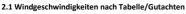

Freibordbemessung nach DVWK-Merkblatt 246/1997

1. Bemessungswasserstand


Bemessungswasserstand	Z _V =	661,40 m+NN	(Oberkante des Verschlusses der Hochwasserentlastungsanlage)
Böschungsneigung	m =	2,4	
	α =	22,54 °	

Der für die Freibordbemessung zugrunde liegende Bemessungswasserstand entspricht dem Stauziel Z_{V}

2. Bemessungswindgeschwindigkeit

Wenn über die Windgeschwindigkeiten keine Angaben zu erhalten sind, können für Deutschland die in nachfolgender Tabelle angegebenen Stundenmittel der Windgeschwindigkeit w10, die alle 25 Jahre erreicht oder überschritten werden , angenommen werden [DVW 246/1997, S.5]

Höhenlage		ca.		663	m+N
Lage			windgeschützt		
Windgeschwindigkeit	w _{10.60min} =			19	m/s

2.2 Ausreifezeit

mittlere Streichlänge S = 0,700 km

Die Ausreifezeit twi berechnet sich nährungsweise zu $t_{wi} = 10 \cdot S \ [min]$

Höhe	Stundenmittel der Windgeschwindigkeit w ₁₀ über einer Wasserfläche, Wiederholungszeitspanne > 25 a						
[mNN]	wind	geschützt	norm	ale Lage	windexponiert		
	von	bis	von	bis	von	bis	
200	14	20	20	25	25	28	
400	16	21	21	26	26	30	
600	18	22	22	28	28	31	
800	20	24	24	29	29	34	

Quelle: DVWK-Merkblatt 246/1997

2.3 Umrechnung des Stundenmittels der Windgeschwindigkeit für kürzere Ausreifezeiten und Streichlägen < 6 km

Faktor		1,15
Windgeschwindigkeit	w _{10,7min} =	21,85 m/s

Streichlänge [km] S	Ausreifzeit [min] twi	Faktor für die Umrechnung des Stundenmittels für andere Ausreifzeiten
6	60	1,0
2	20	1,05
1	10	1,1
0,5	5	1,2

3. Wellenprognose nach KRYLOW II

 $\label{thm:continuous} \mbox{Ergebnisse der Wellenprognose (Detailberechnung siehe Anlage auf Seite 2):}$

Mittl. Wellenhöhe	(h _{we})quer =	0,27 m
Mittl. Wellenperiode	(T _{we})quer =	1,70 s
Mittl Wellenlänge	(I_{w_0}) auer =	4 51 m

4. Freibordkomponenten

4.1 Windstau

Der Windstau kann pauschal mit hwi = 0,05 m angesetzt werden, wenn die in der Tabelle angegebenen Verhältnisse vorligen:

Windstauhöhe 0,05 m es wird der pauschale Ansatz von 0,05 m gewählt

Winkel zwischen maßgebender Windrichtung und der angesetzten Streichlänge (β)

In allen anderen Fällen wird diese mittel der ZUIDERSEEFORMEL berechnet

β= mittlere Wassertiefe d = 3,74 m Windstauhöhe 0,018 m h_{wi} =

mittlere Streichlänge S [m]	Wassertiefe d [m]
< 1500	> 6
< 3000	>10
< 6000	>20

Quelle: DVWK-Merkblatt 246/1997

$$h_{Wi} = \frac{W_{10}^{2} \cdot S \cdot \cos(\beta)}{4861110 \cdot d}$$

4.2 Wellenauflauf brandener Wellen nach HUNT (1959)

Festlegung des Wellencharakters nach IRRIBAREN

79,60 ° Grenzneigung $\alpha_{erenz} =$ $tan(\alpha_{grenz}) =$ 5,45 tan(α) = 0,41

Wellencharakter brandende Wellen

glatte Bauweisen (Betonplatten mit vergossenen Fugen, Asphaltbeton

Betonplatten mit offenen Fugen

 $wenn \, \tan \alpha < \tan \alpha_{grenz} \, \mathrm{dann}$ "brandende Wellen, sonst "schwingende Wellen"

1.0

0.95

0,90-0,95

0.80-0.90 0,75 - 0,85

0,60-0,65

0.55-0.65

An Staudämmen kommt es in der Regel zum Auflauf brandender Wellen

Für Böschungsneigungen flacher als 1:2 wird der Wellenauflauf nach folgender Gleichung berechnet

 $h_{Au,x\%} = k_D \cdot k_R \cdot k_x \cdot \sqrt{\overline{h_{We}} \cdot \overline{I_{We}}} \cdot \tan \alpha$ k_D * k_R = Böschungsrauheit 0,75 Bauwe Überso

			Quelle: DVWK-Merkblatt	246/1997
ufhöhe	h _{Au,1%} =	0,83 m	Bruchsteinschüttungen	0,55-0
			Schüttungen aus rundlichem Gesteinsmaterial, Asphaltrauhbauweise	0,60-0
chreitungswahrscheinlichkeit	kx,1% =	2,4	Kies	0,70-0
			Rasen, Sand	0,75 -
erkstyp = Erddämme	x % =	1	Pflaster mit offenen Fugen	0,80-0
			Thuster that vergosserien ragen	0,00 0

