of piping overtime leading to loss of containment resulting in possible impact on personnel in case of nitrogen leakage into the building (asphyxiation hazard)/possible injuries due to contact with hot product					

	SIL Allocation						
Consequences to People	s	S3 - Severe injuries/single fatality	3				
Consequences to Environment	Е	E0 - No impact	0	SIL (People) 1			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Р	P1 - Hazardous situation can be avoided	1	SIL (Environmental)		-	
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2	Calculated (max)		1	
Independent Protection Layer	IPL	IPL Not available	available 0 SIL Selected		1		

Notes	
S selection	
E selection	
F selection	
P selection	P1 selected considering presence of Oxygen monitoring inside building to give alarm (inside horn and outside light)
W selection	
IPL	
Selected SIL	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	LNG t	o HX7000	
Session/Date	#2/17/04/23	Parameter	Tem	perature			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation		High	
Team	Refer to SIL Attendance List			HAZOP Reference	cau	se 225.1	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	TAHH-708	#	39
P&ld n.	I20784 Sh 22	rev.	0C	SIF	IANN-700	100 #	39

Safety Instrumented Function Description					
Initiator	TT-708				
Logic Solver	-	ESD			
Final elements	C7400	activate trip of compressor			

	Scenario description					
Initiating events	Malfunction of TIC-747 or TIC-748 reducing speed of fan E7400/E7401 or air coolers E7400/E7401 failure					
	Higher temperature of stream routed to primary heat exchanger (DT=65°C) resulting in possible mechanical damage due to overheating leading to possible leakages of pressurized nitrogen inside cold box with potential overpressurization and mechanical damage (injuries to personnel)					

		SIL Allocation				
Consequences to People	s	S3 - Severe injuries/single fatality	Severe injuries/single fatality 3			
Consequences to Environment	Е	E0 - No impact	0	SIL (People) 1		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1			
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental) -		-
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2	Calculated (max)		1
Independent Protection Layer	IPL	IPL = 10	10	0 SIL Selected		1

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	Overpressure hatch provided on cold box
Selected SIL	
Action	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	HPN t	o HX7000	
Session/Date	#2/17/04/23	Parameter	Tem	perature			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation	High		
Team	Refer to SIL Attendance List			HAZOP Reference	caus	se 225.3	
C&Ed n.	140REZH690010001PFS00101 rev. 0C			SIF	TAHH-709	#	40
P&ld n.	I20784 Sh 22	rev.	0C		IANN-709	#	40

Safety Instrumented Function Description					
Initiator	TT-709				
Logic Solver	-	ESD			
Final elements	HV-710/712	activate closure of HV-710/712			

	Scenario description				
Initiating events	Malfunction of TIC-754 or TIC-764 reducing speed of fan E7500/E7600 or air coolers E7500/E7600 failure				
	Higher temperature of stream routed to primary heat exchanger (DT=65°C) resulting in possible mechanical damage due to overheating leading to possible leakages of pressurized nitrogen inside cold box with potential overpressurization and mechanical damage (injuries to personnel)				

SIL Allocation							
Consequences to People	s	S3 - Severe injuries/single fatality	3				
Consequences to Environment	Е	E0 - No impact	0	S	1		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (I	-		
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2	Calculated (max)		1	
Independent Protection Layer	IPL	IPL = 10	10	SIL Selected		1	

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	Overpressure hatch provided on cold box
Selected SIL	
Action	

Study	SIL Allocation	Project	LNG liquefaction plan				
Client	SIAD / OGE / BIOPLUS GmbH	ltem	H17000	upstream l	ine		
Session/Date	#2/17/04/23	Parameter	Tem	perature			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio	Deviation	Low				
Team	Refer to SIL Attendance List	HAZOP Reference	caus	se 247.1			
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	TALL-1707	#	41
P&ld n.	I20784 Sh 42	rev.	0C	SIF	TALL-1707	#	41

Safety Instrumented Function Description						
Initiator TT-1707						
Logic Solver	-	ESD				
Final elements	HV-1700	activate closure of HV-1700				

Scenario description				
Initiating events	Higher LIN demand rate during maintenance (cold box defrosting)			
Consequences	Lower temperature of nitrogen downstream vaporizer E17002A/B with possible damage of piping downstream TV-1702 and TV-1705 due to embrittlement with possible injuries to personnel			

SIL Allocation							
Consequences to People	s	S2 - Injuries with reversible effects	2				
Consequences to Environment	E	E0 - No impact	0	SIL (People)			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (I	-		
Demand rate	w	W1 - Demand rate less than 0,1 D per year	1	Calculated (max)		а	
Independent Protection Layer	IPL	IPL Not available	0	SIL Selected		а	

Notes	
S selection	
E selection	
F selection	During defrosting operation, continuous personnel presence is not espected
P selection	
W selection	
IPL	
Selected SIL	

Study	SIL Allocation	Project	LNG liquefaction plant				
Client	SIAD / OGE / BIOPLUS GmbH	ltem	H17000 do	ownstream	line		
Session/Date	#2/17/04/23	Parameter	Tem	perature			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio	Deviation	Low				
Team	Refer to SIL Attendance List	HAZOP Reference	cau	se 247.2			
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	TALL-1704	#	42
P&ld n.	I20784 Sh 22	rev.	0C	SIF	TALL-1704	#	42

Safety Instrumented Function Description						
Initiator TT-1704						
Logic Solver - ESD						
Final elements	TV-1702 / TV-1705	activate closure of TV-1702 and TV-1705				

Scenario description				
Initiating events	Failure of H17000 including TIC-1703 malfunction reducing heat input to H17000			
Consequences	Lower temperature of nitrogen downstream heater H17000 with possible damage of piping downstream TV-1702 and TV- 1705 due to embrittlement with possible injuries to personnel			

SIL Allocation							
Consequences to People	S	S2 - Injuries with reversible effects	2				
Consequences to Environment	Е	E0 - No impact	0	SIL (People)			
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1				
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)			
Demand rate	w	W1 - Demand rate less than 0,1 D per year	1	Calculated (max)		а	
Independent Protection Layer	IPL	IPL Not available	0	SIL Selected		а	

Notes	
S selection	
E selection	
F selection	
P selection	
W selection	Event expected only in emergency scenario (need for nitrogen back up) during winter time
IPL	
Selected SIL	

Study	SIL Allocation	Project	LNG liqu	efaction pl	ant		
Client	SIAD / OGE / BIOPLUS GmbH	ltem	V	16200			
Session/Date	#2/17/04/23			Parameter	Pr	essure	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation		High	
Team	Refer to SIL Attendance List			HAZOP Reference	cau	se 183.4	
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF		#	43
P&ld n.	I20784 Sh 70	rev.	0C		PAHH-1640	#	43

Safety Instrumented Function Description						
Initiator	PT-1640					
Logic Solver - ESD						
Final elements	HV-721, H16200/H16201, HV-1646	activate closure of HV-721 and HV-1646 and trip H16200/H16201				

Scenario description					
Initiating events	Unexpected closure of HV-1645				
Consequences	Pressure build up in V16200 due to vaporization of liquid and possible overpressurization resulting in possible mechanical damage leading to injuries to personnel/leakages and fire hazard				

	SIL Allocation									
Consequences to People	s	S3 - Severe injuries/single fatality	3							
Consequences to Environment	Е	E0 - No impact	0	SIL (People)						
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1							
Probability of avoiding the hazardous situation	Р	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)		-				
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3	Calculated (max)		1				
Independent Protection Layer		IPL = 100	100	SIL	Selected	1				

Notes	See HAZOP Recommendation N 51 PAHH-1640 shall also close HV-721 and trip H16200/H16201
	See HAZOP Recommendation N 50 PSV-914 shall be verified for blocked outlet condition on V16200
	See HAZOP Recommendation N 49 PAHH-1640 shall also close HV-1646 to segregate stripper condensate separator S2011 from heavy HC KC drum V16200
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	PSV-914 (considering implemented HAZOP recommendation N 50)
Selected SIL	

Ensure adequate set point for PAHH-1640 to prevent overpressurization on upstream S2011 (DP=2 barg)

9

Study	SIL Allocation			Project	LNG liqu	efaction pl	ant
Client	SIAD / OGE / BIOPLUS GmbH			ltem	C	7400	
Session/Date	#2/17/04/23			Parameter			
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation			
Team	Refer to SIL Attendance List			HAZOP Reference	causes 220.5, 220.7, 220.9, 223.5		.9, 223.5
C&Ed n.	140REZH690010001PFS00101	rev. 0C		SIF	USPM	#	44
P&ld n.	rev.		SIF	USPIN	#	44	

Safety Instrumented Function Description						
Initiator PT/TT antisurge protection						
Logic Solver - ESD						
Final elements	C7400	trip of compressor				

Scenario description					
Initiating events	 Malfunction of compressor capacity control system leading to closure of compressor IGV Unexpected closure of UV-761 Unexpected closure of HV-712 or HV-710 (quick closing valves) 				
Consequences	Potential surge condition leading to compressor damage and consequent extensive damage (major economical losses including operation disruption)/possible impact on personnel in case of nitrogen leakage into the building (asphyxiation hazard)				

	SIL Allocation								
Consequences to People	S	S3 - Severe injuries/single fatality	3						
Consequences to Environment	Е	E0 - No impact	0	S	1				
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1						
Probability of avoiding the hazardous situation	Ρ	P1 - Hazardous situation can be avoided	1	SIL (Environmental)		-			
Demand rate	w	W3 - Demand rate between 1 D and 10 D per year	3	Calculated (max)		1			
Independent Protection Layer	IPL	IPL = 10	10	SIL Selected		1			

Notes	
S selection	
E selection	
F selection	
P selection	P1 selected considering presence of Oxygen monitoring inside building to give alarm (inside horn and outside light)
W selection	
IPL	Anti surge control system to open compressor by-pass valve (PCV)
Selected SIL	
Action	

Study	SIL Allocation			Project	LNG liqu	efaction pl	ant
Client	SIAD / OGE / BIOPLUS GmbH			ltem	WB4	41/WB42	
Session/Date	#2/17/04/23			Parameter	Tem	perature	
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio			Deviation		High	
Team	Refer to SIL Attendance List			HAZOP Reference	ca	use 7.2	
C&Ed n.	520REZH433004000SRI00101	rev.	0E	SIF	ТАНН	#	45
P&ld n.	rev.				ΙΑΠΠ	#	40

Safety Instrumented Function Description					
Initiator	TT independent temperature transmitter at WB41/W outlet				
Logic Solver	-	ESD			
Final elements	WB41/WB42	to trip heater WB41/WB42			

Scenario description		
Initiating events Higher heat input from heater W-B41 due to failure of relevant temperature control system (TT-B40621)		
Consequences	Increase of natural gas temperature and potential overheating of downstream piping (DT=80°C) with potential mechanical damage and loss of containment (possible fire/explosion)	

SIL Allocation								
Consequences to People	S	S3 - Severe injuries/single fatality	3	SIL (People)				
Consequences to Environment	Е	E0 - No impact	0			1		
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1					
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (Environmental)				
Demand rate	w	W1 - Demand rate less than 0,1 D per year	1		Calculated (max)	1		
Independent Protection Layer	IPL	IPL Not available	0	SIL	Selected	1		

Notes	Function required by HAZOP recommendation N 4 - Ensure provision for internal independent high high temperature interlock provided for heater W-B41 to protect heater itself and downstream piping from overheating scenario			
S selection				
E selection				
F selection				
P selection				
W selection	W1 selected since scenario with Severity S3 is expected only in case of ignition of gas leakage			
IPL				
Selected SIL				
Action	10	Investigate availability of other IPL to prevent piping overheating downstream WB41/WB42		

Study	SIL Allocation			Project	LNG liquefaction plant		
Client	SIAD / OGE / BIOPLUS GmbH			ltem	C		
Session/Date	#2/17/04/23	Parameter	Temperature				
SIL Facilitator/Scribe	Fabrizio Bucci/Debora D'Ostilio		Deviation	High			
Team	Refer to SIL Attendance List			HAZOP Reference	cause 225.3		
C&Ed n.	140REZH690010001PFS00101	rev.	0C	SIF	ТАНН-752	#	46
P&ld n.	I20784 Sh 26	rev.	0C	SIF	1ANN-132	#	40

Safety Instrumented Function Description									
Initiator	TT-752								
Logic Solver	-	ESD							
Final elements	HV-710/712	activate closure of HV-710/712							

	Scenario description								
Initiating events	Malfunction of TIC-754 reducing speed of fan E7500 or air coolers E7500 failure								
Consequences	Higher temperature of stream routed to downstream systems leading to possible overheating on downstream sections leading to loss of containment resulting in possible injuries due to contact with hot product (piping outside building)								

	SIL Allocation										
Consequences to People	s	S2 - Injuries with reversible effects	2								
Consequences to Environment	Ш	E0 - No impact	0	S	1						
Occupancy	F	F1 - Rare to more frequent exposure. Occupancy less than 0,1	1		SIL (Environmental)						
Probability of avoiding the hazardous situation	Ρ	P2 - Hazardous situation cannot be avoided	2	SIL (I	-						
Demand rate	w	W2 - Demand rate between 0,1 D and 1 D per year	2		Calculated (max)	1					
Independent Protection Layer	IPL	IPL Not available	0	SIL	Selected	1					

