Altdorf BA3 - HW S Mauer

Freibordbemessung nach DVW K-Merkblatt 246/1997

Ermittlung der Wellenparameter

Bemessung für ein Stauziel von: 396,64 mNN
Stundenmittel der Windgeschwindigkeit(T25) w10,60min: 21,00 m/s
Faktor für die Umrechnung des Stundenmittels 1,20
Windgeschwindigkeit für maßg. Ausreifezeit w10,10min: 25,20 m/s
Wassertiefe am Absperbauwerk d: 1,10 m

			ľ
Streichlänge [km] S	Ausreifzeit [min] twi	Faktor für die Umrechnung des Stundenmittels für andere Ausreifzeiten	[
6	60	1,0	2
2	20	1,05	
1	10	1,1	[
0,5	5	1,2	8

]	Höhe	Stundenmittel der Windgeschwindigkeit w ₁₀ [m/s] über einer Wasserfläche, Wiederholungszeitspanne > 25 a						
	[mNN]	NN] windgeschützt normale Lage				wind	windexponiert	
		von	bis	von	bis	von	bis	
	200	14	20	20	25	25	28	
	400	16	21	21	26	26	30	
	600	18	22	22	28	28	31	
	800	20	24	24	29	29	34	

mittlere	Tiefe i e	nach	Sekto

Sektor	Winkel	Funktionswerte ai*	Spektralfaktoren ai	Streichlänge Si	mittlere Wassertiefe di	Streichlänge Si*	Dimensionslose Wassertiefe di*	mittlere Wellenhöhe hWe,i	ai x (hWe,i)²
	[°]			[m]	[m]	[m]	[m]	[m]	[m²]
	0	0,0000							
1			0,1538	53,39	0,92	0,8248	0,0142	0,11	0,0018
	55	0,1538	××××××××××××××××××××××××××××××××××××××						
2			0,2416	168,64	0,75	2,6051	0,0116	0,14	0,0050
	81	0,3954							
3			0,1124	301,50	0,56	4,6575	0,0087	0,13	0,0020
	91	0,5078						*****************	
4			0,1353	301,50	0,68	4,6575	0,0105	0,15	0,0030
	103	0,6430							
5	************	*************	0,0907	301,50	0,69	4,6575	0,0106	0,15	0,0020
	112	0,7337							
6			0,1304	240,39	1,22	3,7135	0,0188	0,19	0,0048
	128	0,8642							
7			0,0935	130,14	1,46	2,0104	0,0225	0,16	0,0025
	146	0,9576		•					
8			0,0424	32,62	1,12	0,5039	0,0172	0,09	0,0003
	180	1,0000							
Summe [m²]									0,02
mittlere Wellenhöhe hWe [m]									0,15
	mittlere Wellenperiode Twe [s]								1,11
	mittlere Wellenlänge lwe [m]								1,924

Start Iteration Iwe

Berechnung

lwe =

 (Zielwertsuche)
 0,000000

 Kontrolle der Annahme von tanh = 1,0
 0,9985

1,924

Ermittlung des Wellenauflaufs brandender Wellen

wasserseitige Böschung

Neigung 1: 0,00 Winkel α 89,94 $^{\circ}$

Böschungsrauheit gemäß Tabelle 5

glatte Bauweise kD*kR

Tab. 5: Böschungsrauheit (vgl. WAGNER, 1974)

Böschungsoberfläche

$$h_{We,x\%} = \sqrt{-\frac{4}{\pi} \cdot \ln\left(\frac{x}{100}\right)} \cdot \overline{h_{We}} = K_{h_{We}} \cdot \overline{h_{We}}$$
 (6)

(vgl. BATTJES, 1971)

mit x = Überschreitungswahrscheinlichkeit in %.

Überschreitungswahrscheinlichkeit für den Wellenauflauf:

Bauwerkstyp

Maß für die Überschreitungswahrscheinlichk

Koeffizient nach BATTJES

kx

entfällt

Umrechnugsfaktor

KhWe

Betonstaumauer

x

5%

kx

entfällt

2,0

Wellenauflauf nach Wagner

Auflauf schwingender Wellen

Annahme: glatte, nahezu senkrechte Wand -> hAu,x% = hWe,x% (vlg. Battjes)

hAu,x% = hWe,x% = 0,29 m

1,00

Tab. 4: Umrechnungsfaktoren k_{h,we} in Abhängigkeit der Überschreitungswahrscheinlichkeit für die Wellenhöhe

x (%)	1	2	5	10	H _S =H _{1/3}
$k_{h_{\text{We}}}$	2,4	2,2	2,0	1,7	1,6

Tab. 6: Überschreitungswahrscheinlichkeiten (x %) des Wellenauflaufes in Abhängigkeit vom Typ des Absperrbauwerkes und die zugehörigen Koeffizienten für den Auflauf brandender Wellen nach BATTJES (unter Annahme einer linearen Korrelation zwischen hwe und won ρ = 0,8)

Bauwerkstyp	x (%)	k _x
Staumauern, Wehre	5	entfällt
Steinschüttdämme mit erosions- beständiger Krone und Luftseite	2	2,2
Erddämme	1	2,4

Ermittlung der Windstauhöhe

mittlere Windgeschwindigkeit w10,10min: angesetzte Hauptwindrichtung

25,20 m/s aus Nord-West

$$h_{Wi} = \frac{W_{10}^2 \cdot S \cdot \cos(\beta)}{4861110 \cdot d}$$

Sektor	Winkel β zwischen Windrichtung und Streichlänge	maximale Streichlänge Si	mittlere Wassertiefe di (Gesamtgebiet ohne Flussschlauch)	Windstauhöhe hwi	
	[°]	[m]	[m]	[m]	
4	0 °	301,50	0,92	0,0430	

Ermittlung der erforderlichen Freibordhöhe f

f_{erf} = hAu + hWi + hSi (+ hEi)

 Wellenauflauf
 hAu
 0,29 m

 Windstau
 hwi
 0,04 m

 erforderliche Freibordhöhe
 ferf
 0,34 m

 Freibordhöhe - gewählt
 fgew
 0,35 m