Straßenbauverwaltung Freistaat Bayern

Straße / Abschn.-Nr. / Station: B 470\_240\_0,125\_B 470\_260\_0,660

OU Lenkersheim

Bau-km 0 + 000 bis Bau-km 2 + 720

PROJIS-Nr.: 09/174702/00

# **FESTSTELLUNGSENTWURF**

# Wassertechnische Berechnungen

| aufgestellt:<br>Staatliches Bauamt Ansbach<br>Ansbach, den 20.10.2023 |  |
|-----------------------------------------------------------------------|--|
| Schmidt, Ltd. Baudirektor                                             |  |
|                                                                       |  |
|                                                                       |  |

# **INHALTSVERZEICHNIS**

| 1.   | Sachverhalt                               | 4  |
|------|-------------------------------------------|----|
| 1.1  | Straßenbauliche Beschreibung              | 4  |
| 1.2  | Geplantes Entwässerungssystem             | 4  |
| 1.3  | Wasserschutzgebiete                       | 5  |
| 1.4  | Überschwemmungsgebiet                     | 5  |
| 1.5  | Altlasten                                 | 5  |
| 1.6  | Vorübergehende Absenkung des Grundwassers | 6  |
| 2.   | Grundlagen                                | 6  |
| 2.1  | Vorschriften                              | 6  |
| 2.2  | Berechnungsgrößen                         | 6  |
| 2.3  | Bemessung der Regenrückhalteräume         | 7  |
| 3.   | Entwässerungsabschnitte                   | 8  |
| 5.1  | Entwässerungsabschnitt 1                  | 10 |
| 5.2  | Entwässerungsabschnitt 2                  | 11 |
| 5.3  | Entwässerungsabschnitt 3                  | 12 |
| 5.4  | Entwässerungsabschnitt 4                  | 13 |
| 5.5  | Entwässerungsabschnitt 5                  | 14 |
| 5.6  | Entwässerungsabschnitt 6                  | 15 |
| 5.7  | Entwässerungsabschnitt 7                  | 16 |
| 5.8  | Entwässerungsabschnitt 8                  | 17 |
| 5.9  | Entwässerungsabschnitt 9                  | 18 |
| 5.10 | Zusammenfassung                           | 19 |
| 5.11 | Außeneinzugsgebiete                       | 19 |
| 4.   | Hydraulische Nachweise                    | 21 |
| 4.1  | Drosselung                                | 21 |

# B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

# Ortsumgehung Lenkersheim

| 4.2      | Entlastung                                                 | 22           |
|----------|------------------------------------------------------------|--------------|
| 4.3      | Bemessung Mulden und Gewässerdurchlässe                    | 23           |
| 4.4      | Vorflutgräben                                              | 24           |
|          |                                                            |              |
|          |                                                            |              |
| Anlage 1 | Niederschlagsdaten                                         | Seite 1 - 2  |
| Anlage 2 | Reinigungsnachweis nach REwS                               | Seite 1 - 23 |
| Anlage 3 | Abflussminderung nach REwS                                 | Seite 1 - 23 |
| Anlage 4 | Volumenermittlung nach A 117                               | Seite 1 - 23 |
| Anlage 5 | Bemessung Gewässerdurchlässe                               | Seite 1 - 6  |
| Anlage 6 | Übersichtslageplan Hydraulischer Nachweis Grabensystem     | Plan 1 - 1   |
| Anlage 7 | Eingangsdaten Hydraulischer Nachweis Gräben und Durchlässe | Seite 1 - 1  |
| Anlage 8 | Hydraulischer Nachweis Gräben und Durchlässe               | Seite 1 - 41 |
| Anlage 9 | Hydraulischer Nachweis Düker                               | Seite 1 - 1  |

#### 1. Sachverhalt

# 1.1 Straßenbauliche Beschreibung

Die vorliegende Planung umfasst die Ortsumgehung (OU) Lenkersheim im Zuge der Bundesstraße (B) 470 von Station B 470 - 240 - 0,125 (Bau-km 0 + 000) bis Station B 470 - 260 - 0,660 (Bau-km 2 + 720).

Des Weiteren beinhaltet die Planung die höhenfreie Kreuzung eines landwirtschaftlichen Weges mit einem zugehörigen Überführungsbauwerk. Der Geh- und Radweg zwischen Lenkersheim und Mailheim wird mithilfe eines weiteren Bauwerkes unter der neuen Trasse der B 470 südlich des geplanten Kreisverkehres hindurchgeführt. Außerdem werden durch die Planung zerschnittene Wegeverbindungen wieder angeschlossen und das landwirtschaftliche Wegenetz wieder hergestellt.

Entsprechend der vorliegenden Verkehrsuntersuchung ergeben sich folgende Verkehrsstärken:

|                        | Ortsdu   | rchfahrt | Ortsumgehung<br>(Variante Süd) |       |  |  |
|------------------------|----------|----------|--------------------------------|-------|--|--|
|                        | DTV/24 h | SV/24 h  | ,                              |       |  |  |
| Bestand 2021           | 14.900   | 1.250    |                                |       |  |  |
| Prognose-Nullfall 2035 | 16.300   | 1.500    |                                |       |  |  |
| Planfall 2035          | 1.300    | 50       | 14.900                         | 1.450 |  |  |

## 1.2 Geplantes Entwässerungssystem

Das auf der Fahrbahn anfallende Niederschlagswasser wird breitflächig über Bankette und Böschungen in die parallel verlaufenden Entwässerungsmulden geleitet. Über die Böschungen der OU wird ein Teil des anfallenden Regenwassers zur Versickerung gebracht. Hierdurch wird neben einer Abflussminderung auch ein Reinigungseffekt erzielt.

Die Regenwasserrückhaltung wird neben einem zentralen Regenrückhaltebecken (RRB) überwiegend über kaskadenförmig angeordnete dezentrale Regenrückhaltegräben (RRG) umgesetzt. Die Entwässerungsmulden werden hierbei aufgeweitet, eingetieft und mittels 40 cm hoher Schwellen unterbrochen, um einen Einstau zu erzielen.

Aufgrund der Lage in einer Senke ist oberhalb der Anwesen der Seemühlstraße 10, 12, und 14 am Ostrand von Lenkersheim ein Regenrückhaltebecken mit einer 10-jährigen Sicherheit vorgesehen. Das RRB ist ohne Dauerstau konzipiert.

Die geplante Ortsumgehung durchkreuzt ein Grabensystem, über das die südlich der geplanten Trasse liegenden Außeneinzugsgebiete entwässert werden.

Seitens dem Wasserwirtschaftsamt Ansbach wurde eine Hochwassersicherheit von HQ<sub>10</sub> für die Dimensionierung der Durchlässe gefordert.

Die Bemessung der Regenwasserrückhaltung erfolgt auf Grundlage der ATV – DVWK A 117 i. V. m. den Ergänzungen der REwS und den Regenspenden aus dem KOSTRA-Atlas des Deutschen Wetterdienstes.

Der Nachweis der Behandlungserfordernis wurde entsprechend den Vorgaben der REwS i. V. m. der DWA-A 102 ermittelt.

Die weiteren Bemessungsgrundlagen sind den Richtlinien für die Entwässerung von Straßen (REwS 2021) entnommen.

## 1.3 Wasserschutzgebiete

Die geplante Trasse der B 470 liegt nicht innerhalb von Wasserschutzgebieten.

# 1.4 Überschwemmungsgebiet

Innerhalb der Baustrecke liegen keine vorläufig gesicherten oder festgesetzten Überschwemmungsgebiete. Das nächst liegende festgesetzte Überschwemmungsgebiet liegt nördlich des Ortsteiles Lenkersheim, an der Aisch (Gewässer II. Ordnung) von Fluss-km 73,843 bis 82,220 und von Fluss-km 59,760 bis Fluss-km 73,843.

#### 1.5 Altlasten

Altlasten im Baufeld sind dem Staatlichen Bauamt Ansbach nicht bekannt.

#### 1.6 Vorübergehende Absenkung des Grundwassers

Bei den Baugrunduntersuchungen wurde ein Grundwasserspiegel ermittelt, der unterhalb der Gründungssohlen für die Verkehrswege und der Bauwerke liegt. Lediglich im Bereich der Unterführung ist ggf. eine Grundwasserabsenkung erforderlich. Mit lokalem Schicht- und Kluftwasser muss gerechnet werden.

# 2. Grundlagen

#### 2.1 Vorschriften

Für die Ausarbeitung der hydraulischen Berechnung wurden die einschlägigen Vorschriften und Richtlinien, die für die Ableitung und Behandlung von Straßenoberflächenwässern zu berücksichtigen sind, herangezogen.

- Richtlinien für die Entwässerung von Straßen (REwS), Ausgabe 2021
- ATV-DVWK-Regelwerk A 117, Ausgabe April 2006
   Richtlinien für die Bemessung von Regenrückhalteräumen
- Arbeitsblatt DWA-A 102/BWK-A 3
   Grundsätze zur Bewirtschaftung und Behandlung von Regenwetterabflüssen zur Einleitung in Oberflächengewässer, Dezember 2020
  (Qualitative Nachweisführung)
   i. V. m.
- ATV-DVWK-M 153
   Handlungsempfehlungen zum Umgang mit Regenwasser, August 2007
   (Quantitative Nachweisführung)

#### 2.2 Berechnungsgrößen

Bemessung Abfluss der Straßenmulden:

#### Ortsumgehung Lenkersheim

Bemessungsregenspende  $r_{15,1} = 113,3 \text{ l/(s} \cdot \text{ha)}$ Dauerstufe nach KOSTRA-Atlas für T = 1, Dauerstufe 15 min = 10,2 mm  $r_{15,1} = 10,2 \cdot 10.000 \text{ / }60 \text{ / }15$  = 113,3 l/(s · ha)

#### Spezifische Versickerungsraten:

Bewachsene Dammböschung: 100 l/(s · ha)
 Bankette 10 l/(s · ha)
 Einschnittsböschungen (anstehender bindiger Boden) 1 · 10<sup>-6</sup> m/s

### Bemessung Gewässerdurchlässe:

Die notwendigen Gewässerdurchlässe für die Vorflutgräben sind auf ein 10-jährliches Hochwasser dimensioniert.

## Bemessung zentrales RRB (St. 2+230):

Überschreitungshäufigkeit n = 0,10Zuschlagsfaktor  $f_z$  = 1,2

## Bemessung dezentrale RRG (entlang der Ausbaustrecke):

Überschreitungshäufigkeit n = 0,33Zuschlagsfaktor (außerörtliche Straßen)  $f_z$  = 1,0

#### Nachweis Behandlungserfordernis:

Kritische Regenspende  $r_{krit} = 15 l/(s \cdot ha)$ 

#### Hydraulischer Nachweis Vorflutgräben:

Überschreitungshäufigkeit n: 1,00 bis 0,33 Basisabflussspende Außeneinzugsgebiete  $q_B$ : 8 l/(s · km²)

#### 2.3 Bemessung der Regenrückhalteräume

Gemäß REwS wird aufgrund der Ableitung über Böschungen und Bankette eine entsprechende Abflussminderung berücksichtigt.

Für den abgeminderten Abfluss wird nach der REwS die äquivalente undurchlässige Fläche ermittelt, welche anschließend der A117-Berechnung zu Grunde gelegt wird.

$$A_u = \frac{Q_{abgemindert}}{qr_{15,n=1}}$$

Die Regenrückhalteräume berechnen sich nach ATV-DVWK A 117 i. V. m. den ergänzenden Vorgaben der REwS.

Das nach DWA-A 117 berechnete Rückhaltevolumen liegt der Anlage bei.

Der Bemessung des zentralen Regenrückhaltebeckens liegt ein Zuschlagsfaktor von  $f_Z$  = 1,2 zu Grunde.

Bei außerörtlichen Straßen ist nach REwS keine zusätzliche Erhöhung des erforderlichen Rückhaltevolumens mittels Zuschlagsfaktor erforderlich. Für die Bemessung der Regenrückhaltegräben wird der Zuschlagsfaktor daher mit  $f_Z$  = 1,0 angesetzt.

Bei den Regenrückhaltegräben werden die in der Anlage berechneten Rückhaltevolumen um den Zuschlagsfaktor reduziert.

Für die Bemessung der RRGs gilt somit:

$$V_{\text{erf.,RRG}} = \frac{V_{\text{erf.,A117}}}{1,2}$$

Der zulässige Maximalabfluss aus den Regenrückhalteanlagen ist entsprechend ATV-DVWK M 153 mit  $Q_{Dr, max} = e_w \cdot MQ \cdot 1.000$  in I/s ermittelt.

Für die Vorflutgräben ergeben sich jeweils

$$Q_{Dr, max} = 3 \cdot 0.02 \cdot 1.000 = 60 \text{ l/s}.$$

Der Drosselabfluss wird nach folgender Formel berechnet:

$$Q_{Dr} = q_R \cdot A_u \text{ in I/s}$$

Die Vorflutgräben werden jeweils mit  $q_R = 15 l/(s \cdot ha)$  angesetzt.

## 3. Entwässerungsabschnitte

Die Entwässerungsabschnitte für die Verlegung der B 470 ergeben sich aus der Topografie, der Straßenplanung in Lage, Höhe und Trassierung sowie aus den zur Verfügung stehenden Vorflutmöglichkeiten und den daraus entstehenden Teileinzugsgebieten.

Es ergeben sich 9 Entwässerungsabschnitte. Diese Abschnitte sind in der Unterlage 8 dargestellt.

Vorfluter sind die Vorflutgräben zur Aisch bzw. ihrem Flutkanal.

| Entwässerungs-<br>abschnitt | Station                                                          | Einzugsgebiet | Vorfluter                                   | Lfd. Nr.<br>der Einleit-<br>stelle | Gewässerfolge                                          |  |  |
|-----------------------------|------------------------------------------------------------------|---------------|---------------------------------------------|------------------------------------|--------------------------------------------------------|--|--|
| 1                           | 0 + 000 - 0 + 926                                                | 1 + 3         | Vorflutgraben 1                             | 1                                  | VG 1 → Grundlochgraben → Aisch - Flutkanal             |  |  |
| 2                           | 0 + 000 - 0 + 490<br>(B 470)<br>0 + 000 - 0 + 220<br>(OA West)   | 2             | Vorflutgraben 2                             | 2                                  | VG 2 → VG 1 → Grundlochgraben → Aisch - Flut-<br>kanal |  |  |
| 3                           | 0 + 926 – 1 + 242                                                | 4 + 5         | Erlbach                                     | 3                                  | Erlbach → Kronengraben → Aisch - Flutkanal             |  |  |
| 4                           | 1 + 242 – 1 + 385                                                | 6             | Kronengraben                                | 4                                  | Kronengraben → Aisch - Flutkanal                       |  |  |
| 5                           | 1 + 385 – 1 + 782                                                | 7 + 8         | Vorflutgraben 3                             | 5                                  | VG 3 → Kronengraben → Aisch - Flutkanal                |  |  |
| 6                           | 1 + 782 – 2 + 026                                                | 9             | Vorflutgraben 4                             | 6                                  | VG 4 → VG 3 → Kronengraben → Aisch - Flutkanal         |  |  |
| 7                           | 2 + 026 - 2 + 360<br>0 + 020 - 0 + 390<br>(OA Ost, KVP, St 2252) | 10            | Vorflutgraben 5                             | 7                                  | VG 5 → Aisch                                           |  |  |
| 8                           | 2 + 360 – 2 + 790                                                | 11            | Rohrgraben                                  | 8                                  | Rohrgraben → Aisch                                     |  |  |
| 9                           | 0 + 390 – 0 + 415 (St<br>2252)                                   | 12            | Anschluss best. Straßenentwässerung St 2252 |                                    |                                                        |  |  |

## 3.1 Entwässerungsabschnitt 1

Der Entwässerungsabschnitt 1 teilt sich in zwei Einzugsgebiete (EZG 1 und 3).

Durch die breitflächige Ableitung über die Böschungen und Mulden bildet sich bei der kritischen Regenspende von r<sub>krit</sub> = 15 l/(s·ha) kein Abfluss, sodass nach REwS eine ausreichende Vorreinigung erfolgt und auf eine weitergehende Regenwasserbehandlungsanlage verzichtet werden kann. Der Nachweis liegt der Anlage bei.

Berechnung des erforderlichen Rückhaltevolumens bei zu Grunde gelegter Überschreitungshäufigkeit n = 0.33 mit  $f_z = 1.0$ :

| Entwässerungs-<br>abschnitt | Entwässerungs-<br>mulde                      | EZG<br>Station von - bis  | A <sub>E</sub> | Q (nach Abfluss-<br>minderung) | Äquivalentes A <sub>u</sub> | Q <sub>Dr</sub> | V <sub>erf.</sub> nach A117 |
|-----------------------------|----------------------------------------------|---------------------------|----------------|--------------------------------|-----------------------------|-----------------|-----------------------------|
| [Nr.]                       | [-]                                          | [-]                       | [ha]           | [l/s]                          | [ha]                        | [l/s]           | [m³]                        |
| 4                           | EZG 1 links<br>+<br>rechts bis Blo-<br>ckade | 520 – 780<br>+<br>0 – 520 | 1,50           | 119                            | 1,05                        | 15,8            | 195                         |
| '                           | EZG 1 rechts ab<br>Blockade                  | 520 – 770                 | 0,48           | 34                             | 0,30                        | 4,5             | 56                          |
|                             | EZG 3 links                                  | 770 - 935                 | 0,19           | 10                             | 0,08                        | 1,3             | 17                          |
|                             | EZG 3 rechts                                 | 770 - 920                 | 0,28           | 18                             | 0,16                        | 2,4             | 30                          |

Das erforderliche Rückhaltevolumen wird jeweils über beidseitige Regenrückhaltegräben mit 40 cm hohen Schwellen bereitgestellt. Um das erforderliche Rückhaltevolumen im EZG 1 bereitstellen zu können, ist eine beidseitige Aufteilung mittels Rohrdurchlass und Blockade (St. 0 + 520) zwischen den Regenrückhaltegräben vorgesehen.

| Lfd. Nr.<br>der RRA | Entwässerungsmulde/<br>Regenrückhaltegraben | RRG<br>Station von - bis | RRG-<br>Länge | RRG-<br>Breite | $Q_{Dr}$ | Schwellen-<br>anzahl | Gepl. Volumen | Einleitstelle / Vorfluter |
|---------------------|---------------------------------------------|--------------------------|---------------|----------------|----------|----------------------|---------------|---------------------------|
| [Nr.]               | [-]                                         | [-]                      | [m]           | [m]            | [l/s]    | [-]                  | [m³]          | [-]                       |
| 1                   | EZG 1 links                                 | 540 - 770                | 230           | 4,0            | 15,8     | 4                    | 200           |                           |
| 2                   | EZG 1 rechts                                | 525 - 760                | 235           | 2,0            | 4,5      | 2                    | 70            | St. 0 + 780               |
| 3                   | EZG 3 links                                 | 805 – 860                | 55            | 2,0            | 1,3      | 1                    | 20            | Vorflutgraben 1           |
| 4                   | EZG 3 rechts                                | 770 - 895                | 125           | 2,0            | 2,4      | 2                    | 40            |                           |

Aus höhentechnischen Gründen ist eine Eintiefung des Vorfluters um max. 60 cm erforderlich. Der Anpassungsbereich erstreckt sich über etwa 180 m.

# 3.2 Entwässerungsabschnitt 2

Dem Entwässerungsabschnitt 2 ist das Einzugsgebiet 2 zugeordnet.

Durch die breitflächige Ableitung über die Böschungen und Mulden bildet sich bei der kritischen Regenspende von r<sub>krit</sub> = 15 l/(s·ha) kein Abfluss, sodass nach REwS eine ausreichende Vorreinigung erfolgt und auf eine weitergehende Regenwasserbehandlungsanlage verzichtet werden kann. Der Nachweis liegt der Anlage bei.

Berechnung des erforderlichen Rückhaltevolumens bei zu Grunde gelegter Überschreitungshäufigkeit n = 0.33 mit  $f_z = 1.0$ :

| Entwässerungs-<br>abschnitt | Entwässerungs-<br>mulde                      | EZG<br>Station von - bis                   | A <sub>E</sub> | Q (nach Abfluss-<br>minderung) | Äquivalentes A <sub>u</sub> | Q <sub>Dr</sub> | V <sub>erf.</sub> nach A117 |
|-----------------------------|----------------------------------------------|--------------------------------------------|----------------|--------------------------------|-----------------------------|-----------------|-----------------------------|
| [Nr.]                       | [-]                                          | [-]                                        | [ha]           | [l/s]                          | [ha]                        | [l/s]           | [m³]                        |
|                             | EZG 2 links                                  | (+ 020 – 220<br>Abfahrt Lenk.)             | 0,17           | 6                              | 0,05                        | 0,8             | 9                           |
| 2                           | EZG 2 rechts<br>+<br>links bis Blo-<br>ckade | 020 – 220<br>Abfahrt Lenk.<br>+<br>0 – 490 | 0,78           | 54                             | 0,48                        | 7,2             | 89                          |

Das erforderliche Rückhaltevolumen wird in der rechten Entwässerungsmulde über einen Regenrückhaltegraben mit 40 cm hohen Schwellen entlang der Abfahrt Lenkersheim bereitgestellt. Mittels Rohrdurchlass und Blockade (St. 0 + 020 Abf. Lenk.) erfolgt eine Überleitung des anfallenden Niederschlagswassers aus dem Einschittsbereich (linke Mulde St. 0 bis 490) in den RRG.

| Lfd. Nr.<br>der<br>RRA | Entwässerungsmulde/<br>Regenrückhaltegraben | RRG<br>Station von - bis    | RRG-<br>Länge | RRG-<br>Breite | Q <sub>Dr</sub> | Schwellen-<br>anzahl | Gepl. Volumen | Einleitstelle / Vorfluter                 |
|------------------------|---------------------------------------------|-----------------------------|---------------|----------------|-----------------|----------------------|---------------|-------------------------------------------|
| [Nr.]                  | [-]                                         | [-]                         | [m]           | [m]            | [l/s]           | [-]                  | [m³]          | [-]                                       |
| -                      | EZG 2 links                                 | Keine Rückhal-<br>tung erf. | -             | -              | -               | -                    | -             | St. 0 + 220 Abf. Lenk.<br>Vorflutgraben 2 |
| 5                      | EZG 2 rechts                                | 030 - 210                   | 180           | 3,0            | 7,2             | 6                    | 90            | vornutgraben 2                            |

## 3.3 Entwässerungsabschnitt 3

Der Entwässerungsabschnitt 3 teilt sich in zwei Einzugsgebiete (EZG 4 und 5). Durch die breitflächige Ableitung über die Böschungen und Mulden bildet sich bei der kritischen Regenspende von  $r_{krit}$  = 15 l/(s·ha) kein Abfluss, sodass nach REwS eine ausreichende Vorreinigung erfolgt und auf eine weitergehende Regenwasserbehandlungsanlage verzichtet werden kann. Der Nachweis liegt der Anlage bei.