Notes	This allocation is also representative for TAHH-762
	See HAZOP Recommendation N 63 (Relocate TAHH-752 downstream E7500 and TAHH-762 downstream E7600)
S selection	
E selection	
F selection	
P selection	
W selection	
IPL	
Selected SIL	By implementing HAZOP Recommendation N 64 (Consider to review DT of piping dowstream aircoolers E7400/7401/7500/7600 taking into account air cooler failure scenario) this SIF will not be rated

Action

LNG lique	efaction plant		
HAZOP and SIL Allocation Report	PROJECT 23123I	DATE April 2023	PAGE 6 di 7

ATTACHMENT 6

SIFs List

						SIF List					
Stuc	ly	SIL Allocation									
Clie	nt	SIAD / BIOPLUS Gr	nbH / OGE						SIAD MACCHINE	bioplusLN	
Proj	ect	LNG liquefaction pla	nt, Renzenhof (Germany	/)							
n.	SIF	ltem	Deviation	Scenario	Category	Initiator TAG	Logic solver TAG	Final Elements	Actions	SIL rated	Notes
1	PDAHH-105	S1001	Flow Misdirect	Natural gas sent to cold flare	E	PDT-105	-	HV-105, HV-106	activate closure of HV-105, HV-106 in case of high high DP	а	
2	LALL-144	TW1002	Level Low	Gas breakthrough to flash vessel and overpressurization of S1003	S	LSLL-144	-	LV-146	activate closure of LV-146	а	
3	PAHH-601	MDL6000	Pressure High	Overpressurization of feed gas module	S	PT-601	-	HV-600	activate closure of HV-600	а	
4	PAHH-172	S1003	Pressure High	Overpressurization of flash vessel S1003	S	PSHH-172	-	LV-146	activate closure of LV-146	1	
5	LALL-209	TW2008	Level Low	Damage of P-2005A/B and NG leakage due to backflow from TW1002	S	LT-209	-	P-2005A/B	activate trip of pump P- 2005A/B	а	
6	LALL-164	S1003	Level Low	breakthrough to stripping column TW2008 and overpressurization	S	LSLL-164	-	LV-151	activate closure of LV-151	1	
7	LALL-472	ST4001	Level Low	breakthrough to flash vessel S1003 and overpressurization	S	LSLL-472	-	LV-413	activate closure of LV-413	а	
8	РАНН-282	S2011	Pressure High	ovepressurization of TW2008 and S2011	S	PT-282	-	FV-204, LV-151	activate closure of FV-204 and closure of LV-151	-	From HAZOP Recommendation N 14: Add closure of LV-151 among actions initiated by PAHH-282
9	LAHH-279	S2011	Level More	ovepressurization of TW2008 and S2011	S	LSHH-279	-	FV-204, LV-151	activate closure of FV-204 and closure of LV-151	а	From HAZOP Recommendation 16: Add closure of LV-151 among actions initiated by LAHH-279
10	РАНН	TW2008	Pressure High	ovepressurization of TW2008	S	PT	-	HV-138	activate closure HV-138		New SIF from HAZOP Recommendation N 16: Add dedicated interlock to shut down HV-138 in case of back flow due to both P2005A/B not running (e.g. high high pressure detected on common pump suction line)
11	TAHH-211	H2001	Temperature High	ovepressurization of H2001	S	TT-211	-	H2001	activate trip of heater H2001	1	, , <u>, , , , , , , , , , , , , , , , , </u>
12	PAHH-289	F2001/2/3	Pressure High	overpressurization of F2001, F2002 and F2003	S	PT-289	-	P-2005A/B	activate trip of P-2005A/B	1	
13	LAHH-305	V3004	Level High	overfilling of V3004	S, E	LT-305	-	P3002	activate trip of pump P3002 (used for equipment drainage)	-	

						SIF List					
Stud	ly	SIL Allocation									
Clie	nt	SIAD / BIOPLUS Gr	nbH / OGE						SIAD MACCHINE	💊 bioplusLl	
Proj	ect	LNG liquefaction plan	nt, Renzenhof (Germany	()			\sim				
n.	SIF	ltem	Deviation	Scenario	Category	Initiator TAG	Logic solver TAG	Final Elements	Actions	SIL rated	Notes
14	PAHH-528	MDL5000	Pressure High	NG regeneration module overpressurization	S	PT-528	-	PV-527	activate closure of PV-527 (for depressurization circuit)	а	
15	TAHH-466	H4006	Temperature High	overheating of H4006	S	TT-466	-	H4006	activate trip of heater H4006	1	Same allocation applies to TAHH-469 and TAHH-467
16	PDALL-481	H4006	Differential pressure Low	overheating of H4006	S	PDT-481	-	H4006	activate trip of heater H4006	-	Since overheating protection for H4006 is ensured by TAHH- 466, TAHH-467 and TAHH- 469, SIL Allocation for this function has not been performed
17	PAHH-511	C5500	Pressure High	compressor discharge overpressurization	S	PT-511	-	C5500	activate trip of compressor	а	
18	TAHH-535	EW5000 NG line	Temperature High	overheating of natural gas to EW5000 downstream	S	TT-535	-	TV-530B	activate closure of TV-530B	а	
19	TAHH-532	HW5000 outlet	Temperature High	overheating of natural gas to EW5000 downstream	S	TT-532	-	TV-530A	activate closure of TV-530A	а	
20	ТАНН	HW5503 outlet	Temperature High	overheating of natural gas on equipment and piping on third stage discharge	S	TT downstream HW5503	-	C5500	trip of compressor	1	New SIF from HAZOP Recommendation 34. Add a high high temperature interlock downstream HW5503 to activate trip of compressor
21	LALL-501B	ST5501	Level Low	overpressurization of S2011	S	LT-501B	-	HV-515	activate closure of HV-515	2	Proposed solution for implementation of HAZOP Recommendation N 35 is to add an additional ON/OFF valve on the condensate connection line at the inlet of separator S2011 (CD-201-1/2"- A29-I) initiated by high high pressure detected by PI-282. By implementing this solution SIL can be derated from 2 to 1

23123I_SIL_Allocation_Worksheet_rev00.xlsx

						SIF List					
Stud	y	SIL Allocation									
Clier	nt	SIAD / BIOPLUS Gm	bH / OGE					SIAD MACCHINE			
Proj	ect	LNG liquefaction plan	t, Renzenhof (Germany	/)							
n.	SIF	Item	Deviation	Scenario	Category	Initiator TAG	Logic solver TAG	Final Elements	Actions	SIL rated	Notes
22	LALL-502B	ST5502	Level Low	overpressurization of S2011	S	LT-502B	-	HV-515	activate closure of HV-515	2	Proposed solution for implementation of HAZOP Recommendation N 35 is to add an additional ON/OFF valve on the condensate connection line at the inlet of separator S2011 (CD-201-1/2"- A29-I) initiated by high high pressure detected by PI-282. By implementing this solution SIL can be derated from 2 to 1
23	LALL-503B	ST5503	Level Low	overpressurization of S2011	S	LT-503B	-	HV-515	activate closure of HV-515	2	Proposed solution for implementation of HAZOP Recommendation N 35 is to add an additional ON/OFF valve on the condensate connection line at the inlet of separator S2011 (CD-201-1/2"- A29-I) initiated by high high pressure detected by PI-282. By implementing this solution SIL can be derated from 2 to 1
24	PAHH-717	S7003	Pressure High	overpressure of S7003	S	PT-717	-	HV-700	activate closure of HV-700	1	
25a 25b	LAHH-716	S7003	Level High	overfilling of S7003 (embrittlement of downstream piping) overfilling of S7003 (pressure build up in S7003 / EW9000)	S S	LT-716	-	HV-700	activate closure of HV-700	1	
26	LAHH on V16000	V16000	Level High	overfilling of V16000	s	LT	-	HV-700	activate closure of HV-700	1	New SIF from HAZOP Recommendation N 39: Add a high high level interlock on V16000 to activate closure of HV-700 (relevant set point to be defined to allow adequate residual volume preventing overfilling after HV-700 closure)
27	РАНН-1960А	TL19000 (Truck loading bay)	Pressure High	overpressure in road tanker	s	PT-1960A	-	SY1950AA, HV-1952A	PAHH-1960A activate closure of on/off pneumatic valve on truck inlet by means of SY1950AA and closure HV-1952A	2	Same actions initiated also by PAHH-1961A, not effective only in case of blocked outlet on gas return line inside road tanker
28	PALL-1960A	Truck loading station	Pressure	fire/explosion hazard in loading area	S	PT-1960A	-	P19000, HV-1952A, SY-1950AA	activate trip of pump P19000, close HV-1952A and SY-1950AA	1	

						SIF List					
Stud	'y	SIL Allocation									
Clier	nt	SIAD / BIOPLUS Gm	bH / OGE						SIAD MACCHINE		
Proj	ect	LNG liquefaction plan	t, Renzenhof (Germany	()							
n.	SIF	ltem	Deviation	Scenario	Category	Initiator TAG	Logic solver TAG	Final Elements	Actions	SIL rated	Notes
29	TALL-914	EW9000 BOG line	Temperature Low	overheating of BOG from EW9000	s	TT-914	-	HV-1958A/B	activate closure HV- 1958A/B	1	
30	LAHH-1900A	VT19000	Level High	overfilling of VT19000	s	LIT-1900A	-	HV-1913A	activate closure of HV- 1913A (after closure of HV- 1913A all LNG production will be diverted to VT19001)	-	Same allocation applies to LAHH1901A
31	PAHH-510	C5500	Pressure High	Pressure build up on C5500 suction	S	PT-510	-	C5500	activate trip of compressor C5500	а	
32	PAHH-911	C9100	Pressure High	Pressure build up on compressor discharge	S	PT-911	-	C9100	activate trip of compressor	1	
33	TALL-913	EW9000 NG line (from tank)	Temperature Low	overheating of NG from EW9000	S	TT-913	-	HV-939	activate closure of HV-939	1	Same allocation applies to TALL-953
34	TALL-915	EW9000 NG line	Temperature Low	low low temperature on thermal oxidizer	S	TT-915	-	HV-721	activate closure HV-721	1	
35	ТАНН	HW9103 downstream line	Temperature High	overheating of HW9103 downstream line	S	TT	-	C9100	trip of BOG compressor C9100	1	New SIF from HAZOP Recommendation N 42 Add a high high temperature interlock downstream HW9103 to activate trip of BOG compressor C9100
36	PALL-750	C7500/7600	Pressure Low	turbines boosters damage	s	PT-750	-	HV-710/712, UV-760	activate shut-down of turbines T7500/T7600 and relevant boosters (through closure of HV-710/712 and opening UV-760)	1	·
37	PAHH-722	SC7001	Pressure High	overpressurization of SC7001	S	PT-722	-	HV-700	activate closure of HV-700	1	
38	TAHH-749	C7400	Temperature High	overheating of piping downstream E7400/E7401	S	TT-749	-	C7400	activate trip of compressor	1	
39	TAHH-708	LNG to HX7000	Temperature High	overheating of stream routed to primary heat exchanger	S	TT-708	-	C7400	activate trip of compressor	1	
40	TAHH-709	HPN to HX7000	Temperature High	overheating of stream routed to primary heat exchanger	S	TT-709	-	HV-710/712	activate closure of HV- 710/712	1	
41	TALL-1707	H17000 upstream line	Temperature Low	lower temperature of nitrogen downstream vaporizer E17002A/B	S	TT-1707	-	HV-1700	activate closure of HV-1700	а	
42	TALL-1704	H17000 downstream line	Temperature Low	lower temperature of nitrogen downstream heater H17000	S	TT-1704	-	TV-1702 / TV-1705	activate closure of TV-1702 and TV-1705	а	
43	PAHH-1640	V16200	Pressure High	V16200 mechanical damage	s	PT-1640	-	HV-721, H16200/H16201, HV- 1646	activate closure of HV-721 and HV-1646 and trip H16200/H16201	1	New actions initiated by SIF PAHH-1640 from HAZOP Recommendation N 51
44	USPM	C7400		compressor C7400 surge condition	S	PT/TT	-	C7400	trip of compressor	1	

						SIF List					
Stu	dy	SIL Allocation									
Clie	nt	SIAD / BIOPLUS Gm	ıbH / OGE		SIAD MACCHINE	lioplus					
Proj	ject	LNG liquefaction plan	nt, Renzenhof (Germany)							
n.	SIF	Item	Deviation	Scenario	Category	Initiator TAG	Logic solver TAG	Final Elements	Actions	SIL rated	Notes
45	ТАНН	WB41/WB42	Temperature High	overheating of WB41/42 downstream piping	s	TT	-	WB41/WB42	to trip heater WB41/WB42	1	Function required by HAZOP recommendation N 4 - Ensure provision for internal independent high high temperature interlock provided for heater W-B41 to protect heater itself and downstream piping from overheating scenario
46	TAHH-752	TAHH-752	Temperature High	overheating on C7400 downstream sections	S	TT-752	-	HV-710/712	activate closure of HV- 710/712	1	Same allocation applies to TAHH-762

LNG liquefa	ction plant		
HAZOP and SIL Allocation Report	PROJECT	DATE	PAGE
HAZOF and SIL Anotation Report	231231	April 2023	7 di 7

ATTACHMENT 7

Reference HAZOP/SIL Procedures

HAZard and OPerability study (HAZOP)