Bauwerkstyp	x (%)	kx
Staumauern, Wehre	5	entfällt
Steinschüttdämme mit erosionsbeständiger Krone und Luftseite	2	2,2
Erddämme	1	2,4

Quelle: DVWK-Merkhlatt 246/1997

4.3 Sicherheitszuschläge

Die Größe des Sicherheitszuschlags ist abhängig von der Art des Absperrbauwerks Für die Neuplanung von Staudämmen wird ein Sicherheitszuschlag von min. 0,50 m empfohlen [Arbeitshilfe zur DIN 19700 Hochwasserrückhaltebecken, LUBW 2007]

Sicherheitszuschlag 0,50 m

4.4 Eisstau

Auflau

Da Eisstau und Windbelastung nicht gleichzeitig auftreten, muss der ungünstigere Fall betrachtet werden. [Arbeitshilfe zur DIN 19700 Hochwasserrückhaltebecken, LUBW 2007]

Es wird davon ausgegangen, dass der Windstau + Wellenauflauf größer als ein möglicher Eisstau ist

Eisstau 0,00 m h_{Fi} =

5. Freibordberechnung

 $f = h_{Au} + h_{Wi} + h_{si}(+h_{Ei})$ Das Freibord berechnet sich zu:

Freibord 1,38 m (bezogen auf die Dammachse) Freibord 1,30 m (bezogen auf Wegrand)

Die Lage des Untersuchungspunktes P wurde so gewählt, dass sich erwartungsgemäß das sich die größten Werte für Windstau und Wellenauflauf ergeben. Auf eine Variation der Lage und Wiederholung des Verfahrens kann demnach verzichtet werden

Wellenprognose nach KRYLOW II

Wassertiefe am Punkt P

6 m

Sektor	Wassertiefe d _i	Winddauer t _E	Streichlänge S _i	Wink	el	Dimensionslose Streichlänge S _i *	Dimensionslose Wassertiefe d _i *	Spektralfaktor a _i	Mittlere Wellenhöhen (h _{We,i}) _{quer}	a _i *(h _{we,i}) _{quer} ² [m²]
	[m]	[s]	[m]	[°]	[rad]	[-]	[-]	[-]	[m]	[m²]
				0	0,00					
1	5,69	420	77	21	0,37	1,582	0,1169	0,0102	0,12	0,00013738
2	4,55	420	247	37	0,65	5,075	0,0935	0,0424	0,21	0,00179853
3	3,75	420	393	51	0,89	8,075	0,0771	0,0751	0,25	0,00487574
4	3,56	420	473	71	1,24	9,719	0,0732	0,1688	0,28	0,01279181
5	3,4	420	585	90	1,57	12,020	0,0699	0,2035	0,30	0,01816774
6	2,59	420	583	116	2,02	11,979	0,0532	0,2699	0,28	0,02161192
7	2,94	420	531	135	2,36	10,911	0,0604	0,1393	0,28	0,0110045
8	3,15	420	326	151	2,64	6,699	0,0647	0,0647	0,23	0,00347246
9	4,03	420	121	180	3,14	2,486	0,0828	0,0261	0,15	0,00055142
							, and the second	· · · · · · · · · · · · · · · · · · ·	Summe:	0,07441149

Mittl. Wellenhöhe (h_{We})_{quer} =

$$\overline{h_{We}} = \sqrt{\sum_{i=1}^{n} (a_i \cdot \overline{h_{We_i}})^2}$$

 $\overline{h_{\text{We},i}} = \frac{w_{10}^2 \cdot 0.16}{g} \cdot \left\{1 - \frac{1}{\left[1 + 0.006 \cdot \sqrt{S_i^*}\right]^2}\right\}$

Mittl. Wellenperiode $(T_{We})_{quer}$ =

$$\begin{array}{ll} \textbf{0,27} & \overline{h_{We}} = \sqrt{\sum\limits_{i=1}^{n}{(a_{i} \cdot \overline{h_{We,i}}^{2})}} \\ \textbf{1,70 s} & \overline{h_{We}} = \frac{6.2 \cdot w_{10} \cdot \pi}{g} \cdot \left[\frac{g \cdot \overline{h_{We}}}{w_{10}^{2}}\right]^{0.625} \end{array}$$

Mittl. Wellenlänge $(I_{We})_{quer}$ =

$$\text{4,51 m} \qquad \qquad \overline{|_{\text{We}} \approx \frac{g \cdot \overline{T_{\text{We}}}^2}{2 \cdot \pi} \cdot \tanh\left(\frac{2 \cdot \pi \cdot d}{\overline{|_{\text{We}}}}\right)}$$

$$S_i^{\star} = \frac{g \cdot S_i}{w_{10}^2}$$

Signifikante Wellenhöhe H_S ≈

0,43 m $H_{1/3} \approx (1.5975 - 0.5434 \cdot H_m/h) \cdot H_m$

Peakperiode $T_P \approx$

 $T_m \cong 0.85T_p$ 2,00 s

zu T_P korresp. Wellenlänge =

6,24 m
$$\lambda_P = \frac{g * T_P^2}{2 * \pi} * \tanh \frac{2 * \pi * d}{\lambda_P}$$

durch Iteration (Zielwertsuche)

0,00000 Abbruch bei ∆=0,000001 6,237737

H/L =

0,272 > 1/20 --> Flachwasser