Berechnung des erforderlichen Rückhaltevolumens bei zu Grunde gelegter Überschreitungshäufigkeit n = 0.33 mit  $f_z = 1.0$ :

| Entwässerungs-<br>abschnitt | Entwässerungs-<br>mulde | EZG<br>Station von - bis | AE   | Q (nach Abfluss-<br>minderung) | Äquivalentes A <sub>u</sub> | $Q_{Dr}$ | V <sub>erf.</sub> nach A117 |
|-----------------------------|-------------------------|--------------------------|------|--------------------------------|-----------------------------|----------|-----------------------------|
| [Nr.]                       | [-]                     | [-]                      | [ha] | [l/s]                          | [ha]                        | [l/s]    | [m³]                        |
|                             | EZG4 - links            | 935 - 1040               | 0,18 | 12                             | 0,10                        | 1,6      | 18                          |
| ,                           | EZG4 - rechts           | 920 - 1020               | 0,20 | 7                              | 0,06                        | 1,0      | 11                          |
| ٥                           | EZG5 - links            | 1040 - 1240              | 0,36 | 24                             | 0,21                        | 3,2      | 39                          |
|                             | EZG5 - rechts           | 1020 - 1250              | 0,24 | 8                              | 0,07                        | 1,1      | 13                          |

In den Entwässerungsmulden rechts zur B 470 ist die Bagatellgrenze nach M153 (V<sub>erf.</sub> < 10 m³) annähernd erfüllt, sodass jeweils auf eine Rückhaltung verzichtet wird. Das erforderliche Rückhaltevolumen in den Entwässerungsmulden links zur B 470 wird jeweils über beidseitige Regenrückhaltegräben mit 40 cm hohen Schwellen bereitgestellt.

| Lfd. Nr.<br>der<br>RRA | Entwässerungsmulde/<br>Regenrückhaltegraben |                             | RRG-<br>Länge | RRG-<br>Breite | $Q_{Dr}$ | Schwellen-<br>anzahl | Gepl. Volumen | Einleitstelle / Vorfluter |
|------------------------|---------------------------------------------|-----------------------------|---------------|----------------|----------|----------------------|---------------|---------------------------|
| [Nr.]                  | [-]                                         | [-]                         | [m]           | [m]            | [l/s]    | [-]                  | [m³]          | [-]                       |
| 6                      | EZG4 - links                                | 940 - 1015                  | 75            | 2,0            | 1,6      | 2                    | 20            |                           |
| -                      | EZG4 - rechts                               | Keine Rückhal-<br>tung erf. | -             | -              | -        | -                    | 1             | St. 1 + 040               |
| 7                      | EZG5 - links                                | 1050 - 1180                 | 130           | 2,0            | 3,2      | 1                    | 40            | Erlbach                   |
| -                      | EZG5 - rechts                               | Keine Rückhal-<br>tung erf. | -             | -              | ı        | -                    | 1             |                           |

Der bestehende Wirtschaftsweg abseits der geplanten Bundesstraße wird verbreitert und asphaltiert. Es findet nur eine geringe Erhöhung der befestigten Flächen statt. Die Entwässerung der Wirtschaftswegsflächen soll wie im Bestand über die breitflächige Ableitung in die parallel verlaufenden Gräben, bzw. breitflächige Versickerung in den angrenzenden Grün- und Ackerflächen erfolgen.

## 3.4 Entwässerungsabschnitt 4

Dem Entwässerungsabschnitt 4 ist das Einzugsgebiet 6 zugeordnet.

Durch die breitflächige Ableitung über die Böschungen und Mulden bildet sich bei der kritischen Regenspende von r<sub>krit</sub> = 15 l/(s·ha) kein Abfluss, sodass nach REwS eine ausreichende Vorreinigung erfolgt und auf eine weitergehende Regenwasserbehandlungsanlage verzichtet werden kann. Der Nachweis liegt der Anlage bei.

Berechnung des erforderlichen Rückhaltevolumens bei zu Grunde gelegter Überschreitungshäufigkeit n = 0.33 mit  $f_z = 1.0$ :

| Entwässerungs-<br>abschnitt | Entwässerungs-<br>mulde | EZG<br>Station von - bis | AE   | Q (nach Abfluss-<br>minderung) | Äquivalentes A <sub>u</sub> | $Q_{Dr}$ | V <sub>erf.</sub> nach A117 |
|-----------------------------|-------------------------|--------------------------|------|--------------------------------|-----------------------------|----------|-----------------------------|
| [Nr.]                       | [-]                     | [-]                      | [ha] | [l/s]                          | [ha]                        | [l/s]    | [m³]                        |
| 1                           | EZG 6 links             | 1240 - 1370              | 0,20 | 15                             | 0,13                        | 2,0      | 24                          |
| 4                           | EZG 6 rechts            | 1250 - 1400              | 0,11 | 4                              | 0,03                        | 0,5      | 5                           |

In der Entwässerungsmulde rechts zur B 470 ist die Bagatellgrenze nach M153 (Verf. < 10 m³) erfüllt, sodass keine Rückhaltung erforderlich wird.

Das erforderliche Rückhaltevolumen aus der Entwässerungsmulde links zur B 470 wird entlang des Wirtschaftsweges parallel zum Kronengraben, nördlich der Überführung über einen Regenrückhaltegraben mit 40 cm hohen Schwellen bereitgestellt.

| Lfd. Nr.<br>der<br>RRA | Entwässerungsmulde/<br>Regenrückhaltegraben | RRG<br>Station von - bis                 | RRG-<br>Länge | RRG-<br>Breite | $Q_{Dr}$ | Schwellen-<br>anzahl | Gepl. Volumen | Einleitstelle / Vorfluter |
|------------------------|---------------------------------------------|------------------------------------------|---------------|----------------|----------|----------------------|---------------|---------------------------|
| [Nr.]                  | [-]                                         | [-]                                      | [m]           | [m]            | [l/s]    | [-]                  | [m³]          | [-]                       |
| 8                      | EZG 6 links                                 | 20 -130 (Graben<br>Richtung Nor-<br>den) | 110           | 2,0            | 2,0      | 4                    | 30            | St. 1 + 270               |
| -                      | EZG 6 rechts                                | Keine Rückhal-<br>tung erf.              | -             | -              | -        | -                    | -             | Kronengraben              |

Der bestehende Wirtschaftsweg abseits der geplanten Bundesstraße wird verbreitert und asphaltiert. Es findet nur eine geringe Erhöhung der befestigten Flächen statt. Die Entwässerung der Wirtschaftswegsflächen soll wie im Bestand über die breitflächige Ableitung in die parallel verlaufenden Gräben, bzw. breitflächige Versickerung in den angrenzenden Grün- und Ackerflächen erfolgen.

# 3.5 Entwässerungsabschnitt 5

Der Entwässerungsabschnitt 5 teilt sich in zwei Einzugsgebiete (EZG 7 und 8). Durch die breitflächige Ableitung über die Böschungen und Mulden bildet sich bei der kritischen Regenspende von r<sub>krit</sub> = 15 l/(s·ha) kein Abfluss, sodass nach REwS eine ausreichende Vorreinigung erfolgt und auf eine weitergehende Regenwasserbehandlungsanlage verzichtet werden kann. Der Nachweis liegt der Anlage bei.

Berechnung des erforderlichen Rückhaltevolumens bei zu Grunde gelegter Überschreitungshäufigkeit n = 0.33 mit  $f_z = 1.0$ :

| Entwässerungs-<br>abschnitt | Entwässerungs-<br>mulde | EZG<br>Station von - bis | A <sub>E</sub> | Q (nach Abfluss-<br>minderung) | Äquivalentes A <sub>u</sub> | $Q_{Dr}$ | V <sub>erf.</sub> nach A117 |
|-----------------------------|-------------------------|--------------------------|----------------|--------------------------------|-----------------------------|----------|-----------------------------|
| [Nr.]                       | [-]                     | [-]                      | [ha]           | [l/s]                          | [ha]                        | [l/s]    | [m³]                        |
|                             | EZG7 - links            | 1370 - 1650              | 0,46           | 29                             | 0,26                        | 3,9      | 48                          |
| 5                           | EZG7 - rechts           | 1400 - 1650              | 0,21           | 6                              | 0,06                        | 0,9      | 11                          |
| 3                           | EZG8 - links            | 1650 - 1785              | 0,23           | 18                             | 0,16                        | 2,4      | 30                          |
|                             | EZG8 - rechts           | 1645 - 1785              | 0,19           | 13                             | 0,12                        | 1,8      | 23                          |

In den Entwässerungsmulde rechts zur B 470 des EZG 7 ist die Bagatellgrenze nach M153 (V<sub>erf.</sub> < 10 m³) annähernd erfüllt, sodass auf eine Rückhaltung verzichtet wird. Das erforderliche Rückhaltevolumen in den übrigen Entwässerungsmulden wird jeweils über beidseitige Regenrückhaltegräben mit 40 cm hohen Schwellen bereitgestellt.

| Lfd. Nr.<br>der<br>RRA | Entwässerungsmulde/<br>Regenrückhaltegraben | RRG<br>Station von - bis    | RRG-<br>Länge | RRG-<br>Breite | $Q_{Dr}$ | Schwellen-<br>anzahl | Gepl. Volumen | Einleitstelle / Vorfluter      |
|------------------------|---------------------------------------------|-----------------------------|---------------|----------------|----------|----------------------|---------------|--------------------------------|
| [Nr.]                  | [-]                                         | [-]                         | [m]           | [m]            | [l/s]    | [-]                  | [m³]          | [-]                            |
| 9                      | EZG7 - links                                | 1510 - 1640                 | 130           | 2,5            | 3,9      | 1                    | 50            |                                |
| -                      | EZG7 - rechts                               | Keine Rückhal-<br>tung erf. | -             | -              | -        | -                    | -             | St. 1 + 650<br>Vorflutgraben 3 |
| 10                     | EZG8 - links                                | 1660 - 1685                 | 25            | 5              | 2,4      | 1                    | 30            | vornutgraben 3                 |
| 11                     | EZG8 - rechts                               | 1650 - 1675                 | 25            | 6              | 1,8      | 2                    | 25            |                                |

Der bestehende Wirtschaftsweg abseits der geplanten Bundesstraße wird verbreitert und asphaltiert. Es findet nur eine geringe Erhöhung der befestigten Flächen statt. Die Entwässerung der Wirtschaftswegsflächen soll wie im Bestand über die breitflächige Ableitung in die parallel verlaufenden Gräben, bzw. breitflächige Versickerung in den angrenzenden Grün- und Ackerflächen erfolgen.

## 3.6 Entwässerungsabschnitt 6

Dem Entwässerungsabschnitt 6 ist das Einzugsgebiet 9 zugeordnet.

Durch die breitflächige Ableitung über die Böschungen und Mulden bildet sich bei der kritischen Regenspende von r<sub>krit</sub> = 15 l/(s·ha) kein Abfluss, sodass nach REwS eine ausreichende Vorreinigung erfolgt und auf eine weitergehende Regenwasserbehandlungsanlage verzichtet werden kann. Der Nachweis liegt der Anlage bei.

Berechnung des erforderlichen Rückhaltevolumens bei zu Grunde gelegter Überschreitungshäufigkeit n = 0.33 mit  $f_z$  = 1.0:

| Entwässerungs- | Entwässerungs- | EZG               | Λ_             | Q (nach Abfluss- | Äquivalentes Λ              | $Q_{Dr}$    | V <sub>erf.</sub> nach A117 |
|----------------|----------------|-------------------|----------------|------------------|-----------------------------|-------------|-----------------------------|
| abschnitt      | mulde          | Station von - bis | A <sub>E</sub> | minderung)       | Aquivalentes A <sub>u</sub> | <b>Q</b> Dr | Verf. Hach ATT              |
| [Nr.]          | [-]            | [-]               | [ha]           | [l/s]            | [ha]                        | [l/s]       | [m³]                        |
| 6              | EZG9 - links   | 1785 - 2020       | 0,40           | 26               | 0,23                        | 3,5         | 43                          |
|                | EZG9 - rechts  | 1785 - 2020       | 0,33           | 18               | 0,16                        | 2,4         | 30                          |

Das erforderliche Rückhaltevolumen wird in der linken Entwässerungsmulde über einen Regenrückhaltegraben mit 40 cm hohen Schwellen bereitgestellt. Mittels Rohrdurchlass (St. 1 + 960) erfolgt ein Anschluss der rechten Mulde an den RRG der linken Mulde.

| Lfd. Nr.<br>der<br>RRA | Entwässerungsmulde/<br>Regenrückhaltegraben | RRG<br>Station von - bis       | RRG-<br>Länge | RRG-<br>Breite | Q <sub>Dr</sub> | Schwellen-<br>anzahl | Gepl. Volumen | Einleitstelle / Vorfluter |
|------------------------|---------------------------------------------|--------------------------------|---------------|----------------|-----------------|----------------------|---------------|---------------------------|
| [Nr.]                  | [-]                                         | [-]                            | [m]           | [m]            | [l/s]           | [-]                  | [m³]          | [-]                       |
| 12                     | EZG9 - links                                | 1800 - 1990                    | 190           | 2              | 5,9             | 3                    | 75            | St. 1 + 790               |
| -                      | EZG9 - rechts                               | Rückhaltung in<br>linker Mulde | -             | -              |                 | -                    | -             | Vorflutgraben 4           |

Aus höhentechnischen Gründen ist eine Eintiefung des Vorfluters um max. 100 cm erforderlich. Der Anpassungsbereich erstreckt sich über etwa 80 m.

## 3.7 Entwässerungsabschnitt 7

Dem Entwässerungsabschnitt 7 ist das Einzugsgebiet 10 zugeordnet.

Durch die breitflächige Ableitung über die Böschungen und Mulden bildet sich bei der kritischen Regenspende von r<sub>krit</sub> = 15 l/(s·ha) kein Abfluss, sodass nach REwS eine ausreichende Vorreinigung erfolgt und auf eine weitergehende Regenwasserbehandlungsanlage verzichtet werden kann. Der Nachweis liegt der Anlage bei.

| Entwässerungs- | Entwässerungs- | EZG                                                                          | Λ_             | Q (nach Abflussminde- | Äquivalentes Aս             |
|----------------|----------------|------------------------------------------------------------------------------|----------------|-----------------------|-----------------------------|
| abschnitt      |                |                                                                              | A <sub>E</sub> | rung)                 | Aquivalentes A <sub>u</sub> |
| [Nr.]          | [-]            | [-]                                                                          | [ha]           | [l/s]                 | [ha]                        |
| 7              | EZG10          | 2 + 020 - 2 + 380<br>0 + 020 - 0 + 395<br>(OA Lenkersheim-Ost, KVP, St 2252) | 2,21           | 139                   | 1,22                        |

Inklusive dem Außeneinzugsgebiet 6 ( $A_E = 1.7$  ha;  $\Psi = 0.05$ ) ergeben sich  $A_E = 3.91$  ha,  $A_u = 1.31$  ha und ein Drosselabfluss von  $Q_{Dr} = 19.6$  l/s. Nach A117 errechnet sich das erforderliche Rückhaltevolumen zu 435 m³.

Die zu Grunde gelegte Überschreitungshäufigkeit beträgt n = 0,10 mit  $f_z$  = 1,2.

Das erforderliche Rückhaltevolumen wird in einem zentralen Regenrückhaltebecken bereitgestellt.

Das im Bereich der Geh- und Radwegunterführung anfallende Niederschlagswasser wird über eine Rohrleitung zum RRB abgeleitet. Das Niederschlagswasser des restlichen Einzugsgebietes wird oberflächig über Mulden zum Becken geführt. Das RRB erhält demnach zwei Zuläufe.

| Lfd. Nr. der<br>RRA | $Q_{Dr}$ | Gepl. Volumen | Einleitstelle / Vorfluter      |
|---------------------|----------|---------------|--------------------------------|
| [Nr.]               | [l/s]    | [m³]          | [-]                            |
| 13                  | 19,6     | 440           | St. 2 + 230<br>Vorflutgraben 5 |

# 3.8 Entwässerungsabschnitt 8

Dem Entwässerungsabschnitt 8 ist das Einzugsgebiet 11 zugeordnet.

Durch die breitflächige Ableitung über die Böschungen und Mulden bildet sich bei der kritischen Regenspende von r<sub>krit</sub> = 15 l/(s·ha) kein Abfluss, sodass nach REwS eine ausreichende Vorreinigung erfolgt und auf eine weitergehende Regenwasserbehandlungsanlage verzichtet werden kann. Der Nachweis liegt der Anlage bei.

Berechnung des erforderlichen Rückhaltevolumens bei zu Grunde gelegter Überschreitungshäufigkeit n = 0.33 mit  $f_z = 1.0$ :

| Entwässerungs- | Entwässerungs- | EZG               | Λ_             | Q (nach Abfluss- | Äquivalentes A <sub>u</sub> | $Q_{Dr}$    | V <sub>erf.</sub> nach A117 |
|----------------|----------------|-------------------|----------------|------------------|-----------------------------|-------------|-----------------------------|
| abschnitt      | mulde          | Station von - bis | A <sub>E</sub> | minderung)       | Aquivalentes A <sub>u</sub> | <b>Q</b> Dr | V <sub>erf.</sub> Hach ATT  |
| [Nr.]          | [-]            | [-]               | [ha]           | [l/s]            | [ha]                        | [l/s]       | [m³]                        |
| Ω              | EZG11- links   | 2380 - 2790       | 0,98           | 32               | 0,28                        | 4,2         | 52                          |
| 0              | EZG11 - rechts | 2340 - 2790       | 0,86           | 64               | 0,56                        | 8,4         | 104                         |

Das erforderliche Rückhaltevolumen wird jeweils über beidseitige Regenrückhaltegräben mit 40 cm hohen Schwellen bereitgestellt.

| Lfd. Nr.<br>der<br>RRA | Entwässerungsmulde/<br>Regenrückhaltegraben | RRG<br>Station von - bis | RRG-<br>Länge | RRG-<br>Breite | $Q_{Dr}$ | Schwellen-<br>anzahl | Gepl. Volumen | Einleitstelle / Vorfluter |
|------------------------|---------------------------------------------|--------------------------|---------------|----------------|----------|----------------------|---------------|---------------------------|
| [Nr.]                  | [-]                                         | [-]                      | [m]           | [m]            | [l/s]    | [-]                  | [m³]          | [-]                       |
| 14                     | EZG11 - links                               | 2600 - 2780              | 180           | 2              | 3,9      | 3                    | 60            | St. 2 + 788               |
| 15                     | EZG11 - rechts                              | 2560 - 2780              | 220           | 2,5            | 8,4      | 3                    | 105           | Vorflutgraben 6           |

## 3.9 Entwässerungsabschnitt 9

Dem Entwässerungsabschnitt 9 ist das Einzugsgebiet 12 zugeordnet.

Bei der kritischen Regenspende von  $r_{krit}$  = 15 l/(s·ha) bildet sich in der rechten Mulde ein Abfluss, sodass nach REwS eine Regenwasserbehandlungsanlage nach den Vorgaben der DWA-A 102 erforderlich wird. Aufgrund des geringen Restabflusses von 0,15 l/s (Anlage 2) wird in Abstimmung mit dem Wasserwirtschaftsamt Ansbach auf eine weitergehende Regenwasserbehandlung verzichtet.

Berechnung des erforderlichen Rückhaltevolumens bei zu Grunde gelegter Überschreitungshäufigkeit n = 0.33 mit  $f_z = 1.0$ :

| Entwässerungs- | Entwässerungs- | EZG               | AE   | Q (nach Abfluss- | Äquivalentes A <sub>u</sub> | $Q_{Dr}$    | V <sub>erf.</sub> nach A117 |
|----------------|----------------|-------------------|------|------------------|-----------------------------|-------------|-----------------------------|
| abschnitt      | mulde          | Station von - bis | ΑE   | minderung)       | Aquivalentes A <sub>u</sub> | <b>Q</b> Dr | Verf. Hach ATT              |
| [Nr.]          | [-]            | [-]               | [ha] | [l/s]            | [ha]                        | [l/s]       | [m³]                        |
|                | EZG12- links   | 380 - 415 (Ab-    | 0,06 | 1                | 0.04                        | 0,6         | Q                           |
| 9              |                | fahrt Mailheim)   | 0,00 | 7                | 0,04                        | 0,0         | O                           |
| 9              | EZG12 - rechts | 395 - 415 (Ab-    | 0,03 | 1                | 0,01                        | 0,2         | 2                           |
|                | LZO1Z - TECHIS | fahrt Mailheim)   | 0,03 | 1                | 0,01                        | 0,2         | 2                           |

In den Entwässerungsmulden werden die Bagatellgrenzen nach M153 ( $V_{erf.}$  < 10 m³, bzw.  $\sum A_u$  < 0,50 ha des Abschnitts) erfüllt. Die Schaffung von Rückhaltevolumen wird nicht erforderlich.

| Lfd. Nr.<br>der<br>RRA | Entwässerungsmulde/<br>Regenrückhaltegraben | RRG<br>Station von - bis    | RRG-<br>Länge | RRG-<br>Breite | Q <sub>Dr</sub> | Schwellen-<br>anzahl | Gepl. Volumen | Einleitstelle zur Haupt-<br>achse / Vorfluter   |
|------------------------|---------------------------------------------|-----------------------------|---------------|----------------|-----------------|----------------------|---------------|-------------------------------------------------|
| [Nr.]                  | [-]                                         | [-]                         | [m]           | [m]            | [l/s]           | [-]                  | [m³]          | [-]                                             |
| -                      | EZG12 - links                               | Keine Rückhal-<br>tung erf. | -             | -              | -               | -                    | -             | St. 0 + 415 Abf. Mailheim an Bestands-Entwässe- |
| -                      | EZG12 - rechts                              | Keine Rückhal-<br>tung erf. | -             | -              | -               | -                    | -             | rungsmulde                                      |

Ortsumgehung Lenkersheim

3.10 Zusammenfassung

Die qualitative Regenwasserbehandlung erfolgt durch die breitflächige Ableitung und Versicke-

rung über Bankette, Böschungen und Mulden.

Der Entwässerungsabschnitt 7 wird einem zentralen Regenrückhaltebecken mit einem geplan-

ten Volumen von rund 440 m³ zugeführt.

In den restlichen Entwässerungsabschnitten erfolgt die Rückhaltung über dezentrale Regen-

rückhaltegräben.

Die Schwellenhöhe beträgt 40 cm, die Tiefe der Regenrückhaltegräben beträgt 50 cm, mit einer

Gesamtlänge von 1.910 m, insgesamt 35 Schwellen und in Summe 844 m³ Rückhaltevolumen

entlang der Ausbaustrecke.

Insgesamt ergeben sich 15 Regenrückhalteanlagen.

3.11 Außeneinzugsgebiete

Die ATV fordert in den Bemessungsrichtlinien (A 118), die Abflussbildung unbebauter Außen-

gebiete beim Zusammenfluss mit kanalisierten Einzugsgebieten gesondert zu betrachten.

Südlich, südöstlich und nordwestlich des Plangebietes schließen 8 Außeneinzugsgebiete an,

die entweder durch die geplanten Durchlässe in die bestehenden Gräben oder in das geplante

RRB abgeleitet werden. Die Außeneinzugsgebiete wurden mit einer Jährlichkeit von HQ<sub>10</sub>

berücksichtigt.

In Teilbereichen entlang der Ausbaustrecke sind Geländeanpassungen (Auffüllung, Abtrag)

oder Abfanggräben vorgesehen um eine Ableitung der diffus in Richtung B 470 entwässernden

Außeneinzugsgebieten in den nächstgelegenen Vorfluter zu gewährleisten und so mögliche

Einstauflächen zu verhindern.

<u>Außeneinzugsgebiet 1:</u>

 $A_E = 10,10$ 

ha

 $HQ_{10} = 0.16 \text{ m}^3/\text{s}$ 

Das vom Außeneinzugsgebiet 1 anfallende Regenwasser wird über einen Durchlass DN 600 in

den bestehenden Entwässerungsgraben entlang des Weinbergweges weitergeleitet.

#### <u>Außeneinzugsgebiet 2:</u>

 $A_E = 367,00$  ha  $HQ_{10} = 4,60$  m³/s

Das vom Außeneinzugsgebiet 2 anfallende Regenwasser wird über zwei Durchlässe DN 1.800 in den bestehenden Entwässerungsgraben entlang des Ickelheimer Weges weitergeleitet.