/	PROPOSED	CHECKED	APPROVED	REV.	DATE	DESCRIPTION
	F.Bucci	N.Manning	B.Frattini	04	31/01/2018	Updated
	F.Bucci	N.Manning	M.G.Ruffi	03	06/07/2017	Updated
	F.Bucci	N.Manning	M.G.Ruffi	02	10/11/2014	Updated
	F.Bucci	N.Manning	M.G.Ruffi	01	20/02/2014	Updated
	F.Bucci	N.Manning	M.G.Ruffi	00	23/08/2013	New edition

52044 Cortona (AR) – Piazza Duomo, 1 - Tel. +39 0575-63.83.11 - Fax +39 0575-63.83.79 icarocortona.it - icaro@icarocortona.it

INDEX

1.	SCOP	E		3
2.	REFE	RENCES (I	LATEST EDITION)	3
3.	DEFIN		AND ACRONYMS	3
	3.1	DEFINIT	-IONS	
	3.2	ACRON	YMS	4
4.	CONT	FNTS		4
	4.1		PURPOSE AND GENERAL DESCRIPTION	
	4.2	-	DOLOGY	
	4.2	4.2.2	Nodes Identification	
		4.2.2	Reference Parameters and Guidewords	
			Main parameters and guidewords	
			Specific parameters and guidewords for discontinuous / batch process	
		4.2.4	Description and Design intent definition	
		4.2.5	Basic assumptions	
		4.2.6	Recording of HAZOP review's outcomes	
			General aspects	
			Causes	
		4.2.6.3	Consequences	
		4.2.6.4	Safeguards	
		4.2.6.5	Recording Summary	
		4.2.7	Recommendations	14
		4.2.8	Selection of proper type of HAZOP	15
	4.3	DESCRI	PTION OF HAZOP STUDY OPERATING PHASES	
		4.3.1	Main phases of HAZOP study	
		4.3.2	Phase 1 – Study preparation	
		4.3.2.1	Documentation	16
		4.3.2.2	Nodes identification	
		4.3.2.3	HAZOP team	17
		4.3.2.4	HAZOP schedule	
		4.3.3	Phase 2 – HAZOP sessions	19
		4.3.3.1	Logistics	
		4.3.3.2	Attendance list	
		4.3.3.3	P&IDs Master Copy	19
		4.3.3.4	Wrap-up meeting	19
		4.3.4	Phase 3 – Reporting	
		4.3.5	Phase 4 – Follow-up	20
ATT	аснм	ENT 1 – H	IAZOP WORKSHEET	21
ATT	аснм	ENT 2 – S	OME CRITERIA FOR EVALUATION OF CONSEQUENCES	22

1. SCOPE

This procedure defines modalities and methodologies to be followed in developing the Hazard and Operability - HAZOP - study.

2. REFERENCES (LATEST EDITION)

- IEC-61882 "Hazard and operability studies (HAZOP studies) Application guide, 2016.
- "HAZOP and multistage hazard study", Institution of Chemical Engineers, 1999.
- "Guidelines for Hazard Evaluation Procedures", 2nd Edition, CCPS and AIChE, 1992.
- "A Guide to Hazard and Operability Studies", Chemical Industries Association, 1990.

3. DEFINITIONS AND ACRONYMS

3.1 **DEFINITIONS**

CHARACTERISTIC	Qualitative or quantitative property of an element (e.g. pressure, temperature, etc.), also identified as PARAMETER.
DESIGN INTENT	Describes the designer's desired or specific range of behaviour for elements and characteristics (operating conditions); also identified as "INTENTION".
PARAMETERS	The team generates possible deviations applying guidewords to various process parameters such as 'Flow', 'Level' and 'Pressure'. The selection of parameters is an important task for each team to devise for each individual system.
GUIDEWORDS	Simple words which are used to qualify each intention in order to guide and stimulate the creative thinking process and discover deviations.
DEVIATION	Departure from design intent. The variations from the intention are systematically identified by applying the "guidewords"
CAUSE	Reason the occurrence of deviation. Once a deviation can be shown to have a conceivable or realistic cause, then it becomes meaningful. Only single jeopardy together with all relevant effects shall be considered during HAZOP. Deviation is meaningful only if it is physically possible.
CONSEQUENCES	Results of the deviations.
HAZARD	Consequence which have the potential to cause damage, injury or loss
SAFEGUARDS	Protection, detection and indication mechanisms for the deviation and relevant consequences, which may be included within the selected part or form a portion of the design intentions of other parts
RECOMMENDATION	Additional safety measure identified by process team, intended to reduce the risk connected to a specific deviation (also identified as "ACTION").

ICARO

3.2 ACRONYMS

ALARP	As Low As Reasonably Practicable
EPC	Engineering, Procurement and Construction
ESD	Emergency Shutdown
FEED	Front End Engineering Design
FTA	Fault Tree Analysis
HAZOP	Hazard and Operability Analysis
HSE	Health, Safety & Environment
IPL	Independent Protection Layer
LOPA	Layer Of Protection analysis
MOC	Management of Change
PFD	Process Flow Diagram
P&ID	Piping and Instrumentation Diagram
PSV	Pressure Safety Valve
QRA	Quantitative Risk Analysis
SIL	Safety integrity level
UFD	Utility Flow Diagram

4. CONTENTS

4.1 HAZOP PURPOSE AND GENERAL DESCRIPTION

A HAZOP study (also named "HAZOP review" hereinafter) is a systematic approach for identifying process hazards and operability problems of process systems and it is conducted by a multi-disciplinary team of individuals led by a Chairperson knowledgeable and experienced with the HAZOP technique.

The HAZOP study covers all the process lines and equipment that are part of, or may be affected by system/unit/plant involved in the study itself. This may include existing upstream and downstream facilities that may be affected by the process under review. Both existing system and projects can be processes by HAZOP review.

Key aspect of the HAZOP study shall be to assess if deviations from the design intention could occur and, if so, whether such deviations are likely to be hazardous or not.

The HAZOP study is primarily focused on the identification of major hazards capable to produce significant damages on people, environment and equipment. The Chairperson shall lead the team through the review focusing the attention on major aspects.

During the review attention will be also paid to environmental issues and plant operation (e.g. production quality; loss of production, etc.), even if with minor emphasis than safety.

Consequences that will be recognized secondary by the whole team will not be further investigated.

A set of guidewords is used by the team to ensure the thoroughness and structured approach of the Study. The guidewords are combined with process parameters to develop deviations.

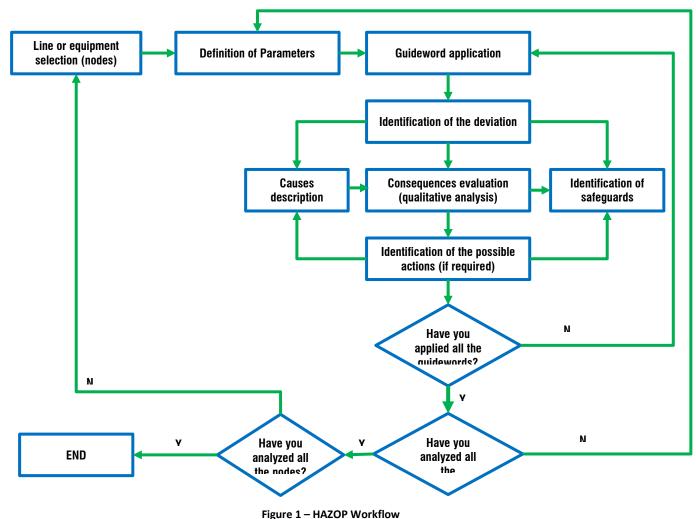
The technique is based on the premise that a hazard will not occur if the process does not deviate from the design intent. The team determines if the deviation could realistically occur and, if so, makes an assessment on whether the consequences constitute a hazard or an operability problem. The team then evaluates if safeguards, intended as hardware or procedures, are adequate considering the causes and consequences of

the deviation. If necessary, the team raises recommendation in order to enhance the design and mitigate possible risks. It is to highlight that:

- HAZOP is NOT a design check (it shall not provide design alternatives), nor an optimization study;
- HAZOP is NOT a tool addressed to find (detailed) solutions. The purpose is to highlight problems; relevant solutions may be proposed but will not be finalized during the session (shall be discussed in a separate session).

4.2 METHODOLOGY

4.2.1 Review workflow


The process/utility unit under analysis is divided into a set of sub units, composed by equipment, instrumentation and connecting lines. Each of these sub-units is named "node" and is characterized by specific process conditions.

The technique applies several guide words in order to identify the possible deviations from the process intents.

The analysis is performed in a systematic way, applying the following steps:

- 1. Identification of nodes;
- 2. Selection of node to be analysed;
- 3. Definition of the relevant design intent;
- 4. Application of a guideword;
- 5. Identification of relevant deviation;
- 6. Analysis of the possible causes, consequences, available protective measures and, If necessary, identification of specific recommendations with the aim of risk mitigation;
- 7. Identification of other deviations connected to the guide word and development of step 6;
- 8. Application of another guide word and development of steps 5 and 6;
- 9. Selection of another node and development of steps 3, 4, 5 and 6.

The above listed main steps of HAZOP review are summarized in the following scheme.

Procedure is followed systematically until all P&IDs are analysed.

4.2.2 Nodes Identification

AR(

A node is a manageable segment of system which has distinct design intent.

The node, typically comprise one major equipment (vessels, etc.), associated minor equipment (pumps, valves, etc.), instrumentation, and other ancillary equipment. Normally, the selection of node should follow the process flow and starts at an isolation point. Node size shall be properly defined taking into account that very small nodes, such as a single process line, often lead to longer study times as each guide word combination should be recorded more times, but, on the other hand large nodes, such as multiple process lines and equipment items, confuse the application of the guidewords and if not properly managed, could lead to overlooking hazards.

The following criteria should be considered in selecting the appropriate transition to the next node:

- Change in design intent;
- Change in state (e.g., from liquid to vapour);
- Major pieces of equipment;
- Position of isolation device.

For discontinuous / batch processes, a node can be represented by a single step/sequence (defined in terms of time and operating conditions). Some nodes can involve, in different steps, the same equipment/lines.

For example, a CSTR reactor is a single equipment, but can be operated in different steps (e.g. chemicals and solvent injection, reaction, crystallization, solvent distillation, etc.

A tank farm can be considered as a "hybrid" system, since some system can be used for both dedicated and multiple operations, thus it is suggested to use a different approach in nodes identification, or rather, "by operation" (e.g. gasoline discharge from ship, tank, gasoil transfer from tank to tank, gantry bottom loading for road tanker, etc.).

4.2.3 Reference Parameters and Guidewords

4.2.3.1 Main parameters and guidewords

Main reference parameters are listed below:

- Flow;
- Level;
- Temperature;
- Pressure;
- Composition.

Additional parameter may be added case by case taking into account the characteristics of the process to be reviewed by HAZOP (e.g. pH, sequence, viscosity, amount, etc.). Additional parameter, if required, shall be defined and agreed by the team before the starting of the session.

The role of the guide word is to stimulate imaginative thinking, to focus the study and elicit ideas and discussion, thereby maximizing the chances of study completeness. Basic guidewords and their meanings are given in following table.

GUIDEWORDS	MEANING
NO or NOT	Complete negation of the design intent
MORE	Quantitative increase
LESS	Quantitative decrease
AS WELL AS	Qualitative modification / increase
PART OF	Qualitative modification / decrease
REVERSE	Logical opposite to the design intent
OTHER THAN	Complete substitution

Table 1 – Basic HAZOP Guidewords

Additional guidewords may be added case by case taking into account the characteristics of the process to be reviewed by HAZOP. If required, additional guidewords shall be defined and agreed by the team before the starting of the session.

The basic set of combination of parameters and relevant guidewords to be applied is reported on the following table.

PARAMETER	RELEVANT GUIDEWORDS				
Flow	No / Less	More	Reverse	Other than (misdirected)	
Temperature	More	Less			
Pressure	More	Less/Vacuum			

Level	More	Less/No		
Composition	Other than			
Other than	Lack of utilities	Start/up - Shutdown	Corrosion / erosion	Other

Table 2 – Combination of Basic Parameters and relevant Guidewords

	DATA	REVISIONE	PAGINA	i.
File: 01-RR GL-HAZOP(ICARO GL).docx	January 2018	04	8 di 23	

Proper parameter and guidewords shall be selected in case of discontinuous mode of operation either for automatic system or manned operations ("procedural HAZOP").

In such cases, the following main parameter can be used in addition or to replace to the ones used for continuous processes:

Amount;

CAR(

- Sequence / Action;
- (clock) Time;
- Mixing;
- Reaction.

Supplementary guidewords are listed in the following table.

GUIDEWORDS	MEANING
TOO EARLY	The order of sequence has been respected, but not the execution time. The operation is carried out too early
TOO LATE	The order of sequence has been respected, but not the execution time. The operation is carried out too late
TOO FAST	The duration of the operation/sequence is shorter than what is normally planned
TOO SLOW	The duration of the operation/sequence is longer than what is normally planned
BEFORE	The order of sequence has not been respected
AFTER	The order of sequence has not been respected

Table 3 – Supplementary HAZOP Guidewords

An example of combination of additional parameter and relevant guidewords to be applied for discontinuous process is reported on the following table.