## Außeneinzugsgebiet 3:

 $A_E = 23,00$  ha  $HQ_{10} = 0,40$  m³/s

Das vom Außeneinzugsgebiet 3 anfallende Regenwasser wird über einen Durchlass DN 800 in den bestehenden Entwässerungsgraben entlang des Mittelweges weitergeleitet.

#### Außeneinzugsgebiet 4:

 $A_E = 74,40$  ha  $HQ_{10} = 1,00$  m³/s

Das vom Außeneinzugsgebiet 4 anfallende Regenwasser wird über zwei parallele Durchlässe DN 1.000 in den bestehenden Entwässerungsgraben entlang des Wirtschaftsweges weitergeleitet.

Die Durchlässe werden über eine Schwelle getrennt. Wird der Mittelwasserabfluss überschritten, springt somit der zweite Durchlass zur Ableitung des Hochwasserabflusses an.

Die Durchlässe dienen gleichzeitig als Amphibiendurchlässe.

#### <u>Außeneinzugsgebiet 5:</u>

 $A_E = 8,20$  ha  $HQ_{10} = 0,13$  m³/s

Das vom Außeneinzugsgebiet 5 anfallende Regenwasser wird über einen Durchlass DN 500 in den bestehenden Entwässerungsgraben entlang des Holzbrunner Weges weitergeleitet.

#### Außeneinzugsgebiet 6:

$$A_E = 1,70 \text{ ha}$$

$$HQ_{10} = 0.03 \text{ m}^3/\text{s}$$

Das im Außeneinzugsgebiet 6 anfallende Oberflächenwasser wird über einen Durchlass DN 500 dem RRB zugeführt.

#### Außeneinzugsgebiet 7:

$$A_E = 5,60$$
 ha

Das vom Außeneinzugsgebiet 7 anfallende Wasser fließt unterhalb des geplanten RRBs dem vorhandenen System der Stadt Bad Windsheim aus Kanälen und Gräben zum Aisch-Flutkanal zu.

#### Außeneinzugsgebiet 8:

$$A_{F} = 13,20$$
 ha

$$HQ_{10} = 0.211 \text{ m}^3/\text{s}$$

Das vom Außeneinzugsgebiet 8 anfallende Wasser wird über einen Abfanggraben (b = 1,00 m; t = 0,50 m) parallel zum Wirtschaftsweg Richtung Norden zum Rohrgraben abgeleitet.

#### 4. Hydraulische Nachweise

## 4.1 Drosselung

#### Regenrückhaltebecken

Die Drosselung erfolgt über einen Drosselschieber auf 19,6 l/s.

#### Regenrückhaltegräben

Die Drosselung erfolgt nach dem Prinzip der steigenden Leitung, bei der sich ein Druckabfluss ausbildet.

$$Q = A * \sqrt{\frac{h_s * 2 * 9,81}{(\lambda * \frac{l}{d} + \sum \xi)}} = \left(\frac{0,0514}{2}\right)^2 * \pi * \sqrt{\frac{0,20 * 2 * 9,81}{(0,02 * \frac{3,22}{0,0514} + 2)}} * 1000 = 2,3 \text{ l/s}$$

#### Ortsumgehung Lenkersheim

Aus betriebstechnischen Gründen wurde in Abstimmung mit dem Wasserwirtschaftsamt Ansbach ein Mindestdrosselabfluss von  $Q_{Dr} = 2,3$  l/s festgelegt, welcher für alle Regenrückhaltegräben gelten soll bei denen der rechnerische Drosselabfluss < 2,3 l/s beträgt.

# 4.2 Entlastung

| Entwässe-<br>rungsab-<br>schnitt | Entwässerungsmulde    | Äquiva-<br>lentes A <sub>u</sub> | $Q_{Dr}$     | Max. Abfluss<br>bei qr <sub>15,n=0,33</sub><br>abgzl. Q <sub>Dr</sub> | Schwellen-<br>breite | Erf. hü |
|----------------------------------|-----------------------|----------------------------------|--------------|-----------------------------------------------------------------------|----------------------|---------|
| [Nr.]                            | [-]                   | [ha]                             | [l/s]        | [l/s]                                                                 | [-]                  | [m]     |
|                                  | EZG1 - links          | 1,05                             | 15,8         | 161                                                                   | 4,0                  | 0,09    |
|                                  | EZG1 - rechts         | 0,30                             | 4,5          | 46                                                                    | 2,0                  | 0,06    |
| EA1                              | EZG3 - links          | 0,08                             | 1,3<br>(2,3) | 13                                                                    | 2,0                  | 0,03    |
|                                  | EZG3 - rechts         | 0,16                             | 2,4          | 25                                                                    | 2,0                  | 0,04    |
| EA2                              | EZG2 - rechts + links | 0,53                             | 7,2          | 83                                                                    | 3,0                  | 0,07    |
|                                  | EZG4 - links          | 0,10                             | 1,6<br>(2,3) | 16                                                                    | 2,0                  | 0,03    |
| EA3                              | EZG4 - rechts         | 0,06                             | -            | -                                                                     | -                    | -       |
|                                  | EZG5 - links          | 0,21                             | 3,2          | 33                                                                    | 2,0                  | 0,05    |
|                                  | EZG5 - rechts         | 0,07                             | -            | -                                                                     | -                    | -       |
| EA4                              | EZG6 - links          | 0,13                             | 2,0<br>(2,3) | 20                                                                    | 2,0                  | 0,04    |
|                                  | EZG6 - rechts         | 0,03                             | -            | -                                                                     | -                    | -       |
|                                  | EZG7 - links          | 0,26                             | 3,9          | 40                                                                    | 2,5                  | 0,05    |
|                                  | EZG7 - rechts         | 0,06                             | -            | -                                                                     | -                    | -       |
| EA5                              | EZG8 - links          | 0,16                             | 2,4          | 24                                                                    | 5,0                  | 0,02    |
|                                  | EZG8 - rechts         | 0,12                             | 1,8<br>(2,3) | 18                                                                    | 6,0                  | 0,02    |
| EA6                              | EZG9 - rechts + links | 0,39                             | 5,9          | 60                                                                    | 2,0                  | 0,07    |
| EA7                              | EZG10 + AE6           | 1,31                             | 19,6         | 200                                                                   | 5,0                  | 0,09    |
| EA8                              | EZG11- links          | 0,28                             | 4,2          | 43                                                                    | 2,0                  | 0,06    |
| LA0                              | EZG11 - rechts        | 0,56                             | 8,4          | 86                                                                    | 2,5                  | 0,08    |
| EA9                              | EZG12- links          | 0,04                             | -            | -                                                                     | -                    | -       |
| EAS                              | EZG12 - rechts        | 0,01                             | -            | -                                                                     | -                    | -       |

In den Regenrückhalteanlagen wird eine Überfallhöhe von 10 cm nicht überschritten.

#### 4.3 Bemessung Mulden und Gewässerdurchlässe

Die Straßenmulden sind als Rasenmulden konzipiert und dienen der Aufnahme und dem Transport des zufließenden Oberflächenwassers im Fahrbahn- und Einschnittsbereich. Grundsätzlich werden die Mulden mit einer Breite von 2,00 m und einer Tiefe von 0,30 m ausgebildet. Entwässerungsmulden, welche zusätzlich die Funktion der Regenrückhaltung übernehmen sollen werden mit einer Tiefe von 0,50 m und einer Breite von 2,00 bis 6,00 m, je nach Regenrückhalteanlage ausgeführt.

Eine Sammelleitung unterhalb der Sickerrohrleitung gemäß dem Huckepacksystem kann aufgrund der Höhenverhältnisse nicht vorgesehen werden. Die hydraulische Leistungsfähigkeit der Mulden ist ausreichend hoch um das anfallende Niederschlagswasser abzuleiten.

Angesetzte Eingangswerte für REwS Formel 9 (Bemessung von Mulden):

| Rauigkeitsbeiwert        | $\mathbf{k}_{St}$ | $[m^{1/3}/s]$ | = | 30   |
|--------------------------|-------------------|---------------|---|------|
| Wasserhöhe = Muldentiefe | h                 | [m]           | = | 0,30 |
| Muldenbreite             | b                 | [m]           | = | 2,0  |
| Muldenlängsneigung       | I                 | [%]           | = | 0.30 |

Für die angegebenen Werte ergibt sich eine hydr. Leistungsfähigkeit der Entwässerungsmulde  $Q = 0,22 \text{ m}^3/\text{s}$ . Im abflussstärksten Bereich (EZG 1 – linke Mulde) mit einer undurchlässigen Fläche von etwa 1 ha ergibt sich ein Abfluss von  $Qr_{15,n=0,20} = 0,19 \text{ m}^3/\text{s}$ .

Die Entwässerungsmulde mit dem Mindestgefälle von 3 ‰ ist im Entlastungsfall hydraulisch ausreichend leistungsfähig, um auch einen 5-jährigen Niederschlagswasserabfluss abführen zu können. In Bereichen, in denen Regenrückhaltegräben vorgesehen sind, beträgt die Muldentiefe 0,5 m, sodass die Abflussleistung deutlich höher liegt.

Die Kontrollschächte der Sickerrohrleitung innerhalb der Mulden werden geschlossen ausgeführt um eine Infiltration des Oberflächenwassers in das Grundwasser zu verhindern.

Für Rohrdurchlässe wurde ein Mindestdurchmesser von DN 500 festgelegt.

Die Grundlagen zur Bemessung der Gewässerdurchlässe liegen als Anlage bei.

Die Bemessung erfolgt nach REwS, die Einzelheiten sind in den Höhenplänen zur Straße und in den Lageplänen enthalten. Um eine Belegung mit natürlichem Sohlsubstrat zu ermöglichen sind die Durchlässe um 20 cm gegenüber der Grabensohle eingetieft.

## 4.4 Vorflutgräben

Die hydraulische Belastung der Vorflutgräben und Durchlässe wird mittels 1D-Wasserspiegelberechnung ermittelt.

Die hydraulische Leistungsfähigkeit des Vorflutgrabens Nr. 5 (Graben- und Kanalsystem entlang der Seemühlstraße) unterhalb des geplanten Regenrückhaltebeckens reicht nicht aus, um den Entlastungsabfluss ohne Überstau abführen zu können. Die Überflutungsproblematik entlang der Seemühlstraße ist bekannt. Seitens der Stadt Bad Windsheim erfolgt die Aufstellung und wasserrechtliche Beantragung von weitergehenden Maßnahmen.

## Bemessungsregenspende:

Grundsätzlich wird die nach REwS empfohlene Überschreitungshäufigkeit mit n = 1 zu Grunde gelegt. Im Bereich direkt angrenzender Bebauung (Kronengraben, Gräben Schafgasse und Graben unterhalb gepl. RRB) wird eine Überschreitungshäufigkeit mit n = 0,33 angesetzt.

Die Dauerstufe wird nach REwS mit 15 min angesetzt (geringes Gefälle).

 $\rightarrow$  Bemessungsregenspenden:  $q_{r15,n=1} = 113,3 \text{ l/(s·ha)}$ 

 $q_{r15,n=0,33}$  = 167,8 l/(s·ha)

Die Außeneinzugsgebiete werden über eine Basisabflussspende von 8 l/(s·km²) gemäß der Loseblattsammlung des LfU berücksichtigt.

In Abstimmung mit dem WWA Ansbach wird auf einen hydraulischen Nachweis des Rohrgrabens (Entwässerungsabschnitt 8), aufgrund der geringen zusätzlichen Befestigung (Anpassungsbereich Ausbauende) und des kurzen Fließweges zur Aisch verzichtet.

Die Eingangsdaten für die hydraulische Berechnung der Gräben liegen der Anlage bei.

Der Nachweis des Dükers im Kronengraben zur Unterquerung der Aisch liegt der Anlage bei.

# **KOSTRA-DWD 2010R**

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -



# Niederschlagshöhen nach KOSTRA-DWD 2010R

Rasterfeld : Spalte 39, Zeile 75 Ortsname : Lenkersheim (BY)

Bemerkung :

Zeitspanne : Januar - Dezember

Berechnungsmethode: Ausgleich nach DWA-A 531

| Dauerstufe |      |      | Nied | erschlagshöhen | hN [mm] je Wie | ederkehrinterval | l T [a] |      |       |
|------------|------|------|------|----------------|----------------|------------------|---------|------|-------|
|            | 1 a  | 2 a  | 3 a  | 5 a            | 10 a           | 20 a             | 30 a    | 50 a | 100 a |
| 5 min      | 5,3  | 7,3  | 8,5  | 9,9            | 11,9           | 13,8             | 15,0    | 16,4 | 18,4  |
| 10 min     | 8,3  | 10,9 | 12,4 | 14,4           | 17,0           | 19,6             | 21,1    | 23,0 | 25,6  |
| 15 min     | 10,2 | 13,3 | 15,1 | 17,3           | 20,4           | 23,5             | 25,3    | 27,5 | 30,6  |
| 20 min     | 11,5 | 15,0 | 17,0 | 19,5           | 23,0           | 26,4             | 28,4    | 31,0 | 34,4  |
| 30 min     | 13,2 | 17,3 | 19,7 | 22,7           | 26,7           | 30,8             | 33,2    | 36,2 | 40,2  |
| 45 min     | 14,7 | 19,4 | 22,3 | 25,8           | 30,6           | 35,4             | 38,2    | 41,7 | 46,5  |
| 60 min     | 15,5 | 20,9 | 24,0 | 28,0           | 33,4           | 38,8             | 41,9    | 45,9 | 51,3  |
| 90 min     | 17,1 | 22,7 | 25,9 | 30,0           | 35,6           | 41,1             | 44,4    | 48,5 | 54,1  |
| 2 h        | 18,3 | 24,0 | 27,4 | 31,5           | 37,2           | 42,9             | 46,3    | 50,5 | 56,2  |
| 3 h        | 20,2 | 26,1 | 29,5 | 33,9           | 39,7           | 45,6             | 49,1    | 53,4 | 59,3  |
| 4 h        | 21,7 | 27,7 | 31,2 | 35,6           | 41,7           | 47,7             | 51,2    | 55,6 | 61,6  |
| 6 h        | 23,9 | 30,1 | 33,7 | 38,3           | 44,5           | 50,8             | 54,4    | 59,0 | 65,2  |
| 9 h        | 26,4 | 32,8 | 36,5 | 41,3           | 47,7           | 54,1             | 57,8    | 62,6 | 69,0  |
| 12 h       | 28,3 | 34,8 | 38,7 | 43,5           | 50,1           | 56,6             | 60,5    | 65,3 | 71,9  |
| 18 h       | 31,2 | 37,9 | 41,9 | 46,9           | 53,7           | 60,5             | 64,4    | 69,4 | 76,2  |
| 24 h       | 33,4 | 40,3 | 44,4 | 49,5           | 56,4           | 63,4             | 67,4    | 72,6 | 79,5  |
| 48 h       | 41,4 | 49,5 | 54,3 | 60,3           | 68,5           | 76,6             | 81,4    | 87,4 | 95,6  |
| 72 h       | 46,9 | 55,8 | 61,0 | 67,5           | 76,4           | 85,2             | 90,4    | 96,9 | 105,8 |

#### Legende

T Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht

oder überschreitet

D Dauerstufe in [min, h]: definierte Niederschlagsdauer einschließlich Unterbrechungen

hN Niederschlagshöhe in [mm]

#### Für die Berechnung wurden folgende Grundwerte verwendet:

| Wiederkehrintervall | Klassenwerte  | Niederschlagshöhen hN [mm] je Dauerstufe |             |             |             |  |  |  |
|---------------------|---------------|------------------------------------------|-------------|-------------|-------------|--|--|--|
|                     | Riasseriwerte | 15 min                                   | 60 min      | 24 h        | 72 h        |  |  |  |
| 4                   | Faktor [-]    | DWD-Vorgabe                              | DWD-Vorgabe | DWD-Vorgabe | DWD-Vorgabe |  |  |  |
| 1 a                 | [mm]          | 10,20                                    | 15,50       | 33,40       | 46,90       |  |  |  |
| 100 a               | Faktor [-]    | DWD-Vorgabe                              | DWD-Vorgabe | DWD-Vorgabe | DWD-Vorgabe |  |  |  |
| 100 a               | [mm]          | 30,60                                    | 51,30       | 79,50       | 105,80      |  |  |  |

Wenn die angegebenen Werte für Planungszwecke herangezogen werden, sollte für rN(D;T) bzw. hN(D;T) in Abhängigkeit vom Wiederkehrintervall

bei 1 a ≤ T ≤ 5 a
 bei 5 a < T ≤ 50 a</li>
 bei 50 a < T ≤ 100 a</li>
 ein Toleranzbetrag von ±15 %,
 ein Toleranzbetrag von ±20 %

Berücksichtigung finden.

# **KOSTRA-DWD 2010R**

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -



# Niederschlagsspenden nach KOSTRA-DWD 2010R

Rasterfeld : Spalte 39, Zeile 75 Ortsname : Lenkersheim (BY)

Bemerkung :

Zeitspanne : Januar - Dezember

Berechnungsmethode: Ausgleich nach DWA-A 531

| Dauerstufe | Niederschlagspenden rN [l/(s·ha)] je Wiederkehrintervall T [a] |       |       |       |       |       |       |       |       |
|------------|----------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|            | 1 a                                                            | 2 a   | 3 a   | 5 a   | 10 a  | 20 a  | 30 a  | 50 a  | 100 a |
| 5 min      | 176,7                                                          | 243,3 | 283,3 | 330,0 | 396,7 | 460,0 | 500,0 | 546,7 | 613,3 |
| 10 min     | 138,3                                                          | 181,7 | 206,7 | 240,0 | 283,3 | 326,7 | 351,7 | 383,3 | 426,7 |
| 15 min     | 113,3                                                          | 147,8 | 167,8 | 192,2 | 226,7 | 261,1 | 281,1 | 305,6 | 340,0 |
| 20 min     | 95,8                                                           | 125,0 | 141,7 | 162,5 | 191,7 | 220,0 | 236,7 | 258,3 | 286,7 |
| 30 min     | 73,3                                                           | 96,1  | 109,4 | 126,1 | 148,3 | 171,1 | 184,4 | 201,1 | 223,3 |
| 45 min     | 54,4                                                           | 71,9  | 82,6  | 95,6  | 113,3 | 131,1 | 141,5 | 154,4 | 172,2 |
| 60 min     | 43,1                                                           | 58,1  | 66,7  | 77,8  | 92,8  | 107,8 | 116,4 | 127,5 | 142,5 |
| 90 min     | 31,7                                                           | 42,0  | 48,0  | 55,6  | 65,9  | 76,1  | 82,2  | 89,8  | 100,2 |
| 2 h        | 25,4                                                           | 33,3  | 38,1  | 43,8  | 51,7  | 59,6  | 64,3  | 70,1  | 78,1  |
| 3 h        | 18,7                                                           | 24,2  | 27,3  | 31,4  | 36,8  | 42,2  | 45,5  | 49,4  | 54,9  |
| 4 h        | 15,1                                                           | 19,2  | 21,7  | 24,7  | 29,0  | 33,1  | 35,6  | 38,6  | 42,8  |
| 6 h        | 11,1                                                           | 13,9  | 15,6  | 17,7  | 20,6  | 23,5  | 25,2  | 27,3  | 30,2  |
| 9 h        | 8,1                                                            | 10,1  | 11,3  | 12,7  | 14,7  | 16,7  | 17,8  | 19,3  | 21,3  |
| 12 h       | 6,6                                                            | 8,1   | 9,0   | 10,1  | 11,6  | 13,1  | 14,0  | 15,1  | 16,6  |
| 18 h       | 4,8                                                            | 5,8   | 6,5   | 7,2   | 8,3   | 9,3   | 9,9   | 10,7  | 11,8  |
| 24 h       | 3,9                                                            | 4,7   | 5,1   | 5,7   | 6,5   | 7,3   | 7,8   | 8,4   | 9,2   |
| 48 h       | 2,4                                                            | 2,9   | 3,1   | 3,5   | 4,0   | 4,4   | 4,7   | 5,1   | 5,5   |
| 72 h       | 1,8                                                            | 2,2   | 2,4   | 2,6   | 2,9   | 3,3   | 3,5   | 3,7   | 4,1   |

#### Legende

T Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

D Dauerstufe in [min, h]: definierte Niederschlagsdauer einschließlich Unterbrechungen

rN Niederschlagsspende in [l/(s·ha)]

#### Für die Berechnung wurden folgende Grundwerte verwendet:

| Wiederkehrintervall | Klassenwerte  | Niederschlagshöhen hN [mm] je Dauerstufe |             |             |             |  |  |
|---------------------|---------------|------------------------------------------|-------------|-------------|-------------|--|--|
|                     | Riasseriwerte | 15 min                                   | 60 min      | 24 h        | 72 h        |  |  |
| 4 .                 | Faktor [-]    | DWD-Vorgabe                              | DWD-Vorgabe | DWD-Vorgabe | DWD-Vorgabe |  |  |
| 1 a                 | [mm]          | 10,20                                    | 15,50       | 33,40       | 46,90       |  |  |
| 400 -               | Faktor [-]    | DWD-Vorgabe                              | DWD-Vorgabe | DWD-Vorgabe | DWD-Vorgabe |  |  |
| 100 a               | [mm]          | 30,60                                    | 51,30       | 79,50       | 105,80      |  |  |

Wenn die angegebenen Werte für Planungszwecke herangezogen werden, sollte für rN(D;T) bzw. hN(D;T) in Abhängigkeit vom Wiederkehrintervall

bei 1 a ≤ T ≤ 5 a
 bei 5 a < T ≤ 50 a</li>
 bei 50 a < T ≤ 100 a</li>
 ein Toleranzbetrag von ±15 %,
 ein Toleranzbetrag von ±20 %

Berücksichtigung finden.

| Entwässerungsabschnitt | <u>1</u>             |               |         |
|------------------------|----------------------|---------------|---------|
| EZG 1 rechts           | Anteil ab St. 520, a | b Blockade    |         |
| 1. Eingangswerte       |                      |               |         |
| rkrit                  | 15 l/(s⋅ha)          | )             |         |
| rBöschung =            | 100 l/(s·ha)         | )             |         |
| rBankett =             | 10 l/(s·ha)          | )             |         |
| ΨAsphalt =             | 0,9 -                |               |         |
| 2. Flächen             |                      |               |         |
| ADamm =                | 1035 m²              |               |         |
| ABankett =             | 345 m²               | AV1 =         | 1838 m² |
| AMulde =               | 458 m²               |               |         |
| AFahrbahn =            | 1899,00 m²           |               |         |
| AV, Ges =              | 1838 m²              | = 0,184 ha    |         |
| Ared =                 | 1709 m²              | = 0,171 ha    |         |
| 3. Abfluss             |                      |               |         |
| QAbfluss =             | 5,32 l/s             |               |         |
| QVersickerung =        | 15,28 l/s            |               |         |
| QGesamt =              | -9,95 l/s            | Kein Abfluss! |         |

# Seite 1

| Entwässerungsabschnitt 1 |                       |         |              |       |          |
|--------------------------|-----------------------|---------|--------------|-------|----------|
| EZG 1 links              | Inkl. Anteil EZG 1 re | echts t | ois St. 520, | bis I | Blockade |
| 1. Eingangswerte         |                       |         |              |       |          |
| rkrit                    | 15 l/(s·ha)           |         |              |       |          |
| rBöschung =              | 100 l/(s⋅ha)          |         |              |       |          |
| rBankett =               | 10 l/(s·ha)           |         |              |       |          |
| ΨAsphalt =               | 0,9 -                 |         |              |       |          |
| 2. Flächen               |                       |         |              |       |          |
| ADamm =                  | 0 m²                  |         |              |       |          |
| ABankett =               | 780 m²                | Α       | V1 =         |       | 2874 m²  |
| AMulde =                 | 2094 m²               |         |              |       |          |
| AFahrbahn =              | 4791,00 m²            |         |              |       |          |
| AV, Ges =                | 2874 m²               | =       | 0.287        | ha    |          |
| Ared =                   | 4312 m²               |         |              |       |          |
| 3. Abfluss               |                       |         |              |       |          |
| QAbfluss =               | 10,78 l/s             |         |              |       |          |
| QVersickerung =          | 21,72 l/s             |         |              |       |          |
| QGesamt =                | -10,94 l/s            | K       | ein Abflus   | s!    |          |

| Entwässerungsabschnitt 2 |                 |               |           |               |         |
|--------------------------|-----------------|---------------|-----------|---------------|---------|
| EZG 2 rechts             | Inkl. Anteil EZ | ZG 2 links bi | s St. 500 | ), bis Blocka | ade     |
| 1. Eingangswerte         |                 |               |           |               |         |
| rkrit                    | 15              | l/(s⋅ha)      |           |               |         |
| rBöschung =              | 100             | l/(s⋅ha)      |           |               |         |
| rBankett =               | 10              | l/(s⋅ha)      |           |               |         |
| ΨAsphalt =               | 0,9             | -             |           |               |         |
| 2. Flächen               |                 |               |           |               |         |
| ADamm =                  | 972             | m²            |           |               |         |
| ABankett =               | 298             | m²            | AV1       | =             | 1827 m² |
| AMulde =                 | 557             | m²            |           |               |         |
| AFahrbahn =              | 1.461,00        | m²            |           |               |         |
| AV, Ges =                | 1827            | m²            | =         | 0,183 ha      |         |
| Ared =                   |                 | m²            | =         | 0,131 ha      |         |
| 3. Abfluss               |                 |               |           |               |         |
| QAbfluss =               | 4,71            | l/s           |           |               |         |
| QVersickerung =          | 15,59           | l/s           |           |               |         |
| QGesamt =                | -10,88          | l/s           | Kein      | Abfluss!      |         |

| Entwässerungsabschnitt 2 |                  |               |         |
|--------------------------|------------------|---------------|---------|
| EZG 2 links              |                  |               |         |
| 1. Eingangswerte         |                  |               |         |
| rkrit                    | 15 l/(s·ha)      |               |         |
| rBöschung =              | 100 l/(s·ha)     |               |         |
| rBankett =               | 10 l/(s·ha)      |               |         |
| ΨAsphalt =               | 0,9 -            |               |         |
| 2. Flächen               |                  |               |         |
| ADamm =                  | 870 m²           |               |         |
| ABankett =               | 315 m²           | AV1 =         | 1601 m² |
| AMulde =                 | 416 m²           |               |         |
| AFahrbahn =              | - m²             |               |         |
| AV, Ges =                | 1601 m²          | = 0,160 ha    |         |
| Ared =                   | 0 m <sup>2</sup> | = 0,000 ha    |         |
| 3. Abfluss               |                  |               |         |
| QAbfluss =               | 2,40 l/s         |               |         |
| QVersickerung =          | 13,18 l/s        |               |         |
| QGesamt =                | -10,77 l/s       | Kein Abfluss! |         |

| Entwässerungsabschnitt 1 |              |    |              |        |
|--------------------------|--------------|----|--------------|--------|
| EZG 3 rechts             | ]            |    |              |        |
| 1. Eingangswerte         |              |    |              |        |
| rkrit                    | 15 l/(s⋅ha)  |    |              |        |
| rBöschung =              | 100 l/(s·ha) |    |              |        |
| rBankett =               | 10 l/(s·ha)  |    |              |        |
| ΨAsphalt =               | 0,9 -        |    |              |        |
| 2. Flächen               |              |    |              |        |
| ADamm =                  | 495 m²       |    |              |        |
| ABankett =               | 165 m²       | A۱ | <b>V1</b> =  | 880 m² |
| AMulde =                 | 220 m²       |    |              |        |
| AFahrbahn =              | 921 m²       |    |              |        |
| AV, Ges =                | 880 m²       | =  | 0,088 ha     |        |
| Ared =                   | 829 m²       | =  | 0,083 ha     |        |
| 3. Abfluss               |              |    |              |        |
| QAbfluss =               | 2,56 l/s     |    |              |        |
| QVersickerung =          | 7,32 l/s     |    |              |        |
| QGesamt =                | -4,75 l/s    | K  | ein Abfluss! |        |

| Entwässerungsabschnitt 1 |              |    |             |        |
|--------------------------|--------------|----|-------------|--------|
| EZG 3 links              |              |    |             |        |
| 1. Eingangswerte         |              |    |             |        |
| rkrit                    | 15 l/(s⋅ha)  |    |             |        |
| rBöschung =              | 100 l/(s·ha) | 1  |             |        |
| rBankett =               | 10 l/(s·ha)  | 1  |             |        |
| ΨAsphalt =               | 0,9 -        |    |             |        |
| 2. Flächen               |              |    |             |        |
| ADamm =                  | 225 m²       |    |             |        |
| ABankett =               | 125 m²       | A۷ | 1           | 695 m² |
| AMulde =                 | 345 m²       |    |             |        |
| AFahrbahn =              | 353 m²       |    |             |        |
| AV, Ges =                | 695 m²       | =  | 0,070 ha    |        |
| Ared =                   | 318 m²       | =  | 0,032 ha    |        |
| 3. Abfluss               |              |    |             |        |
| QAbfluss =               | 1,52 l/s     |    |             |        |
| QVersickerung =          | 5,83 l/s     |    |             |        |
| QGesamt =                | -4,31 l/s    | Ke | in Abfluss! |        |

# Seite 6

| Entwässerungsabschnitt 3 |                  |               |         |
|--------------------------|------------------|---------------|---------|
| EZG 4 rechts             |                  |               |         |
| 1. Eingangswerte         |                  |               |         |
| rkrit                    | 15 l/(s·ha       | a)            |         |
| rBöschung =              | 100 l/(s·ha      | a)            |         |
| rBankett =               | 10 l/(s·ha       | a)            |         |
| ΨAsphalt =               | 0,9 -            |               |         |
| 2. Flächen               |                  |               |         |
| ADamm =                  | 670 m²           |               |         |
| ABankett =               | 183 m²           | AV1 =         | 1052 m² |
| AMulde =                 | 199 m²           |               |         |
| AFahrbahn =              | 0 m²             |               |         |
| AV, Ges =                | 1052 m²          | = 0,105 ha    |         |
| Ared =                   | 0 m <sup>2</sup> | = 0,000 ha    |         |
| 3. Abfluss               |                  |               |         |
| QAbfluss =               | 1,58 l/s         |               |         |
| QVersickerung =          | 8,87 l/s         |               |         |
| QGesamt =                | -7,30 l/s        | Kein Abfluss! |         |

| Entwässerungsabschnitt 3 |                    |               |        |
|--------------------------|--------------------|---------------|--------|
| EZG 4 links              |                    |               |        |
| 1. Eingangswerte         |                    |               |        |
| rkrit                    | 15 l/(s·ha)        |               |        |
| rBöschung =              | 100 l/(s·ha)       |               |        |
| rBankett =               | 10 l/(s·ha)        |               |        |
| ΨAsphalt =               | 0,9 -              |               |        |
| 2. Flächen               |                    |               |        |
| ADamm =                  | 477 m²             |               |        |
| ABankett =               | 250 m <sup>2</sup> | AV1 =         | 927 m² |
| AMulde =                 | 200 m <sup>2</sup> |               |        |
| AFahrbahn =              | 825 m²             |               |        |
| AV, Ges =                | 927 m²             | = 0,093 ha    |        |
| Ared =                   | 743 m²             | = 0,074 ha    |        |
| 3. Abfluss               |                    |               |        |
| QAbfluss =               | 2,50 l/s           |               |        |
| QVersickerung =          | 7,02 l/s           |               |        |
| QGesamt =                | -4,52 l/s          | Kein Abfluss! |        |

| Entwässerungsabschnitt 3 |        |          |   |               |         |
|--------------------------|--------|----------|---|---------------|---------|
| EZG 5 rechts             |        |          |   |               |         |
| 1. Eingangswerte         |        |          |   |               |         |
|                          |        |          |   |               |         |
| rkrit                    | 15     | l/(s⋅ha) |   |               |         |
| rBöschung =              | 100    | l/(s⋅ha) |   |               |         |
| rBankett =               | 10     | l/(s⋅ha) |   |               |         |
| ΨAsphalt =               | 0,9    | -        |   |               |         |
| O Fläcker                |        |          |   |               |         |
| 2. Flächen               |        |          |   |               |         |
| ADamm =                  | 1.344  | m²       |   |               |         |
| ABankett =               | 551    | m²       |   | AV1 =         | 2358 m² |
| AMulde =                 | 463    | m²       |   |               |         |
| <b>.</b>                 | ^      | 2        |   |               |         |
| AFahrbahn =              | 0      | m²       |   |               |         |
|                          |        |          |   |               |         |
| AV, Ges =                | 2358   | m²       | = | 0,236 ha      | a       |
| Ared =                   |        | m²       |   |               | a       |
| 2 Abdus                  |        |          |   |               |         |
| 3. Abfluss               |        |          |   |               |         |
| QAbfluss =               | 3,54   | l/s      |   |               |         |
| QVersickerung =          | 18,62  | l/s      |   |               |         |
| <b>.</b> .               |        |          |   |               |         |
| QGesamt =                | -15,08 | I/s      |   | Kein Abfluss! |         |

| Entwässerungsabschnitt 3 |                      |   |              |         |
|--------------------------|----------------------|---|--------------|---------|
| EZG 5 links              |                      |   |              |         |
| 1. Eingangswerte         |                      |   |              |         |
| rkrit                    | 15 l/(s⋅ha)          |   |              |         |
| rBöschung =              | 100 l/(s⋅ha)         |   |              |         |
| rBankett =               | 10 l/(s⋅ha)          |   |              |         |
| ΨAsphalt =               | 0,9 -                |   |              |         |
| 2. Flächen               |                      |   |              |         |
| ADamm =                  | 1.052 m <sup>2</sup> |   |              |         |
| ABankett =               | 500 m²               | Α | V1 =         | 1938 m² |
| AMulde =                 | 386 m²               |   |              |         |
| AFahrbahn =              | 1690 m²              |   |              |         |
| AV, Ges =                | 1938 m²              | = | 0,194 ha     |         |
| Ared =                   | 1521 m²              | = | 0,152 ha     |         |
| 3. Abfluss               |                      |   |              |         |
| QAbfluss =               | 5,19 l/s             |   |              |         |
| QVersickerung =          | 14,88 l/s            |   |              |         |
| QGesamt =                | -9,69 l/s            | K | ein Abfluss! |         |

| Entwässerungsabschnitt 4 |                       |   |              |         |
|--------------------------|-----------------------|---|--------------|---------|
| EZG 6 rechts             | ]                     |   |              |         |
| 1. Eingangswerte         |                       |   |              |         |
| rkrit                    | 15 l/(s⋅ha)           |   |              |         |
| rBöschung =              | 100 l/(s·ha)          |   |              |         |
| rBankett =               | 10 l/(s·ha)           |   |              |         |
| ΨAsphalt =               | 0,9 -                 |   |              |         |
| 2. Flächen               |                       |   |              |         |
| ADamm =                  | 571,00 m <sup>2</sup> |   |              |         |
| ABankett =               | 240,00 m <sup>2</sup> | Α | V1 =         | 1104 m² |
| AMulde =                 | 293,00 m <sup>2</sup> |   |              |         |
| AFahrbahn =              | 0 m²                  |   |              |         |
| AV, Ges =                | 1104 m²               | = | 0,110 ha     |         |
| Ared =                   | 0 m <sup>2</sup>      | = | 0,000 ha     |         |
| 3. Abfluss               |                       |   |              |         |
| QAbfluss =               | 1,66 l/s              |   |              |         |
| QVersickerung =          | 8,88 l/s              |   |              |         |
| QGesamt =                | -7,22 l/s             | K | ein Abfluss! |         |

| Entwässerungsabschnitt 4 |                       |                |        |
|--------------------------|-----------------------|----------------|--------|
|                          | <u> </u>              |                |        |
| EZG 6 links              | ]                     |                |        |
| 1. Eingangswerte         |                       |                |        |
| T. Elligangswerte        |                       |                |        |
| rkrit                    | 15 l/(s·ha)           |                |        |
| rBöschung =              | 100 l/(s·ha)          |                |        |
| rBankett =               | 10 l/(s·ha)           |                |        |
| ΨAsphalt =               | 0,9 -                 |                |        |
| O Elitaban               |                       |                |        |
| 2. Flächen               |                       |                |        |
| ADamm =                  | 432,00 m <sup>2</sup> |                |        |
| ABankett =               | 213,00 m <sup>2</sup> | AV1 =          | 883 m² |
| AMulde =                 | 238,00 m <sup>2</sup> |                |        |
| AFahrbahn =              | 1140 m²               |                |        |
| 7                        | 1110 111              |                |        |
|                          |                       |                |        |
| AV, Ges =                | 883 m²                | = 0,088 ha     |        |
| Ared =                   | 1026 m²               | = 0,103 ha     |        |
| 3. Abfluss               |                       |                |        |
| <u> </u>                 |                       |                |        |
| QAbfluss =               | 2,86 l/s              |                |        |
| QVersickerung =          | 6,91 l/s              |                |        |
| QGesamt =                | -4,05 l/s             | Kein Abfluss!  |        |
| WGESaint -               | -4,05 1/5             | Keili Abiluss! |        |

| Entwässerungsabschnitt 5 |                    |               |         |
|--------------------------|--------------------|---------------|---------|
|                          |                    |               |         |
| EZG 7 rechts             |                    |               |         |
|                          |                    |               |         |
| 1. Eingangswerte         |                    |               |         |
| 1. 4                     | 45 1//- 1>         |               |         |
| rkrit                    | 15 l/(s·ha)        |               |         |
| rBöschung =              | 100 l/(s·ha)       |               |         |
| rBankett =               | 10 l/(s⋅ha)        |               |         |
| ΨAsphalt =               | 0,9 -              |               |         |
| , =                      |                    |               |         |
| 2. Flächen               |                    |               |         |
| ADamm =                  | 1.183 m²           |               |         |
|                          |                    | AV1 =         | 01002   |
| ABankett =               | 402 m <sup>2</sup> | AVI =         | 2100 m² |
| AMulde =                 | 515 m <sup>2</sup> |               |         |
| AFahrbahn =              | 0 m²               |               |         |
|                          | 0 111              |               |         |
|                          |                    |               |         |
| AV, Ges =                | 2100 m²            | = 0,210 ha    |         |
| Ared =                   | 0 m <sup>2</sup>   | = 0,000 ha    |         |
|                          | •                  | 3,000         |         |
| 3. Abfluss               |                    |               |         |
|                          |                    |               |         |
| QAbfluss =               | 3,15 l/s           |               |         |
| QVersickerung =          | 17,38 l/s          |               |         |
|                          |                    |               |         |
| QGesamt =                | -14,23 l/s         | Kein Abfluss! |         |

| Entwässerungsabschnitt 5 |            |               |         |
|--------------------------|------------|---------------|---------|
| EZG 7 links              |            |               |         |
| 1. Eingangswerte         |            |               |         |
| rkrit                    | 15 l/(s·ł  | ha)           |         |
| rBöschung =              | 100 l/(s·ł | ha)           |         |
| rBankett =               | 10 l/(s·ł  | ha)           |         |
| ΨAsphalt =               | 0,9 -      |               |         |
| 2. Flächen               |            |               |         |
| ADamm =                  | 1.100 m²   |               |         |
| ABankett =               | 433 m²     | AV1 =         | 2177 m² |
| AMulde =                 | 644 m²     |               |         |
| AFahrbahn =              | 2177 m²    |               |         |
| AV, Ges =                | 2177 m²    | = 0,218 ha    |         |
| Ared =                   |            | = 0,196 ha    |         |
| 3. Abfluss               |            |               |         |
| QAbfluss =               | 6,20 l/s   |               |         |
| QVersickerung =          | 17,87 l/s  |               |         |
| QGesamt =                | -11,67 l/s | Kein Abfluss! |         |

| Entwässerungsabschnitt 5 |                  |               |        |
|--------------------------|------------------|---------------|--------|
| EZG 8 rechts             |                  |               |        |
| 1. Eingangswerte         |                  |               |        |
| rkrit                    | 15 l/(s⋅ha       | )             |        |
| rBöschung =              | 100 l/(s·ha      | )             |        |
| rBankett =               | 10 l/(s·ha       | )             |        |
| ΨAsphalt =               | 0,9 -            |               |        |
| 2. Flächen               |                  |               |        |
| ADamm =                  | 230,00 m²        |               |        |
| ABankett =               | 246 m²           | AV1 =         | 927 m² |
| AMulde =                 | 451 m²           |               |        |
| AFahrbahn =              | 0 m²             |               |        |
| AV, Ges =                | 927 m²           | = 0,093 ha    |        |
| Ared =                   | 0 m <sup>2</sup> |               |        |
| 3. Abfluss               |                  |               |        |
| QAbfluss =               | 1,39 l/s         |               |        |
| QVersickerung =          | 7,06 l/s         |               |        |
| QGesamt =                | -5,67 l/s        | Kein Abfluss! |        |

| Entwässerungsabschnitt 5 |                    |          |              |        |
|--------------------------|--------------------|----------|--------------|--------|
| EZG 8 links              |                    |          |              |        |
| 1. Eingangswerte         |                    |          |              |        |
| rkrit                    | 15 l/(s⋅ha)        |          |              |        |
| rBöschung =              | 100 l/(s⋅ha)       |          |              |        |
| rBankett =               | 10 l/(s⋅ha)        |          |              |        |
| ΨAsphalt =               | 0,9 -              |          |              |        |
| 2. Flächen               |                    |          |              |        |
| ADamm =                  | 196 m²             |          |              |        |
| ABankett =               | 240 m <sup>2</sup> | A۱       | V1 =         | 827 m² |
| AMulde =                 | 391 m²             |          |              |        |
| AFahrbahn =              | 1071 m²            |          |              |        |
| AV, Ges =                | 827 m²             | =        | 0,083 ha     |        |
| Ared =                   | 964 m²             | =        | 0,096 ha     |        |
| 3. Abfluss               |                    |          |              |        |
| QAbfluss =               | 2,69 l/s           |          |              |        |
| QVersickerung =          | 6,11 l/s           |          |              |        |
| _                        |                    |          | ain Abfluss! |        |
| QGesamt =                | -3,42 l/s          | <u> </u> | ein Abfluss! |        |

| Entwässerungsabschnitt 6 |                   |    |              |         |
|--------------------------|-------------------|----|--------------|---------|
| EZG 9 rechts             |                   |    |              |         |
| 1. Eingangswerte         | _                 |    |              |         |
| rkrit                    | 15 l/(s·ha        | 1) |              |         |
| rBöschung =              | 100 l/(s·ha       |    |              |         |
| rBankett =               | 10 l/(s·ha        |    |              |         |
| ΨAsphalt =               | 0,9 -             | ,  |              |         |
| 2. Flächen               |                   |    |              |         |
| ADamm =                  | 1.193 m²          |    |              |         |
| ABankett =               | 369 m²            |    | AV1 =        | 2060 m² |
| AMulde =                 | 498 m²            |    |              |         |
| AFahrbahn =              | 77 m²             |    |              |         |
| AV, Ges =                | 2060 m²           | _  | 0,206 h      | 10      |
| Ared =                   | 69 m <sup>2</sup> |    | 0,200 h      |         |
| 3. Abfluss               |                   |    |              |         |
| QAbfluss =               | 3,19 l/s          |    |              |         |
| QVersickerung =          | 17,28 l/s         |    |              |         |
| QGesamt =                | -14,09 l/s        |    | Kein Abfluss | s!      |

| Entwässerungsabschnitt 6 |            |               |         |
|--------------------------|------------|---------------|---------|
| EZG 9 links              |            |               |         |
| 1. Eingangswerte         |            |               |         |
| rkrit                    | 15 l/(s·l  | ha)           |         |
| rBöschung =              | 100 l/(s·l | ha)           |         |
| rBankett =               | 10 l/(s·l  | ha)           |         |
| ΨAsphalt =               | 0,9 -      |               |         |
| 2. Flächen               |            |               |         |
| ADamm =                  | 1.121 m²   |               |         |
| ABankett =               | 361 m²     | AV1 =         | 1953 m² |
| AMulde =                 | 471 m²     |               |         |
| AFahrbahn =              | 1874 m²    |               |         |
| AV, Ges =                | 1953 m²    | = 0,195 ha    |         |
| Ared =                   | 1687 m²    | = 0,169 ha    |         |
| 3. Abfluss               |            |               |         |
| QAbfluss =               | 5,46 l/s   |               |         |
| QVersickerung =          | 16,28 l/s  |               |         |
| QGesamt =                | -10,82 l/s | Kein Abfluss! |         |

| Entwässerungsabschnitt 7 |         |                |   |              |             |
|--------------------------|---------|----------------|---|--------------|-------------|
| EZG 10 Gesamt            | 1       |                |   |              |             |
| EZG 10 Gesamt            | ı       |                |   |              |             |
| 1. Eingangswerte         |         |                |   |              |             |
|                          |         |                |   |              |             |
| rkrit                    | 15      | l/(s⋅ha)       |   |              |             |
| rBöschung =              | 100     | l/(s⋅ha)       |   |              |             |
| rBankett =               | 10      | l/(s⋅ha)       |   |              |             |
| ΨAsphalt =               | 0,9     | -              |   |              |             |
|                          |         |                |   |              |             |
| 2. Flächen               |         |                |   |              |             |
| ADamm =                  | 2693    | m²             |   |              |             |
| ABankett =               |         | m <sup>2</sup> |   | AV1 =        | 5412,00 m²  |
| AMulde =                 | 1256    |                |   | AV 1 -       | 3412,00 111 |
| Alvidide –               | 1230    | 111            |   |              |             |
| AFahrbahn =              | 5736,00 | m²             |   |              |             |
|                          | ,       |                |   |              |             |
|                          |         |                |   |              |             |
| AV, Ges =                |         | m²             |   |              |             |
| Ared =                   | 5162    | m²             | = | 0,516 h      | na          |
|                          |         |                |   |              |             |
| 3. Abfluss               |         |                |   |              |             |
| QAbfluss =               | 15,86   | l/s            |   |              |             |
| QVersickerung =          | 40,95   |                |   |              |             |
| T S                      |         |                |   |              |             |
| QGesamt =                | -25,09  | l/s            |   | Kein Abfluss | s!          |

| Entwässerungsabschnitt 8 |              |   |               |         |
|--------------------------|--------------|---|---------------|---------|
| EZG 11 rechts            |              |   |               |         |
| 1. Eingangswerte         |              |   |               |         |
| rkrit                    | 15 l/(s⋅ha)  |   |               |         |
| rBöschung =              | 100 l/(s⋅ha) |   |               |         |
| rBankett =               | 10 l/(s⋅ha)  |   |               |         |
| ΨAsphalt =               | 0,9 -        |   |               |         |
| 2. Flächen               |              |   |               |         |
| ADamm =                  | 1.191 m²     |   |               |         |
| ABankett =               | 639 m²       |   | AV1 =         | 2824 m² |
| AMulde =                 | 994 m²       |   |               |         |
| AFahrbahn =              | 3496 m²      |   |               |         |
| AV, Ges =                | 2824 m²      | = | 0,282 ha      |         |
| Ared =                   | 3146 m²      | = | 0,315 ha      |         |
| 3. Abfluss               |              |   |               |         |
| QAbfluss =               | 8,96 l/s     |   |               |         |
| QVersickerung =          | 22,49 l/s    |   |               |         |
| QGesamt =                | -13,53 l/s   |   | Kein Abfluss! |         |