PARAMETER	RELEVANT GUIDEWORDS						
AMOUNT	No/less	More					
SEQUENCE / ACTION	Too early	Too late	Too fast	Too slow	Before	After	Other than
TIME	Less	More					
MIXING	No/less	More					
REACTION	No/less	More	Other than				

Table 4 – Combination of Additional Parameters and relevant Guidewords

4.2.4 Description and Design intent definition

An adequate representation of the system to be investigated is a mandatory initial step on HAZOP review. Process characteristics, control philosophy, safeguarding philosophy shall be properly identified and described, as well as the reference design intent. In particular, an overall representation of the system shall be performed and detailed description of single nodes shall be described is required.

4.2.5 Basic assumptions

The following assumptions are adopted.

- Qualitative assessment of consequences does not take into account the availability and the effectiveness of relevant safeguard, unless the system is inherently safe.
- It is assumed that two or more concurrent failures of the same system / equipment will not occur, unless there is a common mode failure.
- When identical systems operate in parallel, study was done on one and the observations and findings are applicable to others.
- Only alarms and shutdown functions fully independent from control systems are considered as safeguards. In some cases, where highlighted consequences are associated only to operational problems also the presence of indicators (to DCS or in field) are considered as potential safeguards.
- Manual intervention is considered as a safeguard only if activated by dedicated independent alarms of the specific deviation, provided sufficient time and means are available for the operator to take actions and to bring the process to a safe state (at least 15-20 minutes). However, minimization of unnecessary alarms is followed as a general philosophy.
- The sentence: "Failure open (or failure close) of PIC (TIC, LIC, FIC, etc.)" implies the failure of any element of the control loop (sensor/transmitter, controller, transducer, control valve) that leads to a valve position which is different from the position required by design intention.
- In case of blinded line, the deviation "misdirect flow" is not analysed, either in case of misoperation and valve passing (internal leakage).

Other ground rules and assumption shall be defined case by case at the beginning of the study, taking into account client's procedure, national regulations, international standards adopted and project basis.

4.2.6 Recording of HAZOP review's outcomes

4.2.6.1 General aspects

HAZOP meeting will be recorded in "full recording" mode, to take evidence that all parameters and relevant guidewords have been processed for each node. Phrases such as "not applicable" or "no causes identified" will be applied in case parameter / guidewords are not relevant to the node.

If a deviation may occur and relevant consequences do not affect safety or environment, the expected scenario shall be, however, properly described (e.g.: loss of production, operational upset, product off-spec, etc.).

Recording will be performed by means of proper tool, such as PHA-works software by Primatech, or by other formats. HAZOP worksheet is included in **Attachment 1**.

Proper and detailed recording of cause, consequences and safeguards is also useful for possible further activities connected to HAZOP (e.g. LOPA, SIL Classification, FTA, QRA, etc.).

4.2.6.2 Causes

Process Causes shall be properly described by identifying the involved equipment/machine/instrument and the relevant unexpected mode of failure or what kind of human error has been performed. Nevertheless, it is not necessary to go too much in detail; for example, if a cause is related to a pump failure it is sufficient to write "pump failure" including the relevant tag ("P-1 failure" or "P-1 fails to start when required"); it is to avoid to identify all the possible mode of failure of the pump (electrical failure, gearbox failure, shaft or coupling mechanical damage, etc.). The same for a control loop failure; the general statement involves the

whole control loop (and not the failure of each single element included in the loop itself), including the proper description of the failure mode. (e.g. "malfunction of FIC-001 that closes the relevant control valve FV-001").

Cause can be grouped in the following four main categories:

- Instrumentation failure (control loop failures, spurious intervention of shut-down valves, etc.);
- Machinery failure (pumps, compressor, mixers, etc.);
- Human errors (inadvertent closure of opening of manual valve, improper input of set-point, etc.);
- Causes external to the system (e.g. general black-out, loss of supply from upstream units, etc.).

It is worthy to highlight that:

- it is assumed that two or more concurrent failures of the same system / equipment ("double jeopardy") will not occur, unless there is a common mode failure (e.g. general power failure);
- a single cause of a deviation may lead to multiple consequences.

In order to have a clear approach to define all the possible hazardous scenario and, at the same time, to ensure that all the available safeguards are listed, the best solution is to adopt the following rule:

 Causes are identified within the node under investigation only (except for "external causes"); the relevant consequences can be in the node itself or everywhere else but will be recorded in the node where the deviation is generated.

Some exceptions can be applied in the following cases:

- Nodes at interface with other system not included in scope of work for the analysis;
- HAZOP on revamped unit (analysis on modified / new system only).

4.2.6.3 Consequences

Following main rules shall be followed during evaluation of the consequences associated to each cause of deviation:

- assessment of consequences is performed by a qualitative approach;
- availability and effectiveness of safeguards in place are not taken into account.

Different consequences can be caused by the same initiating cause (e.g. inadvertent closure of a manual valve on the discharge on the pump may lead to: pressure increase in the discharge, loss of feed to the next system, level increase on upstream equipment, damage to the pump due to overheating, etc.

Each one of them shall be properly recorded, taking into account the target of the study defined at the beginning.

As already mentioned in the previous paragraph relevant to causes, each cause is identified within the node under investigation but the relevant consequence(s) shall be investigated up to the end point (either the nose itself or different nodes). By using this approach will be possible to list the complete set of safeguards available

Each consequence scenario and relevant dynamics shall be properly described. If overpressurization may occur, the simple sentence "Possible overpressurization of V-1" is not sufficient to proper understand which would be the impact level, even though such evaluation is carried out in a qualitative manner only. The mentioned scenario shall be described as follows: "pressure increase in V-1 (dP = 3,5 barg) leading to possible overpressurization up to 8 barg, resulting in mechanical damage an loss of containment of flammable gas, with potential for fire/explosion".

When a system is inherently safe, it has to be considered during consequences evaluation. Taking into account the previous example, if the dP of V-1 was 9 bar, the consequences of pressure increase shall be as follow: "pressure increase in V-1 (dP = 9 barg). No impact on mechanical integrity is expected since the max pressure that can be reached is 8 barg".

File: 01	RR GL-HAZOP(ICARO GL).docx
----------	----------------------------

It is suggested to avoid cross links between deviations, to have a clear and faster recording. If we are investigating a no/less flow deviation on a pump discharge, one of the relevant consequences is the pressure build-up. Assuming that in the list of parameters flow came earlier than pressure, this scenario can be directly analysed up to the end point on no/less flow deviation, instead of writing a reference such "see pressure more" in flow deviations. When, later on, pressure deviation will be discussed, a brief reference to flow will be done for the above mentioned scenario, with no further investigations.

Some general criteria for qualitative assessment of consequences are reported on Attachment 2.

An additional column can be added to allocate each consequence scenario in the proper category simply using a letter for a better understating of the category of the expected impact (e.g.: S = safety, scenario that can affect personnel, E = environment; scenario that can lead to environmental pollution, F = financial or O = operational or A = asset for scenario having economic impact due to loss of production, loss of equipment, upsets, need for maintenance and relative repair cost).

4.2.6.4 Safeguards

Safeguards shall be listed according to the sequence of intervention related to progressive layer of protection philosophy (e.g. alarm and human response, interlock, mechanical devices, etc.) and properly described (e.g. for interlocks, initiators, logic solver and final element shall be mentioned).

Proper and effective safeguards shall be listed for each single consequences scenario, taking into account that the following requirements shall be met:

- independency from the cause of the deviation and from other previously mentioned safeguards (e.g., an alarm associated to a control loop is not considered effective if the deviation is cause by a malfunction of the control loop itself);
- effectiveness in preventing the deviation or the relevant consequences (e.g. alarms are effective only if operator response is allowed, including adequate time to evaluate and react, proper action can be taken and in front of adequate training, adequacy of PSVs shall be verified for each cause of overpressure, etc. In order to ensure the complete effectiveness of safeguards, it is worthy to take into account and to investigate procedures to ensure that the functionality is not affected by lack of training, inadequate maintenance, operator mistake, failures, etc...),

Once adequacy of safeguards has been demonstrated, typical representation, taking a potential overpressurization case as an example, is shown here below:

- PI-1 provided with PAH and human response;
- PSHH-2 to activate logic I-1 closing XV-1;
- PSV-1.

File:

PAGINA 13 di 23

4.2.6.5 Recording Summary

In the following table, a summary of the main rules to be followed during HAZOP review and relevant recording.

1	Define the "battery limits" for cause and consequences.
2	Identify all the possible consequences associated to each cause, taking into account the objective of the analysis.
3	Consequences and relevant dynamics shall be properly described, including final scenarios.
4	Please avoid cross references between deviation; describe the scenario as soon as the it can be highlighted and don't remind to next deviations. Only in the following deviation it can be mentioned, making reference to previous deviations.
5	List all the available safeguards according to layer of protection approach, starting from alarm and human response, then interlocks and at the end mechanical and passive protections (following the dynamics of the scenario).
6	Remember that we can take credit on safeguards when they completely fulfil the following requirements: independency and effectiveness.
7	Full recording shall be adopted, if not otherwise clearly specified.

Table 5 – HAZOP main rules

	DATA	REVISIONE
: 01-RR GL-HAZOP(ICARO GL).docx	January 2018	04

4.2.7 Recommendations

Where a potential hazard is identified, remedial action (recommendations) may be required depending on several factors, such as the likelihood of the event and the relevant magnitude of consequence, the poor availability / effectiveness of existing safeguard, etc. The recommendation is identified univocally by means of a code number shown on worksheet and need to be implemented in the revision of the drawings or addressed to additional studies and/or calculations (follow-up step).

As a general rule, the recommendations are worded in the following way:

- the words "Provide" or "Add" or "Change" or "Relocate" are used when the need for the required action are fully agreed within the Team, based on the available information;
- the word "Evaluate" are used when further consideration is required to the current design for any reason;
- the words "Verify" or "Ensure" are used to request further verification of specific items/features or consequences.

Recommendation shall be collected and included in the HAZOP report in a dedicated "action list", where will be specified who is in charge for each action ("owner").

In case further improvement / additional safeguards are required, if an immediate solution is available and acceptable to the team, it shall be recorded in the worksheet. On the contrary, where solutions are unlikely to be derived, without a technical evaluation, the Chairperson shall refer the problem for a separate assessment.

Discussion of problems/technical improvements out of the scope of the meeting and not under evaluation shall be kept to a minimum, together with re-design of the systems, which shall be avoided.

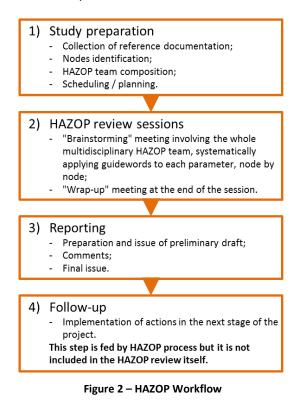
If required by Clients, agreed safety changes, including all queries, might be marked in red on the HAZOP Master P&IDs and possibly identified by a unique reference number.

If HAZOP is performed on existing plant, having the purpose to lower the risk level, prioritization of recommendation would be necessary to prepare a schedule associated to risk reduction plan for implementation of recommended actions.

4.2.8 Selection of proper type of HAZOP

Level of detail, accuracy and objectives of a HAZOP study are related to the stage in the life-cycle of the project; depending on it, proper approach shall be adopted, as shown in the following table:

Type of HAZOP	COARSE HAZOP	MAIN HAZOP	FINAL HAZOP	HAZOP FOR R.A.
Project life- cycle stage	Project conceptual design	FEED	EPC / Execution phase	Existing plant
Objective	Highlight major hazards and possibility to change the design (including inherently safe design criteria)	verify if the unit will operate in provided by Vendors safe manner); to analyse relationship with other units To confirm proper close		Analysis related to process risks including those related to operations
		No changes on design are expected as an outcome of the HAZOP review.	Procedural HAZOP	
Documentation	PFDs Preliminary P&IDs (if available)	PFDs / H&MBs P&IDs and defined equipment / lines / instrumentation / PSVs data sheets	PFDs / H&MBs P&IDs issued for construction, C&E matrix, Data sheets	PFDs / H&MBs P&ID as built C&E matrix, Data sheets Operating procedures
Notes		Any further change in documentation to be managed by proper MOC procedure May be required for changes / modification to existing units or to review procedures	Unit ready for construction / operation after final HAZOP	Existing unit
Parameters and Guidewords	Main	Main and possible additional specific guidewords	Main and possible additional specific guidewords used in FEED	Main


Table 6 – Level of detail, accuracy and objectives of a HAZOP

4.3 DESCRIPTION OF HAZOP STUDY OPERATING PHASES

4.3.1 Main phases of HAZOP study

The HAZOP review process flow can be represented as follow:

4.3.2 Phase 1 – Study preparation

During this preliminary phase the following activities are foreseen for a successful development of the next stages:

- Collection of reference documentation;
- Nodes identification;
- HAZOP team composition;
- Scheduling / planning.

4.3.2.1 Documentation

Documentation strictly necessary for the development of the HAZOP study is reported:

- Process and Utilities Basis of Design;
- Process description;
- Process Flow Diagram PFD (or PFS);
- Utility Flow Diagram UFD (or UFS);
- Heat and Material Balance (HMB);
- Project P&ID (or PEFS);
- Plot Plan;
- Cause & Effect matrix;

- Control, shutdown and process safeguarding philosophy (ESD Philosophy);
- Blow down, flaring and venting philosophy;
- Equipment and machinery data sheets;
- Piping data sheets;
- Pressure relief devices data sheets.

The above mentioned documentation (in particular the ones from point 1 to 6) shall be received by the Chairperson at least one week before the starting of the sessions.

The following documents shall be available in case of need:

- MSDS (Material Safety Data Sheets) of dangerous substances;
- detailed thematic plot plans, e.g. active fire systems, smoke/fire/gas detectors location, sewer networks, etc.;
- operating, maintenance and emergency procedures /manuals, if available according to the stage of the project.

4.3.2.2 Nodes identification

Before starting HAZOP session, HAZOP nodes will be identified by Chairperson on PFDs and UFDs by marking –up the drawings. Identified nodes shall be submitted to Client for approval.

Nodes will be marked-up on the relevant P&Ids during the HAZOP session.

4.3.2.3 HAZOP team

The HAZOP sessions, shall include following experts:

- HAZOP Chairperson;
- HAZOP Scribe;
- Lead HSE Engineer / HAZOP focal point / co-ordinator;
- Lead Process Engineer;
- Process Engineer;
- Process/Operation Specialist;
- Instrument Engineer (on call);
- Mechanical / maintenance Engineer (on call).

The tasks of the HAZOP "key figures" and other team members are described here below:

- Chairperson is an experienced technical person, who is responsible for nodes identification, leading the study with appropriate guidewords, establishing the detailed work schedule together with HAZOP focal point, ensuring that procedure is followed and that notes and results of the study are properly recorded and distributed, resolving any conflict that may arise during the study, ensuring that the team works toward a common goal by utilising expertise of all team members, and checking on the progress of the study. Furthermore, the Chairperson is responsible to verify the work progress in accordance with the schedule: this include taking/suggesting any corrective action required to prevent unwanted delay.
- Scribe is responsible for preparing HAZOP worksheets, HAZOP action list and HAZOP report, and recording and filing all documents (including attendance list) used and generated during the study in accordance with instructions of the Chairperson. She/he is also responsible for distributing HAZOP worksheets to attendees and specialists concerned.
- HAZOP focal point is responsible to arrange the meeting and to select the members of the working team; and additional and primary task is to collect the documentation and to distribute it to the

members. She/he is also in charge for establishing the detailed work schedule together with HAZOP Chairperson and to ensure that from a logistic point of view everything is fine. In case of controversy related to the scope of work of the projects, is responsible for clarifying and fixing out the project's boundaries.

• **Other Team Members** are responsible for providing comments based on their knowledge and experience to assist the team in resolving issues emerging during the study.

4.3.2.4 HAZOP schedule

HAZOP schedule is prepared by the HAZOP Chairperson in co-operation with the HAZOP focal point, mainly basing on the following parameter:

- number of nodes;
- complexity of nodes (the higher the number of items in the node and the complexity of the process, the longer the average duration of analysis on each node);
- stage of the project (e.g. HAZOP performed during early stage of the project, since detailed information and drawings are not available takes less time than an HAZOP performed on later stages).

Following general criteria can be followed to prepare the HAZOP schedule:

- 2 ÷ 4 nodes per day for continuous process units (with nodes previously identified on PFDs);
- 3 ÷ 5 nodes per day for batch operations (e.g. fuel terminal operations);
- 3 ÷ 4 P&ID per day assuming one P&ID relevant to single node/equipment or operation.

4.3.3 Phase 2 – HAZOP sessions

HAZOP session will be held according to methodology described on Chapter 4.2.

4.3.3.1 Logistics

For successful development of HAZOP analysis sessions, the availability of a dedicated meeting room of suitable dimensions and windows, with large table and a video projection system for showing to all participants the worksheets in progress is strongly required.

It is also recommendable the availability of a suitable number of copies of P&IDs to be distributed to each participant (also in A3 format) plus one copy (in original size) to be used as master copy of the session, where nodes will be marked-up over and which will be preferably hung on the meeting room walls.

HAZOP meeting is normally scheduled with two distinct sessions (morning and afternoon) of maximum three hours each one and suitable breaks (coffee/tea break of 10-15 minutes for each session and a lunch break of at least one hour).

HAZOP Team has the responsibility to be focused on HAZOP objectives, avoiding inconclusive discussions, in order to cope with scheduling agreed.

4.3.3.2 Attendance list

During the sessions, the list of participants to HAZOP session will be daily recorded on dedicated sheets according to ICARO MOD-CT01-01 format (or equivalent), including:

- Name;
- Company;
- Role/Discipline;
- Signature.

4.3.3.3 P&IDs Master Copy

Nodes will be highlighted on large size P&Ids (preferably ISO A1 or ISO A2) during the sessions. Master copy should be signed-in by Chairperson and representative of the Companies involved at the end of HAZOP workshop.

After signature they will be scanned to be attached to the HAZOP report.

4.3.3.4 Wrap-up meeting

At the end of the session, few hours shall be spent for a wrap-up meeting addressed to review the action arisen from HAZOP and the main topics. Following the wrap up, the list of recommendation shall be considered fully agreed by the team members.

4.3.4 Phase 3 – Reporting

A dedicated HAZOP report will be issued at the end of the sessions describing the following main topics:

- Scope of the study;
- Process descriptions;
- Methodology description;

- Table of deviations;
- Daily attendance list;
- Nodes list;

()AR()

- Reference documentation;
- P&IDs used for the HAZOP sessions (marked-up "master copies");
- HAZOP worksheets;
- Recommendations (actions) list.

A preliminary draft of the report is usually issued for comments one week after completion of the review. Since worksheets are supposed to be projected, in a manner that all participants can check, verify and agree what has been recorded, worksheet can be issued and distributed for information only. If required, worksheet can be printed out at the end of the session and signed by the key-figures.

4.3.5 Phase 4 – Follow-up

Follow-up phase is the latest stage of an HAZOP review; during the phase the implementation of HAZOP recommendation is monitored ("follow-up" or "close-out" register) to ensure that all the action arisen from HAZOP will be included in the next stage of the project.

However, follow-up stage shall be considered a dedicated step, which will be managed separately by the Client.

ATTACHMENT 1 – HAZOP WORKSHEET

Study			Node			
Client			Node Intention			
Plant						
Session n° / date			Temperature			
Chairperson			Pressure			
Team			Flow rate / Capacity			
			Composition / of	her:		
			Drawing n.			
Notes			•			
Parameter	Guideword	Causes	Consequences	Safeguards	Recommendations	By (Owner)
	None/Less					
	More					
Flow	Less					
	Reverse					
	Misdirect					
Temperature	More					
Temperature	Less					
Pressure	More					
Pressure	Less/Vacuum					
Loval	More					
Level	Less/No					
Composition	Other Than					
	Lack of utilities					
Other	Start-up/shut- down					
Other	Maintenance / isolation					
	Other					

ATTACHMENT 2 – SOME CRITERIA FOR EVALUATION OF CONSEQUENCES

Here below some additional technical criteria to be used as a reference to evaluate the consequences. These criteria may vary or be reviewed and defined according to project specifications.

HP/LP systems interface ("gas break-through")

Shall be considered the maximum operating pressure on the HP system vs. design pressure of the LP system. If maximum operating pressure on the HP system cannot be defined, the relevant design pressure shall be considered. Same assumption to be applied in case of reverse flow (gas / vapour phase).

Overfilling

In case of overfilling, shall be verified first if adequate inherently safe systems are in place to prevent overpressurization (e.g. open vent adequately sized to handle the incoming flow rate). If available, the relevant scenario shall be the outflow of the processed product. If not, overpressurization may be expected. The maximum operating pressure of the incoming product shall be considered vs. the design pressure of the potentially overfilled equipment; if the fluid is transferred by means of centrifugal pumps, the relevant shut-off pressure. For other cases the design pressure of the system upstream the equipment shall be considered. Same assumption will be applied in case of reverse flow (liquid phase).

Blocked outlet

As reference pressure shall be considered the maximum operating pressure on the upstream system vs. design pressure of involved system. If the fluid is transferred by means of centrifugal machinery, the relevant shut-off pressure shall be considered. For other cases the design pressure of the system upstream the equipment shall be considered.

Reverse flow

Over pressurization case cannot be excluded even though check valves are provided; as defined by API 521 std. and therefore PSV shall be verified also for this scenario (relief load for PSVs can be assumed as 10% of maximum theoretical flow-rate if two check valves, dissimilar type e periodically tested are provided, API 521, § 4.3.4.4).

Tube rupture case (tube&shell heat exchangers)

Over pressurization case can be excluded when tube&shell heat exchangers are designed at list according to 10/13 ASME rule ore more stringent codes.

External fire case

External fire case shall be always verified. Any exclusion for PSV requirement shall be justified.

For fixed roof atmospheric tanks this scenario shall be verified as well (according to std. API 2000 § 4.3.3) unless the tank is provided with frangible welding of the fixed roof (see std. API 650).

 Data
 Revisione
 Pagina

 January 2018
 04
 23 di 23

Safety Integrity Level studies (SIL)

PROPOSED	CHECKED	APPROVED	REV.	DATE	DESCRIPTION
F.Bindi	N.Manning	B.Frattini	03	31/01/2018	Updating
F.Bindi	N.Manning	M.G.Ruffi	02	10/11/2014	Updating
F.Bindi	N.Manning	M.G.Ruffi	01	01/03/2014	Updating
G.Monanni	N.Manning	M.G.Ruffi	00	19/11/2007	First iusse

52044 Cortona (AR) – Piazza Duomo, 1 - Tel. +39 0575-63.83.11 - Fax +39 0575-63.83.79 icarocortona.it - icaro@icarocortona.it

ICARO

INDEX

1.	sco	DPE	3			
2.	REFERENCES					
	2.1	Reference guidelines	3			
	2.2	Reference documents	3			
3.	DEF	INITIONS AND ACRONYMS	4			
	3.1	Definitions	4			
	3.2	Acronyms	6			
4.	CON	NTENTS	7			
	4.1	SIL methodology	7			
		4.1.1 Foreword	7			
		4.1.2 Logic scheme	8			
		4.1.3 Methodology	9			
	4.2	PHASE 1 – SAFETY REQUIREMENTS ALLOCATION	10			
		4.2.1 The Risk Graph method	10			
		4.2.2 The Risk Matrix method	13			
	4.3	PHASE 2 – VERIFICATION	17			
		4.3.1 Representation of SIFs Architectures	17			
		4.3.2 Reliability Data collection	18			
		4.3.4 Reference for the selected reliability values	19			
		4.3.5 Application of availability models in order to establish the overall PFD of the complete loop	19			
		4.3.6 PFD average requirement for Verification	20			
		4.3.7 Architectural requirements for Verification	21			
АТ	ТАСН	HMENT 1 – SIL ALLOCATION WORKSHEET	22			
АТ	тасн	HMENT 2 – EXAMPLE OF SIF ARCHITECTURE	23			
АТ	ТАСН	HMENT 3 – EXAMPLE OF PFD CALCULATION BY FTA	23			

1. SCOPE

This procedure defines modalities and methodologies to be followed in developing the Safety Integrity Level - SIL- studies, including Allocation Requirement and Verification phases.

Industrial risk is usually conceived as a measure of human injury, environmental damages or economic losses in combined terms of both the probability and the magnitude of injuries, damages and losses, following a major accident. A major industrial accident is generally caused by an initial a loss of containment and further release of material and/or energy in the environment, able to origin hazardous effects for humans, environment and properties. An accident may evolve in several forms (different scenarios). For example, a release of toxic and concurrently flammable substances may result in:

- fires (immediate ignition at the release);
- flash fire (delayed ignition of a limited quantity of vapours in air);
- vapour cloud explosion (delayed ignition of a significant amount of vapours);
- toxic cloud dispersion (no ignition).

For each scenario, the hazardous effects assume different characteristics, all endangering humans, environment and property as for instance:

- radiation waves, from fires and fireballs;
- pressure waves, from explosions, both confined and unconfined;
- toxic contaminations, in air, soil or water, capable to lead to immediate or delayed effects.

Consequences of hypothesized accidents are measured by the intensity/gravity of the effects in relation to the threshold vulnerability limits and to the extension/expositions of human beings, of the environmental components and of the properties affected. In order to minimise the probability of occurrence of accidents and to minimise the consequences in case an accident occurs, the Safety Integrity Level (SIL) analysis of emergency/trip functions is performed. The SIL analysis is a systematic activity that includes both allocation and verification to be performed to all emergency/trip functions. The technique uses a team of reviewers with expertise in several key areas. The Safety Integrity Level analysis developed in ICARO complies with international standards as well as with the EU regulations, descending by the first Seveso Directive and further amendments.

2. REFERENCES

2.1 Reference guidelines

- IEC 61508:2010 Part 1÷7 "Functional Safety of Electrical / Electronic / Programmable Electronic Safety-Related Systems";
- IEC 61511:2016 Part 1÷3 "Functional safety Safety Instrumented Systems for the Process Industry Sector.

2.2 Reference documents

Main reference documents to be made available during Hazop analysis are the following:

- Piping and Instrumentations diagrams (P&Ids);
- Emergency system design philosophy;
- Cause & Effects diagrams;
- Pressure safety valves data sheets;
- Process description;
- Piping general arrangement;
- Plant/unit blow down report.

Moreover, the following documents should be available in case of need:

- Equipment and piping data sheets;
- Operating, maintenance and emergency procedures/manuals;
- Process Flow Diagrams (PFD);
- Heat and Material Balance (H&MB);
- Plant plot plans;
- Detailed plot plans, e.g. active fire systems, smoke/fire/gas detectors location, sewer networks, etc.