| Entwässerungsabschnitt 8 |                    |   |               |         |
|--------------------------|--------------------|---|---------------|---------|
|                          |                    |   |               |         |
| EZG 11 links             |                    |   |               |         |
|                          | _                  |   |               |         |
| 1. Eingangswerte         |                    |   |               |         |
|                          |                    |   |               |         |
| rkrit                    | 15 l/(s⋅ha)        | ) |               |         |
| rBöschung =              | 100 l/(s·ha)       | ) |               |         |
| rBankett =               | 10 l/(s⋅ha)        | ) |               |         |
| ΨAsphalt =               | 0,9 -              |   |               |         |
|                          |                    |   |               |         |
| 2. Flächen               |                    |   |               |         |
|                          |                    |   |               |         |
| ADamm =                  | 990 m <sup>2</sup> |   |               |         |
| ABankett =               | 581 m²             |   | AV1 =         | 2553 m² |
| AMulde =                 | 982 m²             |   |               |         |
| A Cabubabu —             | 0 2                |   |               |         |
| AFahrbahn =              | 0 m²               |   |               |         |
|                          |                    |   |               |         |
| AV, Ges =                | 2553 m²            | _ | 0,255 ha      |         |
| Ared =                   | 2553 m²<br>0 m²    |   |               |         |
| Area -                   | 0 111              | _ | 0,000 Ha      |         |
| 3. Abfluss               |                    |   |               |         |
|                          |                    |   |               |         |
| QAbfluss =               | 3,83 l/s           |   |               |         |
| QVersickerung =          | 20,30 l/s          |   |               |         |
|                          |                    |   |               |         |
| QGesamt =                | -16,47 l/s         |   | Kein Abfluss! |         |

| Entwässerungsabschnitt 9 |                      |    |              |       |
|--------------------------|----------------------|----|--------------|-------|
| EZG 12 rechts            |                      |    |              |       |
| 1. Eingangswerte         |                      |    |              |       |
| rkrit                    | 15 l/(s⋅ha)          |    |              |       |
| rBöschung =              | 100 l/(s⋅ha)         |    |              |       |
| rBankett =               | 10 l/(s⋅ha)          |    |              |       |
| ΨAsphalt =               | 0,9 -                |    |              |       |
| 2. Flächen               |                      |    |              |       |
| ADamm =                  | 0,00 m²              |    |              |       |
| ABankett =               | 30,00 m <sup>2</sup> | A۱ | <b>V1</b> =  | 70 m² |
| AMulde =                 | 40,00 m <sup>2</sup> |    |              |       |
| AFahrbahn =              | 0,00 m²              |    |              |       |
| AV, Ges =                | 70 m²                | =  | 0,007 ha     |       |
| Ared =                   | 0 m <sup>2</sup>     | =  | 0,000 ha     |       |
| 3. Abfluss               |                      |    |              |       |
| QAbfluss =               | 0,11 l/s             |    |              |       |
| QVersickerung =          | 0,43 l/s             |    |              |       |
| QGesamt =                | -0,33 l/s            | K  | ein Abfluss! |       |

| Entwässerungsabschnitt 9 |        |          |   |               |        |
|--------------------------|--------|----------|---|---------------|--------|
| EZG 12 links             |        |          |   |               |        |
| 1. Eingangswerte         |        |          |   |               |        |
|                          |        |          |   |               |        |
| rkrit                    | 15     | l/(s⋅ha) |   |               |        |
| rBöschung =              | 100    | l/(s⋅ha) |   |               |        |
| rBankett =               | 10     | l/(s⋅ha) |   |               |        |
| ΨAsphalt =               | 0,9    | -        |   |               |        |
|                          |        |          |   |               |        |
| 2. Flächen               |        |          |   |               |        |
| l                        |        |          |   |               |        |
| ADamm =                  | 0,00   |          |   | ***           |        |
| ABankett =               | 49,00  |          |   | AV1 =         | 148 m² |
| AMulde =                 | 99,00  | m²       |   |               |        |
| AFahrbahn =              | 212,00 | m²       |   |               |        |
|                          | 212,00 | 111      |   |               |        |
|                          |        |          |   |               |        |
| AV, Ges =                | 148    | m²       | = | 0,015 ha      |        |
| Ared =                   |        | m²       |   |               |        |
|                          |        |          |   | ·             |        |
| 3. Abfluss               |        |          |   |               |        |
|                          |        |          |   |               |        |
| QAbfluss =               | 0,51   |          |   |               |        |
| QVersickerung =          | 1,04   | l/s      |   |               |        |
|                          |        |          |   |               |        |
| QGesamt =                | -0,53  | l/s      |   | Kein Abfluss! |        |

| <u>Entwässerungsabschnitt</u>           | 1                     |     |                      |         |
|-----------------------------------------|-----------------------|-----|----------------------|---------|
| EZG 1 rechts                            | Anteil ab St. 520, ab | Blo | ckade                |         |
| 1. Eingangswerte                        |                       |     |                      |         |
|                                         |                       |     |                      |         |
| r15,1 =                                 | 113,3 l/(s·ha)        |     |                      |         |
| rBöschung =                             | 100 l/(s·ha)          |     |                      |         |
| rBankett =                              | 10 l/(s·ha)           |     |                      |         |
| ΨAsphalt =                              | 0,9 -                 |     |                      |         |
| ΨKies =                                 | 0,7 -                 |     |                      |         |
| kf =                                    | 0,000001 m/s          |     |                      |         |
| 2. Flächen                              |                       |     |                      |         |
| ADamm =                                 | 1044,00 m²            |     |                      |         |
| ABankett =                              | 352,00 m <sup>2</sup> |     | AV1 =                | 1854 m² |
| AMulde =                                | 458,00 m <sup>2</sup> | •   |                      |         |
|                                         | ·                     |     |                      |         |
| AFahrbahn =                             | 1899,00 m²            |     |                      |         |
| ABankett WW =                           | 233,00 m²             |     | AV2 =                | 233 m²  |
| AWW =                                   | 695,00 m <sup>2</sup> |     |                      | 200 111 |
| , , , , , , , , , , , , , , , , , , , , | 333,33 111            |     |                      |         |
| AEinschnitt =                           | 136,00 m²             | =   | 0,014 ha             |         |
| AV, Ges =                               | 2087 m²               | =   | 0,209 ha             |         |
| Av, Ges –<br>Ared =                     | 2196 m <sup>2</sup>   |     | 0,209 ha<br>0,220 ha |         |
| Alca –                                  | 2130 111              |     | 0,220 118            |         |
| 3. Abfluss                              |                       |     |                      |         |
| QAbfluss =                              | 48,52 l/s             |     |                      |         |
| QEinschnitt =                           | 1,40 l/s              |     |                      |         |
| QVersickerung =                         | 15,61 l/s             |     |                      |         |
|                                         |                       |     |                      |         |
| QGesamt =                               | 34,32 l/s             | 1   | Abfluss!             |         |

| Entwässerungsabschnitt 1                           |                                                     |      |                |              |
|----------------------------------------------------|-----------------------------------------------------|------|----------------|--------------|
| EZG 1 links                                        | Inkl. Anteil EZG 1 re                               | echt | s bis St. 520, | bis Blockade |
| 1. Eingangswerte                                   |                                                     |      |                |              |
| r15,1 = rBöschung = rBankett =  WAsphalt = WKies = | 113,3 l/(s·ha<br>100 l/(s·ha<br>10 l/(s·ha<br>0,9 - | )    |                |              |
| kf =                                               | 0,7 -<br>0,000001 m/s                               |      |                |              |
| 2. Flächen                                         | .,                                                  |      |                |              |
| ADamm =                                            | 1370,00 m²                                          |      |                |              |
| ABankett =                                         | 1249,00 m²                                          |      | AV1 =          | 4713 m²      |
| AMulde =                                           | 2094,00 m <sup>2</sup>                              |      |                |              |
| AFahrbahn =                                        | 4791,00 m²                                          |      |                |              |
| ABankett WW =                                      | 522,00 m <sup>2</sup>                               |      | AV2 =          | 522 m²       |
| AWW =                                              | 1562,00 m <sup>2</sup>                              |      |                |              |
| AEinschnitt =                                      | 3383,00 m²                                          | =    | 0,338          | ha           |
| AV, Ges =                                          | 5235 m²                                             | =    | 0,524          | ha           |
| Ared =                                             | 5405 m²                                             |      | 0,541          | ha           |
| 3. Abfluss                                         |                                                     |      |                |              |
| QAbfluss =                                         | 120,55 l/s                                          |      |                |              |
| QEinschnitt =                                      | 34,95 l/s                                           |      |                |              |
| QVersickerung =                                    | 36,41 l/s                                           |      |                |              |
| QGesamt =                                          | 119,09 l/s                                          |      | Abfluss!       |              |

| Entwässerungsabschnitt 2 | 2               |          |          |                 |         |
|--------------------------|-----------------|----------|----------|-----------------|---------|
| EZG 2 rechts             | Inkl. Anteil EZ | G 2 link | ks bis S | t. 500, bis Blo | ockade  |
| 4 Figures accounts       | <del></del>     |          |          |                 |         |
| 1. Eingangswerte         |                 |          |          |                 |         |
| r15,1 =                  | 113,3           | l/(s⋅ha) | )        |                 |         |
| rBöschung =              |                 | I/(s·ha) |          |                 |         |
| rBankett =               |                 | l/(s·ha) | )        |                 |         |
| ΨAsphalt =               | 0,9             |          |          |                 |         |
| ΨKies =                  | 0,7             |          |          |                 |         |
| kf =                     | 0,000001        | 111/5    |          |                 |         |
| 2. Flächen               |                 |          |          |                 |         |
| ADamm =                  | 1.250,00        | m²       |          |                 |         |
| ABankett =               | 1.051,00        |          |          | AV1 =           | 3889 m² |
| AMulde =                 | 1.554,00        | m²       |          |                 |         |
| AGrün =                  | 34              | m²       |          |                 |         |
| AFahrbahn =              | 1.461,00        | m²       |          |                 |         |
| ABankett WW =            | 34,00           | m²       |          | AV2 =           | 34 m²   |
| AWW =                    | 198,00          | m²       |          |                 |         |
| AEinschnitt =            | 2.220,00        | m²       | =        | 0,222           | ha      |
| AV, Ges =                | 3923            | m²       | =        | 0,392           | ha      |
| Ared =                   | 1454            | m²       | =        | 0,145           | ha      |
| 3. Abfluss               |                 |          |          |                 |         |
| QAbfluss =               | 60,92           | l/s      |          |                 |         |
| QEinschnitt =            | 22,93           |          |          |                 |         |
| QVersickerung =          | 29,47           | l/s      |          |                 |         |
| QGesamt =                | 54,38           | l/s      |          | Abfluss!        |         |

| Entwässerungsabschnitt 2 |          |          |   |          |         |
|--------------------------|----------|----------|---|----------|---------|
| EZG 2 links              |          |          |   |          |         |
| 1. Eingangswerte         |          |          |   |          |         |
| r15,1 =                  | 113.3    | l/(s⋅ha) |   |          |         |
| rBöschung =              |          | I/(s·ha) |   |          |         |
| rBankett =               |          | l/(s⋅ha) |   |          |         |
| ΨAsphalt =               | 0,9      |          |   |          |         |
| ΨKies =                  | 0,7      |          |   |          |         |
| kf =                     | 0,000001 | m/s      |   |          |         |
| 2. Flächen               |          |          |   |          |         |
| ADamm =                  | 870,00   | m²       |   |          |         |
| ABankett =               | 315,00   |          |   | AV1 =    | 1601 m² |
| AMulde =                 | 416,00   | m²       |   |          |         |
| AFahrbahn =              | -        | m²       |   |          |         |
| ABankett WW =            | _        | m²       |   | AV2 =    | 0 m²    |
| AWW =                    | -        | m²       |   | 7102     | 0 111   |
|                          |          |          |   |          |         |
| AEinschnitt =            | 120,00   | m²       | = | 0,012 ha |         |
| AV, Ges =                | 1601     | m²       | = | 0,160 ha |         |
| Ared =                   | 0        | m²       | = | 0,000 ha |         |
| 3. Abfluss               |          |          |   |          |         |
| QAbfluss =               | 18,14    | l/s      |   |          |         |
| QEinschnitt =            | 1,24     |          |   |          |         |
| QVersickerung =          | 13,18    | l/s      |   |          |         |
| QGesamt =                | 6,20     | l/s      |   | Abfluss! |         |

| Entwässerungsabschnitt 1 |                       |   |          |         |
|--------------------------|-----------------------|---|----------|---------|
| EZG 3 rechts             |                       |   |          |         |
| 1. Eingangswerte         |                       |   |          |         |
| r15,1 =                  | 113,3 l/(s·ha)        |   |          |         |
| rBöschung =              | 100 l/(s·ha)          |   |          |         |
| rBankett =               | 10 l/(s·ha)           |   |          |         |
| ΨAsphalt =<br>ΨKies =    | 0,9 -<br>0,7 -        |   |          |         |
| kf =                     | 0,7 -<br>0,000001 m/s |   |          |         |
| KI –                     | 0,000001111/3         |   |          |         |
| 2. Flächen               |                       |   |          |         |
| ADamm =                  | 717 m²                |   |          |         |
| ABankett =               | 230 m²                |   | AV1 =    | 1241 m² |
| AMulde =                 | 294 m²                |   |          |         |
| AFahrbahn =              | 921 m²                |   |          |         |
| ABankett WW =            | 153,00 m²             |   | AV2 =    | 153 m²  |
| AWW =                    | 459 m <sup>2</sup>    | 4 | AVZ -    | 133 111 |
| , —                      | 400 III               |   |          |         |
| AEinschnitt =            | 0 m²                  | = | 0,000 ha |         |
| AV, Ges =                | 1394 m²               | = | 0,139 ha |         |
| Ared =                   | 1150 m²               | = | 0,115 ha |         |
| 3. Abfluss               |                       |   |          |         |
| QAbfluss =               | 28,83 l/s             |   |          |         |
| QEinschnitt =            | 0,00 l/s              |   |          |         |
| QVersickerung =          | 10,49 l/s             |   |          |         |
| QGesamt =                | 18,33 l/s             | , | Abfluss! |         |

| Entwässerungsabschnitt 1 |            |                    |          |         |
|--------------------------|------------|--------------------|----------|---------|
| EZG 3 links              |            |                    |          |         |
| 1. Eingangswerte         |            |                    |          |         |
| r15,1 =                  | 113,3 1/   | /(s.ha)            |          |         |
| rBöschung =              |            | /(s·ha)<br>/(s·ha) |          |         |
| rBankett =               |            | /(s·ha)            |          |         |
| ΨAsphalt =               | 0,9 -      | , ,                |          |         |
| ΨKies =                  | 0,7 -      |                    |          |         |
| kf =                     | 0,000001 n | m/s                |          |         |
| 2. Flächen               |            |                    |          |         |
| ADamm =                  | 766 n      | n²                 |          |         |
| ABankett =               | 414 n      |                    | AV1 =    | 1525 m² |
| AMulde =                 | 345 n      | n²                 |          |         |
| AFahrbahn =              | 353 n      | m²                 |          |         |
| ABankett WW =            | 0 n        | m²                 | AV2 =    | 0 m²    |
| AWW =                    | 0 n        |                    | 7.02     | 0 111   |
|                          |            |                    |          |         |
| AEinschnitt =            | 22 r       | m² =               | 0,002 ha |         |
| AV, Ges =                | 1525 n     | m² =               | 0,153 ha |         |
| Ared =                   |            | m² =               |          |         |
| 3. Abfluss               |            |                    |          |         |
| QAbfluss =               | 20,88 l/   | /s                 |          |         |
| QEinschnitt =            | 0,23 l/    |                    |          |         |
| QVersickerung =          | 11,52 l/   | /s                 |          |         |
| QGesamt =                | 9,58 l     | ls                 | Abfluss! |         |

| Entwässerungsabschnitt 3    |                                |   |          |         |
|-----------------------------|--------------------------------|---|----------|---------|
|                             |                                |   |          |         |
| EZG 4 rechts                |                                |   |          |         |
|                             |                                |   |          |         |
| 1. Eingangswerte            |                                |   |          |         |
| r15 1 -                     | 112.2 I/(a ba)                 |   |          |         |
| r15,1 =<br>rBöschung =      | 113,3 l/(s·ha)<br>100 l/(s·ha) |   |          |         |
| rBankett =                  | 100 l/(s·ha)                   |   |          |         |
| ΨAsphalt =                  | 0,9 -                          |   |          |         |
| ΨKies =                     | 0,9 -                          |   |          |         |
| kf =                        | 0,000001 m/s                   |   |          |         |
| Ki –                        | 0,000001111/3                  |   |          |         |
| 2. Flächen                  |                                |   |          |         |
|                             |                                |   |          |         |
| ADamm =                     | 670 m²                         |   |          |         |
| ABankett =                  | 183 m²                         |   | AV1 =    | 1645 m² |
| AMulde =                    | 199 m²                         |   |          |         |
| AGrün =                     | 593 m²                         |   |          |         |
|                             |                                |   |          |         |
| AFahrbahn =                 | 0 m <sup>2</sup>               |   |          |         |
| ABankett WW =               | 94 m²                          |   | AV2 =    | 94 m²   |
| AWW =                       | 265 m <sup>2</sup>             |   | AV2 -    | 94 111  |
| AWW (Asph.) =               | 38 m <sup>2</sup>              |   |          |         |
| Avvv (Aspii.) –             | 30 111                         |   |          |         |
| AEinschnitt =               | 0 m²                           | = | 0,000 ha |         |
|                             |                                |   | -,       |         |
| AV, Ges =                   | 1739 m²                        | = | 0,174 ha |         |
| Ared =                      | 220 m²                         |   | 0,022 ha |         |
|                             |                                |   |          |         |
| 3. Abfluss                  |                                |   |          |         |
| O A leftuge =               | 20.40.1/2                      |   |          |         |
| QAbfluss =<br>QEinschnitt = | 22,19 l/s<br>0,00 l/s          |   |          |         |
| QVersickerung =             | 14,90 l/s                      |   |          |         |
| Q v ol blokel ding =        | 17,00 1/3                      |   |          |         |
| QGesamt =                   | 7,30 l/s                       |   | Abfluss! |         |

| Entwässerungsabschnitt 3      |                                |   |                      |        |
|-------------------------------|--------------------------------|---|----------------------|--------|
| EZG 4 links                   | ]                              |   |                      |        |
| 1. Eingangswerte              |                                |   |                      |        |
| r15,1 =                       | 113,3 l/(s·ha)                 |   |                      |        |
| rBöschung =<br>rBankett =     | 100 l/(s⋅ha)<br>10 l/(s⋅ha)    |   |                      |        |
| ΨAsphalt =<br>ΨKies =<br>kf = | 0,9 -<br>0,7 -<br>0,000001 m/s |   |                      |        |
| 2. Flächen                    | 0,000001 111/3                 |   |                      |        |
| ADamm =                       | 477 m²                         |   |                      |        |
| ABankett =<br>AMulde =        | 250 m²<br>200 m²               |   | AV1 =                | 927 m² |
| AFahrbahn =                   | 825 m²                         |   |                      |        |
| ABankett WW =<br>AWW =        | 0 m²<br>0 m²                   |   | AV2 =                | 0 m²   |
| AEinschnitt =                 | 0 m²                           | = | 0,000 ha             |        |
| AV, Ges =<br>Ared =           | 927 m²<br>743 m²               | = | 0,093 ha<br>0,074 ha |        |
| 3. Abfluss                    |                                |   |                      |        |
| QAbfluss =<br>QEinschnitt =   | 18,92 l/s<br>0,00 l/s          |   |                      |        |
| QVersickerung =               | 7,02 l/s                       |   |                      |        |
| QGesamt =                     | 11,90 l/s                      |   | Abfluss!             |        |

| Entwässerungsabschnitt 3         |                                |   |          |         |
|----------------------------------|--------------------------------|---|----------|---------|
| EZG 5 rechts                     |                                |   |          |         |
| 1. Eingangswerte                 |                                |   |          |         |
| r15,1 =                          | 113,3 l/(s                     | • |          |         |
| rBöschung =<br>rBankett =        | 100 l/(s<br>10 l/(s            | • |          |         |
| ΨAsphalt =<br>ΨKies =<br>kf =    | 0,9 -<br>0,7 -<br>0,000001 m/s | , |          |         |
| 2. Flächen                       | ·                              |   |          |         |
| ADamm =                          | 1344 m²                        |   |          |         |
| ABankett =<br>AMulde =           | 551 m²<br>463 m²               |   | AV1 =    | 2358 m² |
| AFahrbahn =                      | 0 m²                           |   |          |         |
| ABankett WW =<br>AWW =           | 0 m²<br>0 m²                   |   | AV2 =    | 0 m²    |
| AEinschnitt =                    | 0 m²                           | = | 0,000    | ha      |
| AV, Ges =<br>Ared =              | 2358 m²<br>0 m²                | = | 3,233    |         |
| 3. Abfluss                       |                                |   |          |         |
| QAbfluss =                       | 26,72 l/s                      |   |          |         |
| QEinschnitt =<br>QVersickerung = | 0,00 l/s<br>18,62 l/s          |   |          |         |
| QGesamt =                        | 8,10 l/s                       |   | Abfluss! |         |

| Entwässerungsabschnitt 3                       |                                               |   |                      |         |
|------------------------------------------------|-----------------------------------------------|---|----------------------|---------|
| EZG 5 links                                    |                                               |   |                      |         |
| 1. Eingangswerte                               |                                               |   |                      |         |
| r15,1 =<br>rBöschung =<br>rBankett =           | 113,3 l/(s·ha)<br>100 l/(s·ha)                |   |                      |         |
| rвапкец =<br>ΨAsphalt =<br>ΨKies =<br>kf =     | 10 l/(s·ha)<br>0,9 -<br>0,7 -<br>0,000001 m/s |   |                      |         |
| 2. Flächen                                     |                                               |   |                      |         |
| ADamm =<br>ABankett =<br>AMulde =              | 1052 m²<br>500 m²<br>386 m²                   | , | AV1 =                | 1938 m² |
| AFahrbahn =                                    | 1690 m²                                       |   |                      |         |
| ABankett WW =<br>AWW =                         | 0 m²<br>0 m²                                  | ı | AV2 =                | 0 m²    |
| AEinschnitt =                                  | 0 m²                                          | = | 0,000 ha             |         |
| AV, Ges =<br>Ared =                            | 1938 m²<br>1521 m²                            | = | 0,194 ha<br>0,152 ha |         |
| 3. Abfluss                                     |                                               |   |                      |         |
| QAbfluss =<br>QEinschnitt =<br>QVersickerung = | 39,19 l/s<br>0,00 l/s<br>14,88 l/s            |   |                      |         |
| QGesamt =                                      | 24,31 l/s                                     |   | Abfluss!             |         |