3. DEFINITIONS AND ACRONYMS

3.1 Definitions

Basic Process Control System	The system that responds to input signals from the process and generates output signals to maintain operation of the process in a desired state. The system does not perform functions assessed as SIL 1 or higher.
Beta Factor	The number of Common Mode Failures (of robust Initiators or Final Elements), expressed as a fraction of all possible Failures.
Common Mode Failure	A Failure having the potential to affect all duplicated components in a robust configuration by virtue of common or shared characteristics.
Dangerous Failure	A Failure that has the potential to place the SIL/IPF in a state in which it will fail to perform its function. Dangerous Failures are usually only safe when the system has to perform a certain action or through testing. Also known as unrevealed failure.
Dangerous Failure Rate	The number of Dangerous Failures per unit time.
Dangerous Failure Robustness	A configuration in which plant integrity is not jeopardised by the Dangerous Failure of a single SIL/IPF component. Also known as unrevealed failure robustness.
Demand	A process or equipment condition or event which requires an IPF / SIF to take action to prevent a Hazardous Situation.
Demand Rate	The frequency at which a Demand occurs, i.e., the number of Demands per unit time.
Diagnostic Coverage Factor	The number of Dangerous Failures that diagnostic features are capable of detecting, expressed as a fraction of all possible dangerous failures.
	(NOTE: Diagnostic features may only be recognised as such if they can trip the process to a safe state or maintain safety by different means.)
Failure	An abnormal condition that may cause a reduction or loss of capability of the IPF to perform its intended function.
Final Element	A device, or combination of devices, that manipulate a process variable or attract the attention of the operator to achieve risk reduction. The Final Element includes output cards or output relays, solenoid valves and cabling. Examples are valves, switchgear (rotating equipment stop circuits) and alarms.
Hazard or Hazardous Situation	A situation with the potential to cause harm, including ill health and injury, damage to property, products or the environment, production losses or increased liabilities.
Hazard Rate	The frequency at which Hazardous Situations occur per unit time.
	Hazard Rate = Demand rate x Probability of Failure on Demand.
Initiator	A device, or combination of devices, that indicates whether a process or equipment item is operating outside the operating envelope. The Initiator includes input cards and input relays. Examples are manual switches, position switches and measurement systems (including process connections, sensors, transmitters, cabling, trip amplifiers or input cards etc.). In IEC 61508/61511 an Initiator is referred to as a Sensor.
Independent Protection Layer	IPL. Device, system, or action that is capable of preventing a postulated accident sequence from proceeding to a defined, undesirable endpoint. An IPL is (1) independent of the event that initiated the accident sequence and (2) independent of any other IPLs. IPLs are normally identified during layer of protection analyses.
Inspection Time	Time interval between proof tests

Instrumented Protective Function	A function comprising one or more Initiators, a Logic Solver and one or more Final Elements whose purpose is to prevent or mitigate hazardous situations.
	An IPF is intended to achieve or maintain a safe state for the process, in respect of a specific hazardous event.
	In IEC 61508/61511 an IPF is referred to as a SIF.
Instrumented Protective System / Safety Instrumented System	The electromechanical, electronic and/or programmable electronic Logic Solver component of the Instrumented Protective Function, complete with input and output equipment. In IEC 61508/61511 an IPS or SIS are referred to as a 'Logic Solver'.
Logic Solver	The portion of an IPF / SIF that performs the application logic function. The Logic Solver excludes trip amplifiers, input cards and output cards. Examples are electromechanical relays, solid-state/magnetic-core logic and the CPU section of programmable electronic systems.
Mean Time To Restoration	Time interval to repair the failing component. Includes repair time, shipping and managing time
Mitigation	The action of making a consequence less severe or relieving consequences.
Partial Valve Stroke Test	Technique to test a percentage of the possible failure modes of a valve without the need to physically fully close the valve itself.
Probability of Failure on Demand	The probability (dimensionless) of the IPF or SIS failing to respond to a Demand.
Programmable electronics	Electronic component or device forming part of a PES and based on computer technology. The term encompasses both hardware and software and input and output units. (NOTE: This term covers micro-electronic devices based on one or more CPUs together with associated memories, etc. Examples of process sector programmable electronics include: smart sensors; final elements; and programmable electronic logic solvers, such as, programmable controllers, PLCs, DCS, loop controllers.)
Programmable Electronic System	System for control, protection or monitoring based on one or more programmable electronic devices, including all elements of the system such as power supplies, sensors and other input devices, data highways and other communication paths, actuators and other output devices. As an example, an IPS or SIS could be a PES.
Proof Test	A test carried out on IPF components against an approved procedure to confirm that all requirements of the IPF are met.
Proof Test Coverage Factor	The number of Dangerous Failures detected by the Proof Test expressed as a fraction of all possible dangerous failures.
Risk	The frequency at which a Hazardous Situation occurs multiplied by the consequence of the Hazardous Situation.
Risk Reduction Factor	Is the contribute on an IPL to reduce risk allocated.
Safe Failure	A Failure whose occurrence does not have the potential to place an IPF in a dangerous state. Also known as revealed failure.
Safe Failure Rate	The number of Safe Failures per unit time.
Safe Failure Fraction	The safe failure fraction (SFF) is the fraction of the overall failure rate of a device that results in either a safe fault or a diagnosed unsafe fault.
Safety Integrity Level	Dangerous failure class 1, 2, 3 or 4 derived from the consequences of failure on demand and the frequency of demand. The definition in IEC 61511: discrete level (one out of four) for specifying the safety integrity requirements of the IPF / SIF to be allocated to the SIS (trip systems). Safety integrity level 4 has the highest level of safety integrity; safety integrity level 1 has the lowest.
Trip	An Instrumented Protective Function action to bring the Final Element to a safe state.
Undetected Failure	A failure that is not detected by internal diagnostics
Validation	Confirmation that the system under consideration fully meets the integrity requirements set forth in the associated IPF Requirements Specification.
Verification	Demonstration for a particular life-cycle phase that all deliverables (documents, software, hardware) meet the objectives set for that phase.

ICARC

ICARO

3.2 Acronyms

BDV	Blow-Down Valve
BPCS	Basic Process Control System
C&ED	Cause and Effects Diagram
DCS	Distributed Control System
ESD	Emergency Shut Down
ESDV	Emergency Shut Down Valve
F&G	Fire and Gas
HAZOP	Hazard and Operability study
HFT	Hardware Fault Tolerance
IE	Initiating Event
IEC	International Electrotechnical Commission
IPL	Independent Protection Layer
IPF	Instrumented Protective Function
IPS	Instrumented Protective System
LOPA	Level Of Protection Analysis
MTTR	Mean Time To Restoration
P&Id	Piping and Instrumentation Diagram
PE	Programmable Electronics
PES	Programmable Electronic System
PLC	Programmable Logic Controller
PFD	Probability of Failure on Demand
PSV	Pressure Safety Valve
PVST	Partial Valve Stroke Test
SDV	Shut Down Valve
SFF	Safe Failure Fraction
SIF	Safety Instrumented Function
SIL	Safety integrity Level
SIS	Safety Instrumented System
ті	Inspection Time

4. CONTENTS

4.1 SIL methodology

4.1.1 Foreword

A Safety Integrity Level (SIL) analysis is a key step in the Safety System Design Process. While the HAZOP process normally discovers potential hazards and provides general recommendations, the SIL is a specific analysis which defines the Safety Criteria and Mitigation of hazards which can lead to a significant safety, environmental and economic consequences.

SIL analysis is performed according to the IEC 61508¹ extensive standard, which is essentially a framework for implementing instrumented safety systems using the principle of Safety Life Cycle, and the IEC 61511², developed as a Process Sector implementation of IEC 61508.

An important concept in the standard is that of the Safety Instrumented Function (SIF), which is a function to be implemented by a Safety Instrumented System (SIS) composed mainly by sensors (e.g. transmitters), logic solvers (E/E/PE) and final elements (e.g. solenoids), which is intended to achieve or maintain a safe state for the process, with respect to a specific hazardous event.

A SIS can be seen as a method to reduce the overall risk, acting as independent protection layer, as showed on the following figure.

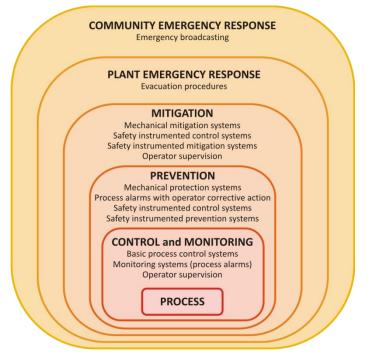


Figure 1 – Independent Protection Layers approach

From this point of view, an independent protection layer is a "system" fully independent from the others capable to reduce the risk, by preventive or protective actions, e.g. an explosion proof design, a PSV, a SIS, a F&G system, an emergency procedure, etc.

Each key SIF must be evaluated for the severity of the protected risk and the performance of the SIF must be commensurate with the risk. The performance level for each SIF must address both the reliability and availability requirements of the SIF. Both of these factors are combined into a single index termed SIL, which

¹ Functional safety of electrical/electronic/programmable electronic safety-related systems.

² Functional safety – Safety instrumented systems for the process industry sector.

is defined as the likelihood of the system satisfactorily performing the required safety function under all the stated conditions within a stated period of time.

The SIL ratings can be equated to the Probability to Fail on Demand (PFD), in a defined interval of time, of the relevant SIF. Relationship between SIL and Process Failure on Demand is indicated in the following table, in case of Shut Down Systems (not continuously operating systems³).

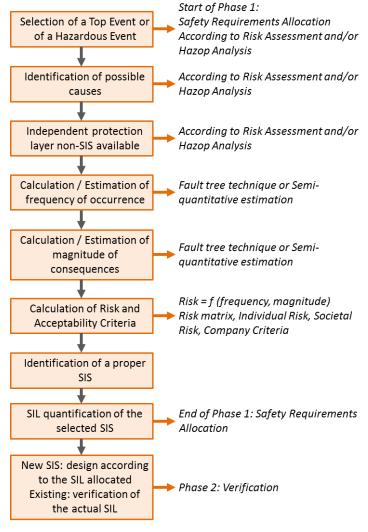
Safety Integrity Level (SIL)	Probability of failure on demand (PFD)
4	≥10 ⁻⁵ - <10 ⁻⁴
3	≥10 ⁻⁴ - <10 ⁻³
2	≥10 ⁻³ - <10 ⁻²
1	≥10 ⁻² - <10 ⁻¹

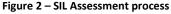
Table 1 - Relationship between SIL and Process Failure on Demand, low demand mode of operation

Same criteria apply also for the identification of the Asset Integrity Level of the plant/station. The analysis is to be done separately due to fact that productive asset is mainly linked to economic aspects (loss of production, loss of materials, etc.) and not necessarily linked with safety. Combined but distinct analysis allows to have a more complete picture of the risk and mostly to select the most appropriate level of protection.

The development of SIL analysis sessions usually requires the participation of following multidisciplinary experts:

- SIL analysis Facilitator (and Secretary), an independent expert in safety and reliability, who has the duty to guide the SIL Team through the application of all necessary phases of the analysis;
- Process and Instrument engineers, with the task to provide necessary technical information and answers to the questions of the Facilitator;
- Project Engineer, with the task to support the SIL Team with specific considerations from project management point of view.


The proposed methodology shall be applied to all protective functions, as detailed on the cause & effect diagrams/matrixes.


4.1.2 Logic scheme

The overall logic scheme of the so called SIL Assessment process is shown by the following flow chart:

³ Low Demand Mode: where frequency of demands for operation made on a safety-related system is no greater than one per year and no greater than twice the proof-test frequency (IEC 61508-4).

4.1.3 Methodology

SIL analysis is performed in two phases:

- a) **Safety Requirements Allocation**: allocation of the most appropriate SIL to each SIF, by means of the evaluation of demand rate and magnitude of consequences, considering the SIF assessed not in place. The IEC 61508 does not provide a mandatory way to perform the safety requirement allocation phase; here are provided the following three suggested methods:
 - Risk Graph;
 - Risk Matrix.

Relevant details are provided below. In case, a different method can be followed, according to Client's specifications.

b) **Verification**: quantitative verification, according to the IEC-61508, that the proposed designing of the relevant SIS is conforming to the SIL required.

4.2 PHASE 1 – SAFETY REQUIREMENTS ALLOCATION

As a general point view, SIL analysis is the systematic assessment of key logic functions designed to manage the Emergency Shut Down of the process plant, as detailed in the Cause & Effects Diagram.

Logic steps to develop the SIL Allocation process are the following:

- a) brief introduction and description of the process;
- b) analysis of Cause & Effects diagrams;
- c) selection of first logic function (Safety Instrument Function, SIF) to analyse and analysis of design intent;
- d) selection of the safety requirement allocation method;
- e) evaluation of demand rate (frequency of occurrence) and magnitude of consequences in case of failure on demand;
- f) evaluation of additional parameter required by the method selected;
- evaluation of SIL requested to the SIF selected by application of the selected safety requirement allocation method;
- h) analysis of consequences of spurious trip, if necessary;
- i) selection of following logic function to analyse and actions from d) to h).

Procedure is applied in a systematic way up to final completion of all the logic functions to be analysed; when a SIF is analysed, it is assumed that all other SIFs function correctly.

Safety requirements allocation results are reported on the format provided on the Attachment 1.

4.2.1 The Risk Graph method

Risk is defined as a combination of the probability of occurrence of harm and the severity of that harm (see Clause 3 of IEC 61511-1). Typically, in the process sector, risk is a function of the following four parameters:

Parameter		Description		
Consequence of the hazardous situation	с	Number of fatalities and/or serious injuries likely to result from the occurrence of the hazardous event. Determined by calculating the numbers in the exposed area when the area is occupied taking into account the vulnerability to the hazardous event.		
Occupancy (probability that the exposed area is occupied)	F	Probability that the exposed area is occupied at the time of the hazardous event. Determined by calculating the fraction of time the area is occupied at the time of the hazardous event. This should take into account the possibility of an increased likelihood of persons being in the exposed area in order to investigate abnormal situations which may exist during the build-up to the hazardous event (consider also if this changes the C parameter).		
Probability of avoiding the hazardous situation	Р	The probability that exposed persons are able to avoid the hazardous situation which exists if the safety instrumented function fails on demand. This depends on there being independent methods of alerting the exposed persons to the hazard prior to the hazard occurring and there being methods of escape.		
Demand rate (number of times per year that the hazardous situation would occur in the absence of the safety instrumented function being considered)	w	The number of times per year that the hazardous event would occur in the absence of the safety instrumented function under consideration. This can be determined by considering all failures which can lead to the hazardous event and estimating the overall rate of occurrence. Other protection layers should be included in the consideration.		

Table 2 - SIL Allocation Parameters

RISK GRAPH

The required SIL of the selected SIF is established according to a semi-quantitative way proposed by the IEC-61511. The Risk Graph procedure is shown by the following figure:

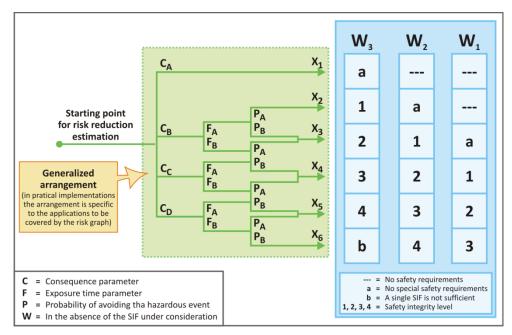


Figure 3 - Risk Graph for SIL Allocation

Calibration of the risk graph is the process of assigning numerical values to risk graph parameters in order to:

- describe all parameters in such a way as to enable the SIL assessment team to make objective judgements based on the characteristics of the application;
- ensure the SIL selected for an application is in accordance with corporate risk criteria and takes into account risks from other sources;
- enable the parameter selection process to be verified.
- The following calibration is proposed by the IEC-61511 as an example.

CONSEQUENCES (TO PEOPLE)

Risk parameter	Classification	Comments	
Consequence (C)	C _A	Minor injury	1 The classification system
Number of fatalities			has been developed to deal with injury and death to people.
This can be calculated by determining the numbers of people present when the area exposed to the hazard is occupied and multiplying	С _в	Range 0,01 to 0,1	2 For the interpretation of C_A , C_B , C_C and C_D , the consequences of the accident
by the vulnerability to the identified hazard.	Cc	Range >0,1 to 1,0	and normal healing should be
The vulnerability is determined by the nature of the hazard being protected against. The following			taken into account.
factors can be used:	Ср	Range >1,0	
V = 0,01 Small release of flammable or toxic material			
V = 0,1 Large release of flammable or toxic material			
V = 0,5 As above but also a high probability of catching fire or highly toxic material			
V = 1 Rupture or explosion			

Table 3 - Risk Graph – Consequences to People

CONSEQUENCES (TO ENVIROMENT)

ICARO

Risk parameter		Classification	Comments
Consequence	CA	A release with minor damage that is	A moderate leak from a flange or valve
(C)		not very severe but is large enough to be reported to plant management	Small scale liquid spill
			Small scale soil pollution without affecting ground water
	С _в	Release within the fence with significant damage	A cloud of obnoxious vapour travelling beyond the unit following flange gasket blow-out or compressor seal failure
	Cc	Release outside the fence with major damage which can be cleaned up quickly without significant lasting consequences	A vapour or aerosol release with or without liquid fallout that causes temporary damage to plants or fauna
	CD	Release outside the fence with	Liquid spill into a river or sea
		major damage which cannot be cleaned up quickly or with lasting consequences	A vapour or aerosol release with or without liquid fallout that causes lasting damage to plants or fauna
			Solids fallout (dust, catalyst, soot, ash)
			Liquid release that could affect groundwater

Table 4 - Risk Graph – Consequences to Enviroment

OCCUPANCY

Risk parameter		Classification	Comments		
Occupancy (F)	FA	Rare to more frequent	3 See comment 1 above.		
This is calculated by determining the proportional length of time the area exposed to the hazard is occupied during a normal working period.		exposure in the hazardous zone. Occupancy less than 0,1			
NOTE 1 If the time in the hazardous area is different depending on the shift being operated then the maximum should be selected.	F. Frequent to permanent				
NOTE 2 It is only appropriate to use F_A where it can be shown that the demand rate is random and not related to when occupancy could be higher than normal. The latter is usually the case with demands which occur at equipment start-up or during the investigation of abnormalities.	5	exposure in the hazardous zone			

Table 5 - Risk Graph – Occupancy

PROBABILITY OF AVOIDING THE HAZARDOUS SITUATION

Probability of avoiding the hazardous event (P) if the protection system fails to operate.	P _A	Adopted if all conditions in column 4 are satisfied	 4 P_A should only be selected if all the following are true: – facilities are provided to alert the operator that the SIS has failed;
	PB	Adopted if all the conditions are not satisfied	 independent facilities are provided to shut down such that the hazard can be avoided or which enable all persons to escape to a safe area;
			 the time between the operator being alerted and a hazardous event occurring exceeds 1 hour or is definitely sufficient for the necessary actions.

Table 6 - Risk Graph – Consequences

DEMAND RATE

Table 7 - Risk Graph – Demand rate

AVAILABILITY OF INDEPENDENT PROTECTION LAYERS (IPLS)

In case of availability of an IPL, this acts reducing the level of SIL allocated, because participates to the overall integrity objective. The Risk Reduction Factor of an IPL is the reciprocal of relevant PFD.

An IPL meets the following criteria (from IEC 61511):

- Specificity: the protection layer is designed to prevent or mitigate the consequences of one potentially hazardous event. Multiple causes may lead to the same hazardous event, and therefore multiple event scenarios may initiate action by an IPL;
- Independence: the protection layer is independent of other protection layers if it can be demonstrated that there is no potential for common cause or common mode failure with any other claimed IPL;
- Dependability: the protection layer can be counted on to do what it was designed to do by addressing both random failures and systematic failures during its design;
- Auditability: the protection layer is designed to facilitate regular validation of the protective functions.

Examples of IPL and relevant RRF are provided on the following table.

Independent Protection Layer	RRF
Pressure Safety Valve (PSV) ⁴	100
Rupture Diks	100
Basic Process Control Systems (independent)	10
SIF independent, allocated SIL 1 (PFDavg between 1*E-1 and 1*E-2	10
SIF independent, allocated SIL 2 (PFDavg between 1*E-2 and 1*E-3)	100
SIF independent, allocated SIL 3 (PFDavg between 1*E-3 e 1*E-4)	1000
Operator intervention (in presence of unambiguous alarm and enough time to evaluate and counteract)	10

Table 8 - IPL and relevant RRF

4.2.2 The Risk Matrix method

⁴ PSV shall be verified for the scenario under assessment ant relevant discharge shall be routed to a safe position.

One qualitative method that enables the SIL of a SIF to be determined is the Risk Matrix method. This method applies knowledge of the risk factors associated with the equipment under consideration and the equipment control system to make that determination.

Where a qualitative approach is adopted, a number of parameters are introduced that together describe the nature of the hazardous situation when safety systems fail or are not available. One parameter is chosen from each of four sets, and the selected parameters are then combined to derive the overall Safety Integrity Level allocated to the safety related systems. These parameters:

- allow a meaningful graduation of the risk to be made, and
- contain the key risk assessment factors.

The following simplified procedure is based on following relationship:

R = f x C

- **R (Risk)** is the combination (product) of occurrence of harm (frequency) and the severity of that harm (Consequence) and is considered, in this context, as having no safety-related systems in place.
- **f (Frequency)** is the hazard rate of the hazardous event with no safety-related systems in place, i.e., the number of hazardous event per unit time.
- **C** (**Consequence**) is the harm following an hazardous event (including ill health and injury, damage to property, products or the environment, production losses or increased liabilities).

RISK MATRIX FOR SIL REQUIREMENT ALLOCATION

The Risk Matrix has the duty to combine the Demand Rate for each logic function and the relevant Consequences in case of failure on Demand. The proposed matrix is showed below.

	Demand rate	SAFETY INTEGRITY LEVEL				
*	Frequent (possibly every year)	1	SIL 1	SIL 2	SIL 3	SIL 4
	Probable (Several times during life cycle)	2	SIL 1	SIL 1	SIL 2	SIL 3
	Rare (possibly one time in the life cycle)		No action	SIL 1	SIL 2	SIL 3
	Remote (not expected during life cycle)	4	No action	No action	SIL 1	SIL 2
			1	2	3	4
			Minor damage	Serious damage	Extensive damage	Large Scale damage

GRAVITY of CONSEQUENCES

NOTE*: If the hazard can be efficiently prevented by other measures, go one step below. Suitable prevention systems are the PSV. Alarms are considered as suitable system only if the alert is given with sufficient time interval to allow the operator taking the corrective actions. Otherwise derating is not allowed.

Table 9 - Risk Matrix for SIL Allocation

DEMAND RATE

The classification of Demand Rate is made according to the table below, showing also the application of some sample cases for frequency identification.

Frequency (event/year)	Demand Rate		Example
>1	1	Frequent	 Control valve travels to fail safe position Wrong action for a seldom practised operation Untightness of a check valve Failure of a pump / compressor Critical failure of a non-fail safe control loop
0.1 - 1	2	Probable	 Control valve travels against fail safe position Wrong action during frequent operation Failure of electric motor Failure of compressor's seal Tube rupture within a heat exchanger Critical failure of a fail-safe control loop Failure of DCS Total failure of a well maintained check valve
0.01 - 0.1	3	Rare	 Critical failure of a fail-safe PLC shut down Total failure of a check valve with special safety demands
< 0.01	4	Remote	 Has never been recorded in similar plants of the company

Table 10 - Risk Matrix - Demand Rate

For more detailed analysis, it is suggested to perform the evaluation of the Demand Rate by means of the Fault Tree techniques. The numerical results of Fault Tree Analysis are executed with specific software (e.g. the ASTRA - FTA, released by the European Joint Research Centre).

Reliability data for the analysis of the single events will be taken from industrial experience and from the internationally accepted sources, such as:

- Supplier's data;
- "The Cremer & Warner Report" 1981;
- DNV Technica, "E&P Forum Report" 1992;
- F.P. Lees, "Loss prevention in the chemical industry", IV Edition 1992;
- CCPS/AIChE;
- R&M consultant;
- SINTF 2003 "Reliability Data Instrumented System";
- Exida "Safety Equipment Reliability Handbook".

CONSEQUENCES

The classification of gravity of the consequences is made according a set of criteria which identify the risks in terms of human beings, the environment and the economic losses connected to the failure on demand of the logic function. The matrix for identification of gravity of consequences is indicated in the table below.

Selection of consequences gravity category is connected to the highest possible category for each analysed task (injuries, environment).

ICARO

	Gravity	Personnel	Environmental
1	Minor damage	Small/minor injuries	On unit release of non-toxic substance (low concentration at ground level)
2	Serious damage	Major injuries	On site release of toxic substances / Off Unit release of non-toxic substance
3	Extensive damage	At least one fatality and necessity for external treatment	Release of toxic substances on site and Off Unit.
4	Large Scale damage	Multiple fatalities	Large release of toxic substances on and Off Site

Table 11 - Risk Matrix - Gravity of consequences

If the hazard could be prevented by other technical measures (e.g. alarms on same or other process parameters), availability of other protection layers (e.g. presence of PSV), then the SIL Team has the possibility to reduce of one order the level of frequency of the expected event, reducing the SIL accordingly to the Matrix.

Regarding the Consequences for personnel, specific reference to the effective presence of the operator in the hazardous area is made in order to select the most appropriate level of consequences.

For this purpose, the following matrix is applicable. The matrix provides guidelines to establish the level of consequence to the personnel as function of the typology of incident and to differentiate the final consequence level in relation to the effective presence of personnel in the plant area.

The first step for this calculation is to use the table in the lower side of the matrix, which defines:

- by row the possible typology of scenario (fire/explosion, fragmentation, poisoning);
- by columns the possible dimension of the scenario (e.g. for the case of fire, three possible cases are suggested: flange leakage, pipe fitting rupture, release from process equipment, according to increasing level of consequences).

Once the typology of scenario is selected, it is necessary to select the Exposure time, in accordance to the indications provided by the table in the right side of the matrix. This table defines by rows two different level of exposure:

- rare exposure, which foresees that the permanence of personnel in the area of potential damage is limited in time (typical case is the area of a not permanently manned plant in which presence of personnel is foreseen only during maintenance and inspections)
- frequent exposure, which foresees that the area of potential damage is permanently manned (typical case is a control room or a manned control panel).

After selection of the two cases, it is necessary to pass through the main table and individuate the corresponding value of Consequence level.