| Entwässerungsabschnitt 4  |                      |   |          |         |
|---------------------------|----------------------|---|----------|---------|
| EZG 6 rechts              |                      |   |          |         |
| 1. Eingangswerte          |                      |   |          |         |
| r15,1 =                   | 113,3 l/(s·ha)       |   |          |         |
| rBöschung =<br>rBankett = | 100 l/(s·ha)         |   |          |         |
| ΨAsphalt =                | 10 l/(s·ha)<br>0,9 - |   |          |         |
| ΨKies =                   | 0,7 -                |   |          |         |
| kf =                      | 0,000001 m/s         |   |          |         |
| 2. Flächen                |                      |   |          |         |
| ADamm =                   | 571 m²               |   |          |         |
| ABankett =                | 240 m²               |   | AV1 =    | 1104 m² |
| AMulde =                  | 293 m²               |   |          |         |
| AFahrbahn =               | 0 m²                 |   |          |         |
| ABankett WW =             | 0 m²                 |   | AV2 =    | 0 m²    |
| AWW =                     | 0 m²                 |   |          |         |
| AEinschnitt =             | 22 m²                | = | 0,002 ha |         |
| AV, Ges =                 | 1104 m²              | = | 0,110 ha |         |
| Ared =                    | 0 m²                 | = | 0,000 ha |         |
| 3. Abfluss                |                      |   |          |         |
| QAbfluss =                | 12,51 l/s            |   |          |         |
| QEinschnitt =             | 0,23 l/s             |   |          |         |
| QVersickerung =           | 8,88 l/s             |   |          |         |
| QGesamt =                 | 3,86 l/s             |   | Abfluss! |         |

| Entwässerungsabschnitt 4  |                   |                  |          |          |
|---------------------------|-------------------|------------------|----------|----------|
| EZG 6 links               |                   |                  |          |          |
| 1. Eingangswerte          |                   |                  |          |          |
| r15,1 =                   | 113,3 1/(         | (s⋅ha)           |          |          |
| rBöschung =<br>rBankett = | 100 l/(<br>10 l/( | (s·ha)<br>(s·ha) |          |          |
| ΨAsphalt =<br>ΨKies =     | 0,9 -<br>0,7 -    | ,                |          |          |
| kf =                      | 0,000001 m        | /S               |          |          |
| 2. Flächen                |                   |                  |          |          |
| ADamm =                   | 432 m             |                  |          |          |
| ABankett =                | 213 m             |                  | AV1 =    | 883 m²   |
| AMulde =                  | 238 m             | 2                |          |          |
| AFahrbahn =               | 1140 m            | 2                |          |          |
| ABankett WW =             | 0 m               | 2                | AV2 =    | 0 m²     |
| AWW =                     | 0 m               |                  |          | <b>5</b> |
| AEinschnitt =             | 3 m               | <sup>2</sup> =   | 0,000 h  | а        |
| AV, Ges =                 | 883 m             | <sup>2</sup> =   | 0,088 h  | а        |
| Ared =                    | 1026 m            | <sup>2</sup> =   | 0,103 h  |          |
| 3. Abfluss                |                   |                  |          |          |
| QAbfluss =                | 21,63 l/s         | 6                |          |          |
| QEinschnitt =             | 0,03 l/s          |                  |          |          |
| QVersickerung =           | 6,91 l/s          | 3                |          |          |
| QGesamt =                 | 14,75 1/5         | S                | Abfluss! |          |

| Entwässerungsabschnitt 5 |                    |   |          |         |
|--------------------------|--------------------|---|----------|---------|
| EZG 7 rechts             |                    |   |          |         |
| 1 Fingangowarta          | _                  |   |          |         |
| 1. Eingangswerte         |                    |   |          |         |
| r15,1 =                  | 113,3 l/(s·ha)     |   |          |         |
| rBöschung =              | 100 l/(s⋅ha)       |   |          |         |
| rBankett =               | 10 l/(s⋅ha)        |   |          |         |
| ΨAsphalt =               | 0,9 -              |   |          |         |
| ΨKies =<br>kf =          | 0,7 -              |   |          |         |
| K                        | 0,000001 m/s       |   |          |         |
| 2. Flächen               |                    |   |          |         |
| ADamm =                  | 1183 m²            |   |          |         |
| ABankett =               | 402 m²             |   | AV1 =    | 2123 m² |
| AMulde =                 | 515 m <sup>2</sup> |   |          |         |
| AGrün =                  | 23 m²              |   |          |         |
| AFahrbahn =              | 0 m²               |   |          |         |
| ABankett WW =            | 0 m²               |   | AV2 =    | 0 m²    |
| AWW =                    | 0 m²               |   |          |         |
| AEinschnitt =            | 0 m²               | = | 0,000 ha |         |
| AV, Ges =                | 2123 m²            | = | 0,212 ha |         |
| Ared =                   | 0 m²               | = | 0,000 ha |         |
| 3. Abfluss               |                    |   |          |         |
| QAbfluss =               | 24,05 l/s          |   |          |         |
| QEinschnitt =            | 0,00 l/s           |   |          |         |
| QVersickerung =          | 17,61 l/s          |   |          |         |
| QGesamt =                | 6,44 l/s           |   | Abfluss! |         |

| Entwässerungsabschnitt 5      |                                |   |          |         |
|-------------------------------|--------------------------------|---|----------|---------|
| EZG 7 links                   |                                |   |          |         |
| 1. Eingangswerte              |                                |   |          |         |
| r15,1 =                       | 113,3 l/(s·ha                  | ) |          |         |
| rBöschung =<br>rBankett =     | 100 l/(s·ha<br>10 l/(s·ha      | • |          |         |
| ΨAsphalt =<br>ΨKies =<br>kf = | 0,9 -<br>0,7 -<br>0,000001 m/s | , |          |         |
| 2. Flächen                    | 0,000001 111/5                 |   |          |         |
| ADamm =                       | 1363 m²                        |   |          |         |
| ABankett =<br>AMulde =        | 433 m²<br>644 m²               |   | AV1 =    | 2440 m² |
| AFahrbahn =                   | 2177 m²                        |   |          |         |
| ABankett WW =<br>AWW =        | 0 m²<br>0 m²                   |   | AV2 =    | 0 m²    |
| AEinschnitt =                 | 0 m²                           | = | 0,000 ha |         |
| AV, Ges =<br>Ared =           | 2440 m²<br>1959 m²             | = |          |         |
| 3. Abfluss                    |                                |   |          |         |
| QAbfluss =<br>QEinschnitt =   | 49,84 l/s<br>0,00 l/s          |   |          |         |
| QVersickerung =               | 20,50 l/s                      |   |          |         |
| QGesamt =                     | 29,34 l/s                      |   | Abfluss! |         |

| Entwässerungsabschnitt 5 |                        |                |          |        |
|--------------------------|------------------------|----------------|----------|--------|
|                          | T                      |                |          |        |
| EZG 8 rechts             |                        |                |          |        |
| 1. Eingangswerte         |                        |                |          |        |
| r15,1 =                  | 112.2 1//              | c.ha)          |          |        |
| rBöschung =              | 113,3 l/(s<br>100 l/(s |                |          |        |
| rBankett =               | 100 1/(3               |                |          |        |
|                          | ,                      | s·IIa)         |          |        |
| ΨAsphalt =<br>ΨKies =    | 0,9 -                  |                |          |        |
| kf =                     | 0,7 -<br>0,000001 m/   | 10             |          |        |
| KI –                     | 0,000001 111/          | 18             |          |        |
| 2. Flächen               |                        |                |          |        |
| Z. Hachen                |                        |                |          |        |
| ADamm =                  | 230 m <sup>2</sup>     | 2              |          |        |
| ABankett =               |                        |                | AV1 =    | 937 m² |
| AMulde =                 | 451 m <sup>2</sup>     |                |          | 001    |
| AGrün =                  | 10 m <sup>2</sup>      |                |          |        |
|                          |                        |                |          |        |
| AFahrbahn =              | 0 m <sup>2</sup>       | 2              |          |        |
|                          |                        |                |          |        |
| ABankett WW =            | 137,00 m <sup>2</sup>  | 2              | AV2 =    | 137 m² |
| AWW =                    | 478,00 m <sup>2</sup>  | 2              |          |        |
| <b>.</b>                 | 0.40                   | •              | 0.004.1  |        |
| AEinschnitt =            | 342 m²                 | <b>=</b>       | 0,034 h  | а      |
| AV, Ges =                | 1074 m²                | <sup>2</sup> = | 0,107 h  | а      |
| Ared =                   | 430 m <sup>2</sup>     |                | 0,043 h  |        |
|                          |                        |                | ,        |        |
| 3. Abfluss               |                        |                |          |        |
|                          |                        |                |          |        |
| QAbfluss =               | 17,04 l/s              |                |          |        |
| QEinschnitt =            | 3,53 l/s               |                |          |        |
| QVersickerung =          | 7,29 l/s               |                |          |        |
|                          | 40.00 **               |                | ALCI .   |        |
| QGesamt =                | 13,28 l/s              | 3              | Abfluss! |        |

| Entwässerungsabschnitt 5 |                    |   |          |        |
|--------------------------|--------------------|---|----------|--------|
| EZG 8 links              |                    |   |          |        |
| 1. Eingangswerte         |                    |   |          |        |
| r15,1 =                  | 113,3 l/(s⋅ha)     |   |          |        |
| rBöschung =              | 100 l/(s·ha)       |   |          |        |
| rBankett =               | 10 l/(s⋅ha)        |   |          |        |
| ΨAsphalt =<br>ΨKies =    | 0,9 -<br>0,7 -     |   |          |        |
| kf =                     | 0,000001 m/s       |   |          |        |
| 2. Flächen               |                    |   |          |        |
| ADamm =                  | 196 m²             |   |          |        |
| ABankett =               | 240 m <sup>2</sup> |   | AV1 =    | 827 m² |
| AMulde =                 | 391 m²             |   |          |        |
| AFahrbahn =              | 1071 m²            |   |          |        |
| ABankett WW =            | 0 m²               |   | AV2 =    | 0 m²   |
| AWW =                    | 0 m²               |   |          |        |
| AEinschnitt =            | 367 m²             | = | 0,037 ha |        |
| AV, Ges =                | 827 m²             | = | 0,083 ha |        |
| Ared =                   | 964 m²             | = | 0,096 ha |        |
| 3. Abfluss               |                    |   |          |        |
| QAbfluss =               | 20,29 l/s          |   |          |        |
| QEinschnitt =            | 3,79 l/s           |   |          |        |
| QVersickerung =          | 6,11 l/s           |   |          |        |
| QGesamt =                | 17,97 l/s          |   | Abfluss! |        |

| Entwässerungsabschnitt 6 |                       |    |           |         |
|--------------------------|-----------------------|----|-----------|---------|
| EZG 9 rechts             |                       |    |           |         |
| 1. Eingangswerte         |                       |    |           |         |
| r15,1 =                  | 113,3 l/(s·ha         | 1) |           |         |
| rBöschung =              | 100 l/(s·ha           | •  |           |         |
| rBankett =               | 10 l/(s·ha            | 1) |           |         |
| ΨAsphalt =<br>ΨKies =    | 0,9 -<br>0,7 -        |    |           |         |
| kf =                     | 0,000001 m/s          |    |           |         |
|                          | ,                     |    |           |         |
| 2. Flächen               |                       |    |           |         |
| ADamm =                  | 1193 m²               |    |           |         |
| ABankett =               | 369 m²                |    | AV1 =     | 2060 m² |
| AMulde =                 | 498 m²                |    |           |         |
| AFahrbahn =              | 77 m²                 |    |           |         |
| ABankett WW =            | 247,00 m²             |    | AV2 =     | 247 m²  |
| AWW =                    | 870,00 m <sup>2</sup> |    | 7 ( V Z - | 247 111 |
|                          |                       |    |           |         |
| AEinschnitt =            | 5 m²                  | =  | 0,001     | ha      |
| AV, Ges =                | 2307 m²               | =  | 0,231     | ha      |
| Ared =                   | 852 m²                | =  |           |         |
| 3. Abfluss               |                       |    |           |         |
| QAbfluss =               | 35,79 l/s             |    |           |         |
| QEinschnitt =            | 0,05 l/s              |    |           |         |
| QVersickerung =          | 17,53 l/s             |    |           |         |
| QGesamt =                | 18,32 l/s             |    | Abfluss!  |         |

| Entwässerungsabschnitt 6 |          |          |         |          |          |
|--------------------------|----------|----------|---------|----------|----------|
| EZG 9 links              |          |          |         |          |          |
| 1. Eingangswerte         | •        |          |         |          |          |
|                          |          |          |         |          |          |
| r15,1 =                  |          | l/(s⋅ha) |         |          |          |
| rBöschung =              |          | l/(s⋅ha) |         |          |          |
| rBankett =               |          | l/(s⋅ha) |         |          |          |
| ΨAsphalt =               | 0,9      |          |         |          |          |
| ΨKies =                  | 0,7      |          |         |          |          |
| kf =                     | 0,000001 | m/s      |         |          |          |
| 2. Flächen               |          |          |         |          |          |
| ADamm =                  | 1121     | m²       |         |          |          |
| ABankett =               | 361      |          | AV1     | =        | 1953 m²  |
| AMulde =                 | 471      |          | / ( V I |          | 1555 111 |
|                          |          |          |         |          |          |
| AFahrbahn =              | 1874     | m²       |         |          |          |
| ABankett WW =            | 0        | m²       | AV2     | =        | 0 m²     |
| AWW =                    |          | m²       | ,       |          | · · · ·  |
|                          |          |          |         |          |          |
| AEinschnitt =            | 126      | m² =     | =       | 0,013 ha |          |
| AV, Ges =                | 1953     | m² =     | =       | 0,195 ha |          |
| Ared =                   |          |          | =       | 0,169 ha |          |
| 3. Abfluss               |          |          |         |          |          |
| QAbfluss =               | 41,24    | l/s      |         |          |          |
| QEinschnitt =            | 1,30     |          |         |          |          |
| QVersickerung =          | 16,28    |          |         |          |          |
|                          |          |          |         |          |          |
| QGesamt =                | 26,26    | l/s      | Abfl    | uss!     |          |

| Entwässerungsabschnitt 7 |            |         |          |                         |
|--------------------------|------------|---------|----------|-------------------------|
| E7C 10 Cocomt            | <u> </u>   |         |          |                         |
| EZG 10 Gesamt            | ı          |         |          |                         |
| 1. Eingangswerte         |            |         |          |                         |
|                          |            |         |          |                         |
| r15,1 =                  | 113,3 l/   | ` ,     |          |                         |
| rBöschung =              | 100 l/     | /(s·ha) |          |                         |
| rBankett =               | 10 l/      | /(s·ha) |          |                         |
| ΨAsphalt =               | 0,9 -      |         |          |                         |
| ΨKies =                  | 0,7 -      |         |          |                         |
| kf =                     | 0,000001 n | m/s     |          |                         |
| 2. Flächen               |            |         |          |                         |
| ADamm =                  | 5030,00 n  | m²      |          |                         |
| ABankett =               | 1995,00 n  |         | AV1 =    | 11632,00 m <sup>2</sup> |
| AMulde =                 | 2752,00 n  |         |          | , , , ,                 |
| AGrün =                  | 1855,00 n  |         |          |                         |
| AFahrbahn =              | 5736,00 n  | n²      |          |                         |
| ABankett WW =            | 845,00 n   | m²      | AV2 =    | 845 m²                  |
| AWW Asphalt =            | 2032,00 n  |         |          |                         |
| AWW Kies =               | 757,00 n   |         |          |                         |
| AEinschnitt =            | 1100,00 n  | m² =    | 0,110 h  | na                      |
| AV, Ges =                | 12477 n    | m² =    | 1,248 h  | na                      |
| Ared =                   | 7521 r     |         | 0,752 h  |                         |
| 3. Abfluss               |            |         |          |                         |
| QAbfluss =               | 226,58 l/  | /s      |          |                         |
| QEinschnitt =            | 11,36 l/   |         |          |                         |
| QVersickerung =          | 99,21 l/   |         |          |                         |
| QGesamt =                | 138,73 l   | /s      | Abfluss! |                         |

| Entwässerungsabschnitt 8 |                       |   |          |           |
|--------------------------|-----------------------|---|----------|-----------|
| EZG 11 rechts            | Ι                     |   |          |           |
| LZG II Iechts            | J                     |   |          |           |
| 1. Eingangswerte         |                       |   |          |           |
|                          |                       |   |          |           |
| r15,1 =                  | 113,3 l/(s·ha)        |   |          |           |
| rBöschung =              | 100 l/(s⋅ha)          |   |          |           |
| rBankett =               | 10 l/(s⋅ha)           |   |          |           |
| ΨAsphalt =               | 0,9 -                 |   |          |           |
| ΨKies =                  | 0,7 -                 |   |          |           |
| kf =                     | 0,000001 m/s          |   |          |           |
| 2. Flächen               |                       |   |          |           |
|                          |                       |   |          |           |
| ADamm =                  | 1191 m²               |   |          |           |
| ABankett =               | 639 m²                |   | AV1 =    | 3197 m²   |
| AMulde =                 | 994 m²                |   |          |           |
| AWW (grün) =             | 373,00 m <sup>2</sup> |   |          |           |
| AFahrbahn =              | 3496 m²               |   |          |           |
|                          |                       |   |          |           |
| ABankett WW =            | 438,00 m <sup>2</sup> |   | AV2 =    | 438,00 m² |
| AWW =                    | 939,00 m <sup>2</sup> |   |          |           |
| I                        |                       |   |          |           |
| AEinschnitt =            | 572 m²                | = | 0,057    | ha        |
| AV, Ges =                | 3635,00 m²            | _ | 0,364    | ha        |
| Av, Ges –<br>Ared =      | 3804 m²               | = | 0,384    |           |
| Aled –                   | 300 <del>4</del> III  | _ | 0,000    | IIa       |
| 3. Abfluss               |                       |   |          |           |
| QAbfluss =               | 84,28 l/s             |   |          |           |
| QEinschnitt =            | 5,91 l/s              |   |          |           |
| QVersickerung =          | 26,66 l/s             |   |          |           |
| QGesamt =                | 63,53 l/s             |   | Abfluss! |           |

| 440.0    | 1// 1 \                                                                                                            |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                    |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
|          | , ,                                                                                                                |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
|          | , ,                                                                                                                |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| •        |                                                                                                                    |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| 0,000001 | m/s                                                                                                                |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
|          |                                                                                                                    |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
|          |                                                                                                                    |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| 990      | m²                                                                                                                 |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
|          |                                                                                                                    | ,                                                            | 4V1 =                                                                                                                                                                                             | 8288 m²                                                                                                                                                                                                             |
| 982      | m²                                                                                                                 |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| 1759,00  | m²                                                                                                                 |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| 2036,00  | m²                                                                                                                 |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| 1940,00  | m²                                                                                                                 |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| 0        | m²                                                                                                                 |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| ·        |                                                                                                                    |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| 213,00   | m²                                                                                                                 | /                                                            | 4V2 =                                                                                                                                                                                             | 213 m²                                                                                                                                                                                                              |
| 653,00   | m²                                                                                                                 |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| 638      | m²                                                                                                                 | =                                                            | 0,064 ha                                                                                                                                                                                          |                                                                                                                                                                                                                     |
|          | _                                                                                                                  |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
|          |                                                                                                                    |                                                              | •                                                                                                                                                                                                 |                                                                                                                                                                                                                     |
| 588      | m²                                                                                                                 | =                                                            | 0,059 ha                                                                                                                                                                                          |                                                                                                                                                                                                                     |
|          |                                                                                                                    |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| 102.97   | l/s                                                                                                                |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
|          |                                                                                                                    |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| •        |                                                                                                                    |                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                                     |
| 31 70    | I/s                                                                                                                |                                                              | Δhfluss!                                                                                                                                                                                          |                                                                                                                                                                                                                     |
|          | 100<br>10<br>0,9<br>0,000001<br>990<br>581<br>982<br>1759,00<br>2036,00<br>1940,00<br>653,00<br>638<br>8501<br>588 | 653,00 m <sup>2</sup> 638 m <sup>2</sup> 8501 m <sup>2</sup> | 100 l/(s·ha) 10 l/(s·ha) 0,9 - 0,000001 m/s  990 m² 581 m² 982 m² 1759,00 m² 2036,00 m² 1940,00 m²  0 m²  213,00 m² 653,00 m² 653,00 m² 638 m² = 8501 m² = 588 m² = 102,97 l/s 6,59 l/s 77,86 l/s | 100 l/(s·ha) 10 l/(s·ha) 0,9 - 0,000001 m/s  990 m² 581 m² 982 m² 1759,00 m² 2036,00 m² 1940,00 m²  0 m²  213,00 m² 653,00 m² 638 m² = 0,064 ha 8501 m² = 0,850 ha 588 m² = 0,059 ha  102,97 l/s 6,59 l/s 77,86 l/s |

| Entwässerungsabschnitt 9  |                             |   |          |        |
|---------------------------|-----------------------------|---|----------|--------|
| EZG 12 rechts             |                             |   |          |        |
| 1. Eingangswerte          |                             |   |          |        |
| r15,1 =                   | 113,3 l/(s·ha)              |   |          |        |
| rBöschung =<br>rBankett = | 100 l/(s·ha)<br>10 l/(s·ha) |   |          |        |
| ΨAsphalt =                | 0,9 -                       |   |          |        |
| ΨKies =<br>kf =           | 0,7 -<br>0,000001 m/s       |   |          |        |
| 2. Flächen                |                             |   |          |        |
| ADamm =                   | 0,00 m²                     |   |          |        |
| ABankett =                | 30,00 m <sup>2</sup>        |   | AV1 =    | 162 m² |
| AMulde =                  | 40,00 m <sup>2</sup>        |   |          |        |
| AGrün =                   | 92,00 m <sup>2</sup>        |   |          |        |
| AFahrbahn =               | 0,00 m²                     |   |          |        |
| ABankett WW =             | 20,00 m <sup>2</sup>        |   | AV2 =    | 20 m²  |
| AWW =                     | 71,00 m <sup>2</sup>        |   |          |        |
| AEinschnitt =             | 0 m²                        | = | 0,000 ha |        |
| AV, Ges =                 | 182 m²                      | = | 0,018 ha |        |
| Ared =                    | 50 m²                       | = | 0,005 ha |        |
| 3. Abfluss                |                             |   |          |        |
| QAbfluss =                | 2,63 l/s                    |   |          |        |
| QEinschnitt =             | 0,00 l/s                    |   |          |        |
| QVersickerung =           | 1,37 l/s                    |   |          |        |
| QGesamt =                 | 1,26 l/s                    |   | Abfluss! |        |

| Entwässerungsabschnitt 9 |            |          |          |            |    |        |
|--------------------------|------------|----------|----------|------------|----|--------|
| EZG 12 links             | <u> </u>   |          |          |            |    |        |
| 220 12 mmc               |            |          |          |            |    |        |
| 1. Eingangswerte         |            |          |          |            |    |        |
| r15,1 =                  | 113,3      | l/(s·ha) |          |            |    |        |
| rBöschung =              |            | l/(s·ha) |          |            |    |        |
| rBankett =               | 10 I       | l/(s⋅ha) |          |            |    |        |
| ΨAsphalt =               | 0,9 -      |          |          |            |    |        |
| ΨKies =                  | 0,7 -      | -        |          |            |    |        |
| kf =                     | 0,000001 ו | m/s      |          |            |    |        |
| 2. Flächen               |            |          |          |            |    |        |
| ADamm =                  | 0,00 ı     | m²       |          |            |    |        |
| ABankett =               | 49,00 i    |          | AV1      | =          |    | 225 m² |
| AMulde =                 | 99,00 ו    |          | , , , ,  |            |    |        |
| AGrün =                  | 77,00 ı    |          |          |            |    |        |
| AFahrbahn =              | 212,00 ו   | m²       |          |            |    |        |
| ABankett WW =            | 33,00 ı    | m²       | AV2      | ? <b>=</b> |    | 33 m²  |
| AWW =                    | 115,00 ו   |          |          |            |    |        |
| AEinschnitt =            | 0,00 ו     | m² =     | =        | 0,000 h    | na |        |
| AV, Ges =                | 258 ו      | m² =     | <b>=</b> | 0,026 ł    | na |        |
| Ared =                   |            | _        | =        | 0,029 ł    |    |        |
| 3. Abfluss               |            |          |          |            |    |        |
| QAbfluss =               | 6,26 I     | l/s      |          |            |    |        |
| QEinschnitt =            | 0,00 1     |          |          |            |    |        |
| QVersickerung =          | 1,84       | l/s      |          |            |    |        |
| QGesamt =                | 4,42       | l/s      | Abf      | luss!      |    |        |

223 m³/ha

234 m<sup>3</sup>

Programm: Rehm / REBECK

Ing.-Büro Christofori u. Partner \* 91560 Heilsbronn

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

1.1 EA1 Abfluss nach: Becken: 0 Bezeichnung: EZG 1 links Bemessungsgrundlagen Fläche des kanalisierten Einzugsgebietes 1,50 ha  $A_{E,k} =$ Befestigte Fläche  $A_{E,b} =$ 1,05 ha Mittlerer Abflussbeiwert der befestigten Fläche 0,999 - $\psi_{m,b} =$ Nicht befestigte Fläche 0,45 ha  $A_{E,nb} =$ Mittlerer Abflussbeiwert der nicht befestigten Fläche 0,001 - $\Psi_{m,nb} =$ Rechnerische Fließzeit im Kanalnetz bei Vollfüllung  $t_f =$ 0,00 min Mittlerer täglicher Trockenwetterabfluss 0,00 l/s $Q_{T,d,aM} =$ Drosselabfluss 15,80 l/s  $Q_{Dr} =$ Zuschlagsfaktor  $f_z =$ 1,20 -Berechnungsergebnisse Undurchlässige Fläche:  $A_u = A_{E,b} * \psi_{m,b} + A_{E,nb} * \psi_{m,nb}$ 1,05 ha  $A_u =$ Regenanteil der Drosselabflussspende q<sub>Dr,R,u</sub> 15,05 l/s·ha  $q_{Dr,R,u} =$ Abminderungsfaktor aus  $t_f = 0,00$  min und n = 0,33/a1,000  $f_A =$ Gewählter Niederschlag: 1 Überschreitungshäufigkeit: n = 0.330/a

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | Vs.u                       |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,7               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,6               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,5                | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,6                | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 32,9                | 213                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,0                | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                | 159                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,6                 | 114                        |

Erforderliches spezifisches Volumen  $V_{s,u}$  = Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$  V =

Projekt: B 470, A 7 AS Bad Windsheim - Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 1.2 EA1                                   | Abfluss nach:                                              | 0 |                    |              |
|----------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---|--------------------|--------------|
| Bezeichnung:                                             | EZG 3 links                               |                                                            |   |                    |              |
| Bemessungsg                                              | rundlagen                                 |                                                            |   |                    |              |
| Fläche des kar                                           | nalisierten Einzugs                       | gebietes                                                   |   | A <sub>E,k</sub> = | 0,19 ha      |
| Befestigte Fläc                                          | he                                        |                                                            |   | A <sub>E,b</sub> = | 0,09 ha      |
| Mittlerer Abflus                                         | sbeiwert der befe                         | stigten Fläche                                             |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte                                         | e Fläche                                  |                                                            |   | $A_{E,nb} =$       | 0,10 ha      |
| Mittlerer Abflus                                         | sbeiwert der nicht                        | befestigten Fläche                                         |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische f                                           | Fließzeit im Kanalı                       | netz bei Vollfüllung                                       |   | $t_f =$            | 0,00 min     |
| Mittlerer täglich                                        | er Trockenwettera                         | abfluss                                                    |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss                                           |                                           |                                                            |   | $Q_{Dr} =$         | 1,30 l/s     |
| Zuschlagsfaktoı                                          | r                                         |                                                            |   | f <sub>z</sub> =   | 1,20 -       |
| Berechnungse                                             | rgebnisse                                 |                                                            |   |                    |              |
| Undurchlässige                                           | Fläche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |   | A <sub>u</sub> =   | 0,09 ha      |
| Regenanteil de                                           | r Drosselabflusss                         | pende q <sub>Dr,R,u</sub>                                  |   | $q_{Dr,R,u} =$     | 14,44 l/s·ha |
| Abminderungsfaktor aus $t_f = 0,00$ min und $n = 0,33/a$ |                                           |                                                            |   | f <sub>A</sub> =   | 1,000 -      |
| Gewählter Nied                                           | lerschlag:                                |                                                            |   | 1                  |              |
| Überschreitung                                           | shäufigkeit:                              |                                                            |   | n = 0.330/a        |              |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 14,4                      | 153,3               | 166                        |
| 20 min     | 17,0                   | 141,7                     | 14,4                      | 127,2               | 183                        |
| 30 min     | 19,7                   | 109,4                     | 14,4                      | 95,0                | 205                        |
| 45 min     | 22,3                   | 82,6                      | 14,4                      | 68,1                | 221                        |
| 60 min     | 24,0                   | 66,7                      | 14,4                      | 52,2                | 226                        |
| 90 min     | 25,9                   | 48,0                      | 14,4                      | 33,5                | 217                        |
| 2 h        | 27,4                   | 38,1                      | 14,4                      | 23,6                | 204                        |
| 3 h        | 29,5                   | 27,3                      | 14,4                      | 12,9                | 167                        |
| 4 h        | 31,2                   | 21,7                      | 14,4                      | 7,2                 | 125                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 226 \text{ m}^3/\text{ha}$  Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 20 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim - Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 1.3 EA1                                   | Abfluss nach:                                              | 0 |                    |              |
|----------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---|--------------------|--------------|
| Bezeichnung:                                             | EZG 1 rechts                              |                                                            |   |                    |              |
| Bemessungsg                                              | rundlagen                                 |                                                            |   |                    |              |
| Fläche des kar                                           | nalisierten Einzugsg                      | jebietes                                                   |   | A <sub>E,k</sub> = | 0,48 ha      |
| Befestigte Fläc                                          | he                                        |                                                            |   | A <sub>E,b</sub> = | 0,30 ha      |
| Mittlerer Abflus                                         | sbeiwert der befes                        | tigten Fläche                                              |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte                                         | e Fläche                                  |                                                            |   | $A_{E,nb} =$       | 0,18 ha      |
| Mittlerer Abflus                                         | sbeiwert der nicht                        | befestigten Fläche                                         |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische F                                           | -ließzeit im Kanaln                       | etz bei Vollfüllung                                        |   | $t_f =$            | 0,00 min     |
| Mittlerer täglich                                        | er Trockenwetteral                        | ofluss                                                     |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss                                           |                                           |                                                            |   | $Q_{Dr} =$         | 4,50 l/s     |
| Zuschlagsfaktor                                          | r                                         |                                                            |   | $f_z =$            | 1,20 -       |
| Berechnungse                                             | rgebnisse                                 |                                                            |   |                    |              |
| Undurchlässige                                           | Fläche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |   | A <sub>u</sub> =   | 0,30 ha      |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                           |                                                            |   | $q_{Dr,R,u} =$     | 15,00 l/s·ha |
| Abminderungsfaktor aus $t_f = 0,00$ min und $n = 0,33/a$ |                                           |                                                            |   | f <sub>A</sub> =   | 1,000 -      |
| Gewählter Nied                                           | lerschlag:                                |                                                            |   | 1                  |              |
| Überschreitungs                                          | shäufigkeit:                              |                                                            |   | n = 0.330/a        |              |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,8               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,7               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,6                | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,7                | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 33,0                | 214                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,1                | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                | 160                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,7                 | 115                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 223 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 67 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim - Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

Überschreitungshäufigkeit:

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 1.4 EA1                                 | Abfluss nach:                                                             | 0 |                    |              |
|----------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|---|--------------------|--------------|
| Bezeichnung:                                             | EZG 3 rechts                            |                                                                           |   |                    |              |
| Bemessungsg                                              | rundlagen                               |                                                                           |   |                    |              |
| Fläche des kan                                           | alisierten Einzug                       | sgebietes                                                                 |   | A <sub>E,k</sub> = | 0,28 ha      |
| Befestigte Fläck                                         | he                                      |                                                                           |   | $A_{E,b} =$        | 0,16 ha      |
| Mittlerer Abflus                                         | sbeiwert der bef                        | estigten Fläche                                                           |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte                                         | Fläche                                  |                                                                           |   | $A_{E,nb} =$       | 0,12 ha      |
| Mittlerer Abflus                                         | sbeiwert der nich                       | nt befestigten Fläche                                                     |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische F                                           | ließzeit im Kana                        | lnetz bei Vollfüllung                                                     |   | $t_f =$            | 0,00 min     |
| Mittlerer täglich                                        | er Trockenwetter                        | abfluss                                                                   |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss                                           |                                         |                                                                           |   | $Q_{Dr} =$         | 2,40 l/s     |
| Zuschlagsfaktor                                          |                                         |                                                                           |   | $f_z =$            | 1,20 -       |
| Berechnungse                                             | rgebnisse                               |                                                                           |   |                    |              |
| Undurchlässige                                           | Fläche: A <sub>u</sub> = A <sub>E</sub> | , <sub>b</sub> * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |   | A <sub>u</sub> =   | 0,16 ha      |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                         |                                                                           |   | $q_{Dr,R,u} =$     | 15,00 l/s·ha |
| Abminderungsf                                            | aktor aus t <sub>f</sub> = 0,0          | 0 min und n = 0,33/a                                                      |   | f <sub>A</sub> =   | 1,000 -      |
| Gewählter Nied                                           | lerschlag:                              |                                                                           |   | 1                  |              |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,8               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,7               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,6                | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,7                | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 33,0                | 214                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,1                | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                | 160                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,7                 | 115                        |

n = 0.330/a

Erforderliches spezifisches Volumen  $V_{s,u} = 223 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 36 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim - Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

Gewählter Niederschlag:

Überschreitungshäufigkeit:

#### Einzelbeckenberechnung gem. DWA-A 117

| Destar                                                                       | 0.4.540                         | A I. Cl               |   |                    |              |
|------------------------------------------------------------------------------|---------------------------------|-----------------------|---|--------------------|--------------|
| Becken:                                                                      | 2.1 EA2                         | Abfluss nach:         | 0 |                    |              |
| Bezeichnung:                                                                 | EZG 2 links                     |                       |   |                    |              |
| Bemessungsg                                                                  | rundlagen                       |                       |   |                    |              |
| Fläche des kar                                                               | nalisierten Einzug              | sgebietes             |   | $A_{E,k} =$        | 0,17 ha      |
| Befestigte Fläc                                                              | he                              |                       |   | A <sub>E,b</sub> = | 0,05 ha      |
| Mittlerer Abflus                                                             | sbeiwert der befe               | estigten Fläche       |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte                                                             | e Fläche                        |                       |   | $A_{E,nb} =$       | 0,12 ha      |
| Mittlerer Abflus                                                             | sbeiwert der nich               | nt befestigten Fläche |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische                                                                 | Fließzeit im Kana               | lnetz bei Vollfüllung |   | $t_f =$            | 0,00 min     |
| Mittlerer täglich                                                            | ner Trockenwetter               | abfluss               |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss                                                               |                                 |                       |   | $Q_{Dr} =$         | 0,80 l/s     |
| Zuschlagsfakto                                                               | r                               |                       |   | f <sub>z</sub> =   | 1,20 -       |
| Berechnungse                                                                 | ergebnisse                      |                       |   |                    |              |
| Undurchlässige Fläche: $A_u = A_{E,b} * \psi_{m,b} + A_{E,nb} * \psi_{m,nb}$ |                                 |                       |   | A <sub>u</sub> =   | 0,05 ha      |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub>                     |                                 |                       |   | $q_{Dr,R,u} =$     | 16,00 l/s·ha |
| Abminderungs                                                                 | faktor aus t <sub>f</sub> = 0,0 | 0 min und n = 0,33/a  |   | f <sub>A</sub> =   | 1,000 -      |
|                                                                              |                                 |                       |   |                    |              |

| Dauerstufe | Niederschlags- | Zugehörige  | Drosselabfluss-     | Differenz                      | Spez. Speicher- |
|------------|----------------|-------------|---------------------|--------------------------------|-----------------|
|            | höhe           | Regenspende | spende              |                                | volumen         |
| D          | hN             | r           | q <sub>Dr,R,u</sub> | <b>r - q</b> <sub>Dr,R,u</sub> | $V_{s,u}$       |
| min, h     | mm             | l/s·ha      | l/s·ha              | l/s·ha                         | m³/ha           |
| 15 min     | 15,1           | 167,8       | 16,0                | 151,8                          | 164             |
| 20 min     | 17,0           | 141,7       | 16,0                | 125,7                          | 181             |
| 30 min     | 19,7           | 109,4       | 16,0                | 93,4                           | 202             |
| 45 min     | 22,3           | 82,6        | 16,0                | 66,6                           | 216             |
| 60 min     | 24,0           | 66,7        | 16,0                | 50,7                           | 219             |
| 90 min     | 25,9           | 48,0        | 16,0                | 32,0                           | 207             |
| 2 h        | 27,4           | 38,1        | 16,0                | 22,1                           | 191             |
| 3 h        | 29,5           | 27,3        | 16,0                | 11,3                           | 147             |
| 4 h        | 31.2           | 21.7        | 16.0                | 5.7                            | 98              |

1

n = 0.330/a

Erforderliches spezifisches Volumen  $V_{s,u} = 219 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 11 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:           | 2.2 EA2            | Abfluss nach:        | 0 |                    |          |
|-------------------|--------------------|----------------------|---|--------------------|----------|
| Bezeichnung:      | EZG 2 rechts       |                      |   |                    |          |
| Bemessungsg       | rundlagen          |                      |   |                    |          |
| Fläche des kar    | nalisierten Einzug | sgebietes            |   | A <sub>E,k</sub> = | 0,78 ha  |
| Befestigte Fläc   | he                 |                      |   | $A_{E,b} =$        | 0,48 ha  |
| Mittlerer Abflus  | sbeiwert der befe  | stigten Fläche       |   | $\psi_{m,b} =$     | 0,999 -  |
| Nicht befestigte  | e Fläche           |                      |   | $A_{E,nb} =$       | 0,30 ha  |
| Mittlerer Abflus  | sbeiwert der nich  | t befestigten Fläche |   | $\psi_{m,nb} =$    | 0,001 -  |
| Rechnerische      | Fließzeit im Kana  | netz bei Vollfüllung |   | $t_f =$            | 0,00 min |
| Mittlerer täglich | ner Trockenwetter  | abfluss              |   | $Q_{T,d,aM} =$     | 0,00 l/s |
| Drosselabfluss    |                    |                      |   | $Q_{Dr} =$         | 7,20 l/s |
| Zuschlagsfakto    | r                  |                      |   | f <sub>z</sub> =   | 1,20 -   |
| Berechnungse      | ergebnisse         |                      |   |                    |          |
| Undurchlässige    | - Elächo: Λ = Λ-   | * <b></b>            |   | ۸ –                | 0.48 ha  |

Undurchlässige Fläche:  $A_u = A_{E,b} * \psi_{m,b} + A_{E,nb} * \psi_{m,nb}$   $A_u = 0,48 \text{ ha}$  Regenanteil der Drosselabflussspende  $q_{Dr,R,u}$   $q_{Dr,R,u} = 15,00 \text{ l/s} \cdot \text{ha}$  Abminderungsfaktor aus  $t_f = 0,00$  min und n = 0,33/a  $f_A = 1,000$  - Gewählter Niederschlag:

Überschreitungshäufigkeit: n = 0,330/a

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz                      | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|--------------------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> <sub>Dr,R,u</sub> | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha                         | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,8                          | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,7                          | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                           | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,6                           | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,7                           | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 33,0                           | 214                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,1                           | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                           | 160                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,7                            | 115                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 223 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 107 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim - Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

Überschreitungshäufigkeit:

#### Einzelbeckenberechnung gem. DWA-A 117

| Darden 0.4                                               | <b>-</b> 40                            | A la flace a constant                                      | • |                    |              |
|----------------------------------------------------------|----------------------------------------|------------------------------------------------------------|---|--------------------|--------------|
| _                                                        | EA3                                    | Abfluss nach:                                              | 0 |                    |              |
| Bezeichnung: EZ                                          | G 4 links                              |                                                            |   |                    |              |
| Bemessungsgrund                                          | lagen                                  |                                                            |   |                    |              |
| Fläche des kanalisie                                     | erten Einzugs                          | gebietes                                                   |   | A <sub>E,k</sub> = | 0,18 ha      |
| Befestigte Fläche                                        |                                        |                                                            |   | $A_{E,b} =$        | 0,10 ha      |
| Mittlerer Abflussbeiv                                    | vert der befes                         | tigten Fläche                                              |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte Fläe                                    | che                                    |                                                            |   | $A_{E,nb} =$       | 0,08 ha      |
| Mittlerer Abflussbeiv                                    | vert der nicht                         | befestigten Fläche                                         |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische Fließ                                       | zeit im Kanalr                         | etz bei Vollfüllung                                        |   | $t_f =$            | 0,00 min     |
| Mittlerer täglicher Ti                                   | rockenwetteral                         | ofluss                                                     |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss                                           |                                        |                                                            |   | $Q_{Dr} =$         | 1,60 l/s     |
| Zuschlagsfaktor                                          |                                        |                                                            |   | $f_z =$            | 1,20 -       |
| Berechnungsergeb                                         | nisse                                  |                                                            |   |                    |              |
| Undurchlässige Fläd                                      | che: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |   | A <sub>u</sub> =   | 0,10 ha      |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                        |                                                            |   | $q_{Dr,R,u} =$     | 16,00 l/s·ha |
| Abminderungsfaktor                                       | aus t <sub>f</sub> = 0,00              | min und $n = 0.33/a$                                       |   | f <sub>A</sub> =   | 1,000 -      |
| Gewählter Niedersc                                       | hlag:                                  |                                                            |   | 1                  |              |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 16,0                      | 151,8               | 164                        |
| 20 min     | 17,0                   | 141,7                     | 16,0                      | 125,7               | 181                        |
| 30 min     | 19,7                   | 109,4                     | 16,0                      | 93,4                | 202                        |
| 45 min     | 22,3                   | 82,6                      | 16,0                      | 66,6                | 216                        |
| 60 min     | 24,0                   | 66,7                      | 16,0                      | 50,7                | 219                        |
| 90 min     | 25,9                   | 48,0                      | 16,0                      | 32,0                | 207                        |
| 2 h        | 27,4                   | 38,1                      | 16,0                      | 22,1                | 191                        |
| 3 h        | 29,5                   | 27,3                      | 16,0                      | 11,3                | 147                        |
| 4 h        | 31,2                   | 21,7                      | 16,0                      | 5,7                 | 98                         |

n = 0.330/a

Erforderliches spezifisches Volumen  $V_{s,u} = 219 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 22 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 3.2 EA3                                     | Abfluss nach:                                              | 0              |                    |          |
|----------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|----------------|--------------------|----------|
| Bezeichnung:                                             | EZG 5 links                                 |                                                            |                |                    |          |
| Bemessungsg                                              | rundlagen                                   |                                                            |                |                    |          |
| Fläche des kar                                           | nalisierten Einzugs                         | gebietes                                                   |                | A <sub>E,k</sub> = | 0,36 ha  |
| Befestigte Fläc                                          | he                                          |                                                            |                | A <sub>E,b</sub> = | 0,21 ha  |
| Mittlerer Abflus                                         | sbeiwert der befe                           | stigten Fläche                                             |                | $\psi_{m,b}$ =     | 0,999 -  |
| Nicht befestigte                                         | e Fläche                                    |                                                            |                | $A_{E,nb} =$       | 0,15 ha  |
| Mittlerer Abflus                                         | sbeiwert der nicht                          | befestigten Fläche                                         |                | $\psi_{m,nb} =$    | 0,001 -  |
| Rechnerische I                                           | Fließzeit im Kanalı                         | netz bei Vollfüllung                                       |                | $t_f =$            | 0,00 min |
| Mittlerer täglich                                        | ner Trockenwettera                          | bfluss                                                     |                | $Q_{T,d,aM} =$     | 0,00 l/s |
| Drosselabfluss                                           |                                             |                                                            |                | $Q_{Dr} =$         | 3,20 l/s |
| Zuschlagsfakto                                           | r                                           |                                                            |                | f <sub>z</sub> =   | 1,20 -   |
| Berechnungse                                             | ergebnisse                                  |                                                            |                |                    |          |
| Undurchlässige                                           | e Fläche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |                | A <sub>u</sub> =   | 0,21 ha  |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                             |                                                            | $q_{Dr,R,u} =$ | 15,24 l/s·ha       |          |
| Abminderungsfaktor aus $t_f = 0,00$ min und $n = 0,33/a$ |                                             |                                                            |                | f <sub>A</sub> =   | 1,000 -  |
| Gewählter Nied                                           | derschlag:                                  |                                                            |                | 1                  |          |
| Überschreitung                                           | shäufigkeit:                                |                                                            |                | n = 0.330/a        |          |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | Q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | Vs.u                       |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,2                      | 152,5               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,2                      | 126,4               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,2                      | 94,2                | 203                        |
| 45 min     | 22,3                   | 82,6                      | 15,2                      | 67,4                | 218                        |
| 60 min     | 24,0                   | 66,7                      | 15,2                      | 51,4                | 222                        |
| 90 min     | 25,9                   | 48,0                      | 15,2                      | 32,7                | 212                        |
| 2 h        | 27,4                   | 38,1                      | 15,2                      | 22,8                | 197                        |
| 3 h        | 29,5                   | 27,3                      | 15,2                      | 12,1                | 157                        |
| 4 h        | 31,2                   | 21,7                      | 15,2                      | 6,4                 | 111                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 222 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 47 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:           | 3.3 EA3                                 | Abfluss nach:                         | 0 |                    | _            |
|-------------------|-----------------------------------------|---------------------------------------|---|--------------------|--------------|
| Bezeichnung:      | EZG 4 rechts                            |                                       |   |                    |              |
| Bemessungsg       | rundlagen                               |                                       |   |                    |              |
| Fläche des kan    | alisierten Einzug                       | sgebietes                             |   | A <sub>E,k</sub> = | 0,20 ha      |
| Befestigte Fläck  | he                                      |                                       |   | $A_{E,b} =$        | 0,06 ha      |
| Mittlerer Abflus  | sbeiwert der befe                       | estigten Fläche                       |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte  | e Fläche                                |                                       |   | $A_{E,nb} =$       | 0,14 ha      |
| Mittlerer Abflus  | sbeiwert der nich                       | nt befestigten Fläche                 |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische F    | ließzeit im Kana                        | lnetz bei Vollfüllung                 |   | $t_f =$            | 0,00 min     |
| Mittlerer täglich | er Trockenwetter                        | abfluss                               |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss    |                                         |                                       |   | $Q_{Dr} =$         | 1,00 l/s     |
| Zuschlagsfaktor   | •                                       |                                       |   | $f_z =$            | 1,20 -       |
| Berechnungse      | rgebnisse                               |                                       |   |                    |              |
| Undurchlässige    | Fläche: A <sub>u</sub> = A <sub>E</sub> | ,b * Ψm,b + A <sub>E,nb</sub> * Ψm,nb |   | $A_u =$            | 0,06 ha      |
| Regenanteil de    | r Drosselabfluss                        | spende q <sub>Dr,R,u</sub>            |   | $q_{Dr,R,u} =$     | 16,67 l/s·ha |