For example, in the hypothesis that the scenario is a release from a flange in a not permanently manned area, the corresponding value of Consequence level is set equal to 1.

The philosophy at the base of such analysis is that in case the scenario is located in a not permanently manned area, the potential consequence for people are judged to be less critical than the same scenario where presence of people can be considered as permanent. The final consequence is therefore derated of one level, which at the end means also that required SIL for the protection loop is derated of one level.

	CONSEQUENCES FOR PERSONNEL				Exposure Time Risk		
	1	2	3	0.1	 Rare exposure in the endangered zone (10% of the time): only during inspections or maintenance if the remedial for accident does not require personnel in the endangered zone 		
	2	3	4	1	 Frequent or permanent exposure: manned control panel for machinery if the remedial for accident requires personnel in the endangered zone control room residential area if the extent of the accident is over the site fence 		
	CAUSES						
Risk of fire / explosion	Leakage at flange	Release from a pipe fitting	Major release from a process equipment				
Risk of fragmentation	No such risk	Damage of pressurised systems; fragmentation of minor equipment	Damage of pressurised systems; fragmentation of major equipment				
Risk of poisoning	Release of small amount of toxic substances	Minor release of toxic substances	Major release of toxic substances				

 Table 12 - Definition of Gravity of consequences for personnel

4.3 PHASE 2 – VERIFICATION

After the identification of SIL levels that each single trip logic has to satisfy, the SIL analysis requires the operative numerical check on the basis of the proposed design

In this stage, SIL Verification of each Safety Instrumented Function (SIF) shall be performed through the following steps:

- Logical representation of the SIF architecture;
- Gathering of the reliability data of each SIF component;
- Calculation of total PFD of SIF and verification that calculated PFD and relevant calculated SIL level are consistent with the requirement arisen in SIL Allocation phase;
- Verification of the architectural requirements (Hardware fault tolerance / Safe Failure Fraction) for each component of the SIF, as per paragraph 7.4.3 of IEC 61508-2 and tables 2 and 3 (subsystem of type A or B).

4.3.1 Representation of SIFs Architectures

In order to properly define the logical path that leads to a SIF unavailability (failure on demand), it is necessary to identify the architecture of each safety instrumented function.

For a correct and effective analysis, architectures of each SIF shall be sketched up showing:

- Sensors (e.g. pressure transmitters, etc.): in case of more than one sensor, the voting system shall be specified;
- Logic solver;
- Final Element/Elements (e.g. valves); in case of more than one sensor, the voting system shall be specified.

According to the voting system of the above mentioned elements, the logical diagram is drawn.

An example of SIF architecture sketch is shown in Attachment 2.

As far as final elements are concerned, it has to stressed that only the actions necessary to put in safe condition the system to be protected by the SIF have to be identified, neglecting all the complementary action which might be triggered by the same logic (shown in cause and effects matrixes).

All the actions not necessary to reach the safe condition of the system to be protected will not be taken into account in SIL Verification step, and thus they will be neglected in SIF Architecture definition.

4.3.2 Reliability Data collection

For every component of each Safety Instrumented Function reliability data shall be collected basing on the following sources:

- component's certificates (to be preferred, if available) or other technical documents provided by vendor;
- reliability data from Exida "Safety Equipment Reliability Handbook".

Main reliability data to be collected and used in PFD calculation are summarised in the following table.

Parameter	Description			
λ_{DD}	Dangerous Failure Rate – Detected			
λ _{ου}	Dangerous Failure Rate – Undetected			
MTTR	Mean Time To Restoration			
SFF	Safe failure fraction			
Tı	Time interval between proof tests			
ß	Fraction of undetected failures that have a common cause			
ß _D	Fraction of detected failures that have a common cause			

Table 13 - Main reliability data required for SIL Verification

If Common Cause Failure factors (β and β_D) for redundant elements are not available, it will be generally assumed as 5% of dangerous undetected failure rate.

It is generally assumed that maintenance capability is 100%, which means that repairable components are "as good as new" once restored after failure detection during maintenance.

Following table summarizes the main aspects to be clarified in order to properly use the data from components certificates or to correctly choose the reliability figures in previously mentioned Exida data base.

SIF Element	Information		
Sensor (e.g. level transmitter)	Displacement, radar, etc.		
Logic Solver	To be considered as overall package unit/ to be analysed in single sub- components (input module, output module, main processor / s etc.)		
Valve (solenoid)	2-ways, 3-ways, etc.		
	Linear, quarter turn, etc.		
Value (actuator)	Single effect (spring return), double acting, etc.		
Valve (actuator)	Pneumatic, hydraulic etc.		
	Provided with PVST (Partial Valve Stroke Test) or not		
	Ball, gate, etc.		
Valve (body)	Clean/ severe service		
	Close on trip/ open on trip		

SIF Element	Information		
	Fail open/ fail close		
	Required TSO or not		
	Provided with PVST (Partial Valve Stroke Test) or not		

Table 14 - Additional information required for SIL Verification

4.3.4 Reference for the selected reliability values

The reliability data shall be preferably taken from certificates / other technical documentation of the vendor.

The use of information from databank shall be limited as much as possible since it would lead to the following consequences:

- incertitude that the selected figures are effectively representative of the actual components;
- usually higher values of PFDavg leading to excessively conservative calculation.

In case that vendor's data are not available, the reliability data can be taken from the following source:

"Exida 2007: Safety Equipment Reliability Handbook, Exida – 3rd Edition, 2007".

4.3.5 Application of availability models in order to establish the overall PFD of the complete loop

Average value of Probability of Failure on Demand (PFD) calculation of the whole safety function is performed in accordance with IEC 61508-6.

In order to evaluate the overall PFD of the loop, following formula applies:

$$PFD_{SYS} = PFD_S + PFD_{LS} + PFD_{FE}$$

being:

- PFD_{SYS} Average Probability of Failure on Demand of Safety Function
- PFD_s Average Probability of Failure on Demand of Sensor
- PFD_{LS} Average Probability of Failure on Demand of Logic Solver
- PFD_{FE} Average Probability of Failure on Demand of Final Element

The average PFD calculation will be performed by means of software such as FTA-Pro by IHS, basing on Fault Tree Analysis (FTA) technique for quantitative calculation of systems unavailability.

Fault trees are built basing on the logic architecture of each Safety Instrumented Function analysed and using as input data the specific reliability figures collected for every component.

The Unavailability (Q) of the Safety Instrumented Function calculated at the medium point of mission time is assumed as average value of probability of failure on demand for the SIF under examination.

An example of FTA graphic outline and relevant calculation results is showed in Attachment 3.

In the following paragraphs some example of mathematical simplified formula for PFD calculation, as provided by IEC 61508-6, are described.

SINGLE ELEMENT (1 OO 1 LOGIC)

$$t_{CE} = \frac{\lambda_{DU}}{\lambda_D} \cdot \left(\frac{T_1}{2} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_D} \cdot MTTR$$
$$PFD_G = (\lambda_{DU} + \lambda_{DD}) \cdot t_{CE}$$

being:

• λ_D Element dangerous failure rate

- λ_{DD} Element dangerous failure rate detected
- λ_{DU} Element dangerous failure rate undetected
- MTTR Element Mean Time To Restoration
- T₁ Time interval between proof tests
- t_{CE} Channel Equivalent Mean Down Time
- PFD_G Average Probability of Failure on Demand of the group

REDUNDANT ELEMENTS (1 OO 2 LOGIC)

$$t_{CE} = \frac{\lambda_{DU}}{\lambda_{D}} \cdot (\frac{T_{1}}{2} + MTTR) + \frac{\lambda_{DD}}{\lambda_{D}} \cdot MTTR \quad t_{GE} = \frac{\lambda_{DU}}{\lambda_{D}} \cdot (\frac{T_{1}}{3} + MTTR) + \frac{\lambda_{DD}}{\lambda_{D}} \cdot MTTR$$
$$; PFD_{G} = 2 \cdot ((1 - \beta_{D}) \cdot \lambda_{DD} + (1 - \beta) \cdot \lambda_{DU})^{2} \cdot t_{CE} \cdot t_{GE} + \beta_{D} \cdot \lambda_{DD} \cdot MTTR + \beta \cdot \lambda_{DU} (\frac{T_{1}}{2} + MTTR)$$

being the parameters not defined in previous paragraph:

- t_{GE} Voted Group Equivalent Mean Down Time
- ß Fraction of undetected failures that have a common cause
- ß_D Fraction of detected failures that have a common cause

REDUNDANT ELEMENTS (2 OO 3 LOGIC)

$$t_{CE} = \frac{\lambda_{DU}}{\lambda_D} \cdot (\frac{T_1}{2} + MTTR) + \frac{\lambda_{DD}}{\lambda_D} \cdot MTTR \quad ; \\ t_{GE} = \frac{\lambda_{DU}}{\lambda_D} \cdot (\frac{T_1}{3} + MTTR) + \frac{\lambda_{DD}}{\lambda_D} \cdot MTTR \quad ; \\ PFD_G = 6 \cdot ((1 - \beta_D) \cdot \lambda_{DD} + (1 - \beta) \cdot \lambda_{DU})^2 \cdot t_{CE} \cdot t_{GE} + \beta_D \cdot \lambda_{DD} \cdot MTTR + \beta \cdot \lambda_{DU} (\frac{T_1}{2} + MTTR)$$

The parameters have been already defined in previous paragraphs.

4.3.6 PFD average requirement for Verification

The SIF designed is positively verified in case:

$$PFD_{SYS} = \geq PFD_{\text{Re quested}}$$

4.3.7 Architectural requirements for Verification

With reference to IEC 61511-1, apart from verification of calculated average PFD / calculated SIL level with the required PFD/ SIL level from SIL Allocation, there is a further requirement to be satisfied for every subcomponent of each safety instrumented function.

For all components, according to the Hardware Fault Tolerance available, the Safe Failure Fraction shall be inside the range correspondent to the SIL level required for the SIF.

The following tables show the SFF required for components of type A, elements with low complexity (sensors, final elements and non-PE logic solvers) or type B, elements with high complexity (PE logic solvers):

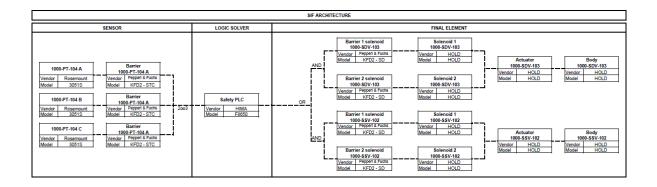
Safe Failure Fraction	Hardware fault tolerance				
Sale Failure Fraction	0	1	2		
< 60 %	SIL 1	SIL 2	SIL 3		
60% - < 90%	SIL 2	SIL 3	SIL 4		
90% - < 99%	SIL 3	SIL 4	SIL 4		
≥ 99%	SIL 3	SIL 4	SIL 4		

Table 15 - Hardware safety integrity: architectural constraints on type A safety-related subsystems (ref. Table 2 of IEC 61508-2)

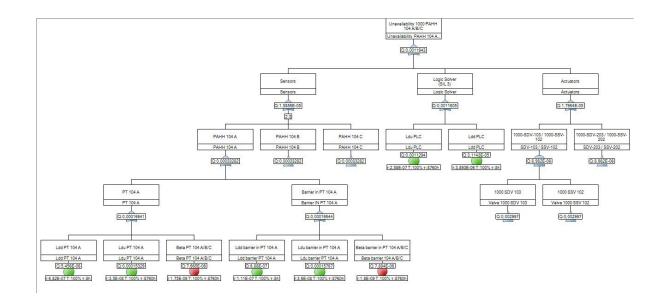
Hardware fault tolerance Safe Failure Fraction 0 1 2 Not < 60 % SIL 1 SIL 2 allowed 60% - < 90% SIL 1 SIL 2 SIL 3 90% - < 99% SIL 2 SIL 3 SIL 4 ≥ 99% SIL 3 SIL 4 SIL 4

Table 16 - Hardware Safety Integrity: architectural constraints on type B safety-related

subsystems (ref. Table 3 of IEC 61508-2)


ATTACHMENT 1 – SIL ALLOCATION WORKSHEET

Study		Unit				
		Unit				
Client		Equip	Equipment / Line from			
Meeting		Line to	Line to			
Leader		Funct				
Team			Presence od additional safety			
		barrie	barrier			
		C&E D	C&E Diagram n.			
		P&I D	P&I Diagram n.			
Notes						
Descript	Description of logic function			SIL	Assessment	
TAG initiator		Dema	nd rate			0
TAG logic solver		Conse	quences of	failure on den	nand (safety, environment)	0
TAG actuator		Calcul	ated SIL			
Design intent		Select	Selected SIL			
Demand scenario		Conse	Consequences of failure on demand			
Consequences of failure on demand		Calcul	Calculated AIL			
Consequences of spurious trip		Select	Selected AIL			
Notes						
Demand rate						
	1	Level of c	onsequence	es		
Safety						
Environment						
Asset						


Note: the matrix allows the possibility for the SIL Team to select a different SIL from the calculated one. The calculated SIL represents the rigorous value obtained from the loop architecture. The selection of the SIL Team might revise the calculated SIL in order to take into account other available devices in the process circuit that might prevent the request for the automatic trip (e.g. presence of alarms on same or other process variable).

ATTACHMENT 2 – EXAMPLE OF SIF ARCHITECTURE

ATTACHMENT 3 – EXAMPLE OF PFD CALCULATION BY FTA