Abminderungsfaktor aus  $t_f$  = 0,00 min und n = 0,33/a  $f_A$  = 1,000 - Gewählter Niederschlag: 1
Überschreitungshäufigkeit: n = 0,330/a

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende  | Differenz                      | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|----------------------------|--------------------------------|----------------------------|
| D          | hN                     | r                         | <b>q</b> <sub>Dr,R,u</sub> | <b>r - q</b> <sub>Dr,R,u</sub> | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                     | l/s·ha                         | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 16,7                       | 151,1                          | 163                        |
| 20 min     | 17,0                   | 141,7                     | 16,7                       | 125,0                          | 180                        |
| 30 min     | 19,7                   | 109,4                     | 16,7                       | 92,8                           | 200                        |
| 45 min     | 22,3                   | 82,6                      | 16,7                       | 65,9                           | 214                        |
| 60 min     | 24,0                   | 66,7                      | 16,7                       | 50,0                           | 216                        |
| 90 min     | 25,9                   | 48,0                      | 16,7                       | 31,3                           | 203                        |
| 2 h        | 27,4                   | 38,1                      | 16,7                       | 21,4                           | 185                        |
| 3 h        | 29,5                   | 27,3                      | 16,7                       | 10,6                           | 138                        |
| 4 h        | 31,2                   | 21,7                      | 16,7                       | 5,0                            | 86                         |

Erforderliches spezifisches Volumen  $V_{s,u} = 216 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 13 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 3.4 EA3                                     | Abfluss nach:                                              | 0              |                    |          |
|----------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|----------------|--------------------|----------|
| Bezeichnung:                                             | EZG 5 rechts                                |                                                            |                |                    |          |
| Bemessungsg                                              | rundlagen                                   |                                                            |                |                    |          |
| Fläche des kar                                           | nalisierten Einzugs                         | gebietes                                                   |                | A <sub>E,k</sub> = | 0,24 ha  |
| Befestigte Fläc                                          | he                                          |                                                            |                | A <sub>E,b</sub> = | 0,07 ha  |
| Mittlerer Abflus                                         | sbeiwert der befes                          | tigten Fläche                                              |                | $\psi_{m,b}$ =     | 0,999 -  |
| Nicht befestigte                                         | e Fläche                                    |                                                            |                | $A_{E,nb} =$       | 0,17 ha  |
| Mittlerer Abflus                                         | sbeiwert der nicht                          | befestigten Fläche                                         |                | $\psi_{m,nb} =$    | 0,001 -  |
| Rechnerische I                                           | Fließzeit im Kanaln                         | etz bei Vollfüllung                                        |                | $t_f =$            | 0,00 min |
| Mittlerer täglich                                        | ner Trockenwetteral                         | ofluss                                                     |                | $Q_{T,d,aM} =$     | 0,00 l/s |
| Drosselabfluss                                           |                                             |                                                            |                | $Q_{Dr} =$         | 1,10 l/s |
| Zuschlagsfakto                                           | r                                           |                                                            |                | f <sub>z</sub> =   | 1,20 -   |
| Berechnungse                                             | ergebnisse                                  |                                                            |                |                    |          |
| Undurchlässige                                           | e Fläche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |                | A <sub>u</sub> =   | 0,07 ha  |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                             |                                                            | $q_{Dr,R,u} =$ | 15,71 l/s·ha       |          |
| Abminderungsfaktor aus $t_f = 0,00$ min und $n = 0,33/a$ |                                             |                                                            |                | f <sub>A</sub> =   | 1,000 -  |
| Gewählter Nied                                           | derschlag:                                  |                                                            |                | 1                  |          |
| Überschreitung                                           | shäufigkeit:                                |                                                            |                | n = 0.330/a        |          |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,7                      | 152,1               | 164                        |
| 20 min     | 17,0                   | 141,7                     | 15,7                      | 126,0               | 181                        |
| 30 min     | 19,7                   | 109,4                     | 15,7                      | 93,7                | 202                        |
| 45 min     | 22,3                   | 82,6                      | 15,7                      | 66,9                | 217                        |
| 60 min     | 24,0                   | 66,7                      | 15,7                      | 51,0                | 220                        |
| 90 min     | 25,9                   | 48,0                      | 15,7                      | 32,2                | 209                        |
| 2 h        | 27,4                   | 38,1                      | 15,7                      | 22,3                | 193                        |
| 3 h        | 29,5                   | 27,3                      | 15,7                      | 11,6                | 150                        |
| 4 h        | 31,2                   | 21,7                      | 15,7                      | 6,0                 | 103                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 220 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 15 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 4.1 EA4                                   | Abfluss nach:                                              | 0 |                    |              |
|----------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---|--------------------|--------------|
| Bezeichnung:                                             | EZG 6 links                               |                                                            |   |                    |              |
| Bemessungsg                                              | rundlagen                                 |                                                            |   |                    |              |
| Fläche des kan                                           | alisierten Einzugs                        | gebietes                                                   |   | A <sub>E,k</sub> = | 0,20 ha      |
| Befestigte Fläcl                                         | ne                                        |                                                            |   | A <sub>E,b</sub> = | 0,13 ha      |
| Mittlerer Abflus                                         | sbeiwert der befe                         | stigten Fläche                                             |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte                                         | Fläche                                    |                                                            |   | $A_{E,nb} =$       | 0,07 ha      |
| Mittlerer Abflus                                         | sbeiwert der nicht                        | befestigten Fläche                                         |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische F                                           | ließzeit im Kanal                         | netz bei Vollfüllung                                       |   | $t_f =$            | 0,00 min     |
| Mittlerer täglich                                        | er Trockenwettera                         | bfluss                                                     |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss                                           |                                           |                                                            |   | $Q_{Dr} =$         | 2,00 l/s     |
| Zuschlagsfaktor                                          |                                           |                                                            |   | $f_z =$            | 1,20 -       |
| Berechnungse                                             | rgebnisse                                 |                                                            |   |                    |              |
| Undurchlässige                                           | Fläche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |   | A <sub>u</sub> =   | 0,13 ha      |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                           |                                                            |   | $q_{Dr,R,u} =$     | 15,38 l/s·ha |
| Abminderungsfaktor aus $t_f = 0,00$ min und $n = 0,33/a$ |                                           |                                                            |   | f <sub>A</sub> =   | 1,000 -      |
| Gewählter Nied                                           | erschlag:                                 |                                                            |   | 1                  |              |
| Überschreitungs                                          | shäufigkeit:                              |                                                            |   | n = 0,330/a        |              |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | Q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | Vs.u                       |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,4                      | 152,4               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,4                      | 126,3               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,4                      | 94,1                | 203                        |
| 45 min     | 22,3                   | 82,6                      | 15,4                      | 67,2                | 218                        |
| 60 min     | 24,0                   | 66,7                      | 15,4                      | 51,3                | 222                        |
| 90 min     | 25,9                   | 48,0                      | 15,4                      | 32,6                | 211                        |
| 2 h        | 27,4                   | 38,1                      | 15,4                      | 22,7                | 196                        |
| 3 h        | 29,5                   | 27,3                      | 15,4                      | 11,9                | 155                        |
| 4 h        | 31,2                   | 21,7                      | 15,4                      | 6,3                 | 109                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 222 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 29 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 4.2 EA4                                   | Abfluss nach:                                              | 0              |                    |          |
|----------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|----------------|--------------------|----------|
| Bezeichnung:                                             | EZG 6 rechts                              |                                                            |                |                    |          |
| Bemessungsg                                              | rundlagen                                 |                                                            |                |                    |          |
| Fläche des kar                                           | nalisierten Einzugso                      | gebietes                                                   |                | A <sub>E,k</sub> = | 0,11 ha  |
| Befestigte Fläc                                          | he                                        |                                                            |                | A <sub>E,b</sub> = | 0,03 ha  |
| Mittlerer Abflus                                         | sbeiwert der befes                        | tigten Fläche                                              |                | $\psi_{m,b}$ =     | 0,999 -  |
| Nicht befestigte                                         | e Fläche                                  |                                                            |                | $A_{E,nb} =$       | 0,08 ha  |
| Mittlerer Abflus                                         | sbeiwert der nicht                        | befestigten Fläche                                         |                | $\psi_{m,nb} =$    | 0,001 -  |
| Rechnerische f                                           | -ließzeit im Kanaln                       | etz bei Vollfüllung                                        |                | $t_f =$            | 0,00 min |
| Mittlerer täglich                                        | er Trockenwetteral                        | ofluss                                                     |                | $Q_{T,d,aM} =$     | 0,00 l/s |
| Drosselabfluss                                           |                                           |                                                            |                | $Q_{Dr} =$         | 0,50 l/s |
| Zuschlagsfaktoı                                          | r                                         |                                                            |                | $f_z =$            | 1,20 -   |
| Berechnungse                                             | rgebnisse                                 |                                                            |                |                    |          |
| Undurchlässige                                           | Fläche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |                | A <sub>u</sub> =   | 0,03 ha  |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                           |                                                            | $q_{Dr,R,u} =$ | 16,67 l/s·ha       |          |
| Abminderungsfaktor aus $t_f = 0,00$ min und $n = 0,33/a$ |                                           |                                                            |                | f <sub>A</sub> =   | 1,000 -  |
| Gewählter Nied                                           | lerschlag:                                |                                                            |                | 1                  |          |
| Überschreitung                                           | shäufigkeit:                              |                                                            |                | n = 0.330/a        |          |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 16,7                      | 151,1               | 163                        |
| 20 min     | 17,0                   | 141,7                     | 16,7                      | 125,0               | 180                        |
| 30 min     | 19,7                   | 109,4                     | 16,7                      | 92,8                | 200                        |
| 45 min     | 22,3                   | 82,6                      | 16,7                      | 65,9                | 214                        |
| 60 min     | 24,0                   | 66,7                      | 16,7                      | 50,0                | 216                        |
| 90 min     | 25,9                   | 48,0                      | 16,7                      | 31,3                | 203                        |
| 2 h        | 27,4                   | 38,1                      | 16,7                      | 21,4                | 185                        |
| 3 h        | 29,5                   | 27,3                      | 16,7                      | 10,6                | 138                        |
| 4 h        | 31,2                   | 21,7                      | 16,7                      | 5,0                 | 86                         |

Erforderliches spezifisches Volumen  $V_{s,u} = 216 \text{ m}^3/\text{ha}$  Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 6 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken: 5           | .1 EA5                                  | Abfluss nach:                                              | 0 |                    |              |
|---------------------|-----------------------------------------|------------------------------------------------------------|---|--------------------|--------------|
| Bezeichnung: E      | ZG 7 links                              |                                                            |   |                    |              |
| Bemessungsgrun      | ndlagen                                 |                                                            |   |                    |              |
| Fläche des kanalis  | sierten Einzugs                         | gebietes                                                   |   | A <sub>E,k</sub> = | 0,46 ha      |
| Befestigte Fläche   |                                         |                                                            |   | A <sub>E,b</sub> = | 0,26 ha      |
| Mittlerer Abflussbe | eiwert der befes                        | tigten Fläche                                              |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte Fl | äche                                    |                                                            |   | $A_{E,nb} =$       | 0,20 ha      |
| Mittlerer Abflussbe | eiwert der nicht                        | befestigten Fläche                                         |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische Flie   | ßzeit im Kanaln                         | etz bei Vollfüllung                                        |   | $t_f =$            | 0,00 min     |
| Mittlerer täglicher | Trockenwetteral                         | ofluss                                                     |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss      |                                         |                                                            |   | $Q_{Dr} =$         | 3,90 l/s     |
| Zuschlagsfaktor     |                                         |                                                            |   | $f_z =$            | 1,20 -       |
| Berechnungserge     | ebnisse                                 |                                                            |   |                    |              |
| Undurchlässige Fl   | äche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |   | A <sub>u</sub> =   | 0,26 ha      |
| Regenanteil der D   | rosselabflusssp                         | ende q <sub>Dr,R,u</sub>                                   |   | $q_{Dr,R,u} =$     | 15,00 l/s·ha |
| Abminderungsfakt    | or aus t <sub>f</sub> = 0,00            | min und n = 0,33/a                                         |   | f <sub>A</sub> =   | 1,000 -      |
| Gewählter Nieders   | schlag:                                 |                                                            |   | 1                  |              |
| Überschreitungshä   | ufigkeit:                               |                                                            |   | n = 0,330/a        |              |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,8               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,7               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,6                | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,7                | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 33,0                | 214                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,1                | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                | 160                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,7                 | 115                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 223 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 58 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 5.2 EA5                                     | Abfluss nach:                                              | 0 |                    |              |
|----------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|---|--------------------|--------------|
| Bezeichnung:                                             | EZG 8 links                                 |                                                            |   |                    |              |
| Bemessungsg                                              | rundlagen                                   |                                                            |   |                    |              |
| Fläche des kar                                           | nalisierten Einzugs                         | gebietes                                                   |   | A <sub>E,k</sub> = | 0,23 ha      |
| Befestigte Fläc                                          | he                                          |                                                            |   | A <sub>E,b</sub> = | 0,16 ha      |
| Mittlerer Abflus                                         | sbeiwert der befe                           | stigten Fläche                                             |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte                                         | e Fläche                                    |                                                            |   | $A_{E,nb} =$       | 0,07 ha      |
| Mittlerer Abflus                                         | sbeiwert der nich                           | t befestigten Fläche                                       |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische l                                           | Fließzeit im Kanal                          | netz bei Vollfüllung                                       |   | $t_f =$            | 0,00 min     |
| Mittlerer täglich                                        | ner Trockenwettera                          | abfluss                                                    |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss                                           |                                             |                                                            |   | $Q_{Dr} =$         | 2,40 l/s     |
| Zuschlagsfakto                                           | r                                           |                                                            |   | f <sub>z</sub> =   | 1,20 -       |
| Berechnungse                                             | ergebnisse                                  |                                                            |   |                    |              |
| Undurchlässige                                           | e Fläche: A <sub>u</sub> = A <sub>E,t</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |   | A <sub>u</sub> =   | 0,16 ha      |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                             |                                                            |   | $q_{Dr,R,u} =$     | 15,00 l/s·ha |
| Abminderungsfaktor aus $t_f = 0,00$ min und $n = 0,33/a$ |                                             |                                                            |   | f <sub>A</sub> =   | 1,000 -      |
| Gewählter Nied                                           | derschlag:                                  |                                                            |   | 1                  |              |
| Überschreitung                                           | shäufigkeit:                                |                                                            |   | n = 0,330/a        |              |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,8               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,7               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,6                | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,7                | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 33,0                | 214                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,1                | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                | 160                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,7                 | 115                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 223 \text{ m}^3/\text{ha}$  Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 36 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 5.3 EA5                                   | Abfluss nach:                                              | 0 |                    |              |
|----------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---|--------------------|--------------|
| Bezeichnung:                                             | EZG 7 rechts                              | Abhaee Haein                                               | • |                    |              |
|                                                          |                                           |                                                            |   |                    |              |
| Bemessungsg                                              |                                           | vahiataa                                                   |   | Δ –                | 0.21 ha      |
|                                                          | alisierten Einzugsg                       | jebieles                                                   |   | A <sub>E,k</sub> = | 0,21 ha      |
| Befestigte Fläcl                                         | ne                                        |                                                            |   | $A_{E,b} =$        | 0,06 ha      |
| Mittlerer Abflus                                         | sbeiwert der befes                        | tigten Fläche                                              |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte                                         | Fläche                                    |                                                            |   | $A_{E,nb} =$       | 0,15 ha      |
| Mittlerer Abflus                                         | sbeiwert der nicht                        | befestigten Fläche                                         |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische F                                           | ließzeit im Kanaln                        | etz bei Vollfüllung                                        |   | $t_f =$            | 0,00 min     |
| Mittlerer täglich                                        | er Trockenwetterab                        | ofluss                                                     |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss                                           |                                           |                                                            |   | $Q_{Dr} =$         | 0,90 l/s     |
| Zuschlagsfaktor                                          |                                           |                                                            |   | $f_z =$            | 1,20 -       |
| Berechnungse                                             | rgebnisse                                 |                                                            |   |                    |              |
| Undurchlässige                                           | Fläche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |   | A <sub>u</sub> =   | 0,06 ha      |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                           |                                                            |   | $q_{Dr,R,u} =$     | 15,00 l/s·ha |
| Abminderungsfaktor aus $t_f = 0,00$ min und $n = 0,33/a$ |                                           |                                                            |   | f <sub>A</sub> =   | 1,000 -      |
| Gewählter Niederschlag:                                  |                                           |                                                            |   | 1                  |              |
| Überschreitungshäufigkeit:                               |                                           |                                                            |   | n = 0.330/a        |              |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,8               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,7               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,6                | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,7                | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 33,0                | 214                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,1                | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                | 160                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,7                 | 115                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 223 \text{ m}^3/\text{ha}$  Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 13 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 5.4 EA5                                   | Abfluss nach:                                              | 0 |                    |              |
|----------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---|--------------------|--------------|
| Bezeichnung:                                             | EZG 8 rechts                              | 7.12.11.000                                                | • |                    |              |
| Bemessungsg                                              | rundlagen                                 |                                                            |   |                    |              |
| Fläche des kar                                           | alisierten Einzugsg                       | ebietes                                                    |   | A <sub>E,k</sub> = | 0,19 ha      |
| Befestigte Fläc                                          | he                                        |                                                            |   | $A_{E,b} =$        | 0,12 ha      |
| Mittlerer Abflus                                         | sbeiwert der befes                        | tigten Fläche                                              |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte                                         | Fläche                                    |                                                            |   | $A_{E,nb} =$       | 0,07 ha      |
| Mittlerer Abflus                                         | sbeiwert der nicht                        | befestigten Fläche                                         |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische F                                           | ließzeit im Kanaln                        | etz bei Vollfüllung                                        |   | $t_f =$            | 0,00 min     |
| Mittlerer täglich                                        | er Trockenwetterab                        | ofluss                                                     |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss                                           |                                           |                                                            |   | $Q_{Dr} =$         | 1,80 l/s     |
| Zuschlagsfaktor                                          | -                                         |                                                            |   | f <sub>z</sub> =   | 1,20 -       |
| Berechnungse                                             | rgebnisse                                 |                                                            |   |                    |              |
| Undurchlässige                                           | Fläche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |   | A <sub>u</sub> =   | 0,12 ha      |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                           |                                                            |   | $q_{Dr,R,u} =$     | 15,00 l/s·ha |
| Abminderungsfaktor aus $t_f = 0,00$ min und $n = 0,33/a$ |                                           |                                                            |   | f <sub>A</sub> =   | 1,000 -      |
| Gewählter Nied                                           | lerschlag:                                |                                                            |   | 1                  |              |
| Überschreitungs                                          | shäufigkeit:                              |                                                            |   | n = 0,330/a        |              |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,8               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,7               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,6                | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,7                | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 33,0                | 214                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,1                | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                | 160                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,7                 | 115                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 223 \text{ m}^3/\text{ha}$  Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 27 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 6.1 EA6                                   | Abfluss nach:                                              | 0 |                    |              |
|----------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---|--------------------|--------------|
| Bezeichnung:                                             | EZG 9 links                               |                                                            |   |                    |              |
| Bemessungsg                                              | rundlagen                                 |                                                            |   |                    |              |
| Fläche des kan                                           | alisierten Einzugs                        | gebietes                                                   |   | A <sub>E,k</sub> = | 0,40 ha      |
| Befestigte Fläck                                         | he                                        |                                                            |   | A <sub>E,b</sub> = | 0,23 ha      |
| Mittlerer Abflus                                         | sbeiwert der befe                         | stigten Fläche                                             |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte                                         | Fläche                                    |                                                            |   | $A_{E,nb} =$       | 0,17 ha      |
| Mittlerer Abflus                                         | sbeiwert der nicht                        | befestigten Fläche                                         |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische F                                           | ließzeit im Kanalı                        | netz bei Vollfüllung                                       |   | $t_f =$            | 0,00 min     |
| Mittlerer täglich                                        | er Trockenwettera                         | bfluss                                                     |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss                                           |                                           |                                                            |   | $Q_{Dr} =$         | 3,50 l/s     |
| Zuschlagsfaktor                                          | -                                         |                                                            |   | $f_z =$            | 1,20 -       |
| Berechnungse                                             | rgebnisse                                 |                                                            |   |                    |              |
| Undurchlässige                                           | Fläche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |   | A <sub>u</sub> =   | 0,23 ha      |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                           |                                                            |   | $q_{Dr,R,u} =$     | 15,22 l/s·ha |
| Abminderungsfaktor aus $t_f = 0,00$ min und $n = 0,33/a$ |                                           |                                                            |   | f <sub>A</sub> =   | 1,000 -      |
| Gewählter Niederschlag:                                  |                                           |                                                            |   | 1                  |              |
| Überschreitungshäufigkeit:                               |                                           |                                                            |   | n = 0,330/a        |              |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | Q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | Vs.u                       |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,2                      | 152,6               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,2                      | 126,4               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,2                      | 94,2                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,2                      | 67,4                | 218                        |
| 60 min     | 24,0                   | 66,7                      | 15,2                      | 51,4                | 222                        |
| 90 min     | 25,9                   | 48,0                      | 15,2                      | 32,7                | 212                        |
| 2 h        | 27,4                   | 38,1                      | 15,2                      | 22,8                | 197                        |
| 3 h        | 29,5                   | 27,3                      | 15,2                      | 12,1                | 157                        |
| 4 h        | 31,2                   | 21,7                      | 15,2                      | 6,4                 | 111                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 222 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 51 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:                                                  | 6.2 EA6                                     | Abfluss nach:                                              | 0 |                    |              |
|----------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|---|--------------------|--------------|
|                                                          |                                             | Abiluss flacif.                                            | U |                    |              |
| Bezeichnung:                                             | EZG 9 rechts                                |                                                            |   |                    |              |
| Bemessungsgr                                             | undlagen                                    |                                                            |   |                    |              |
| Fläche des kan                                           | alisierten Einzugsg                         | ebietes                                                    |   | A <sub>E,k</sub> = | 0,33 ha      |
| Befestigte Fläch                                         | ne                                          |                                                            |   | $A_{E,b} =$        | 0,16 ha      |
| Mittlerer Abfluss                                        | sbeiwert der befest                         | tigten Fläche                                              |   | $\psi_{m,b} =$     | 0,999 -      |
| Nicht befestigte                                         | Fläche                                      |                                                            |   | $A_{E,nb} =$       | 0,17 ha      |
| Mittlerer Abfluss                                        | sbeiwert der nicht                          | befestigten Fläche                                         |   | $\psi_{m,nb} =$    | 0,001 -      |
| Rechnerische F                                           | ließzeit im Kanaln                          | etz bei Vollfüllung                                        |   | $t_f =$            | 0,00 min     |
| Mittlerer täglich                                        | er Trockenwetterab                          | fluss                                                      |   | $Q_{T,d,aM} =$     | 0,00 l/s     |
| Drosselabfluss                                           |                                             |                                                            |   | $Q_{Dr} =$         | 2,40 l/s     |
| Zuschlagsfaktor                                          |                                             |                                                            |   | $f_z =$            | 1,20 -       |
| Berechnungsei                                            | rgebnisse                                   |                                                            |   |                    |              |
| Undurchlässige                                           | Fläche: A <sub>u</sub> = A <sub>E,b</sub> ' | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |   | A <sub>u</sub> =   | 0,16 ha      |
| Regenanteil der Drosselabflussspende q <sub>Dr,R,u</sub> |                                             |                                                            |   | $q_{Dr,R,u} =$     | 15,00 l/s·ha |
| Abminderungsfaktor aus $t_f = 0,00$ min und $n = 0,33/a$ |                                             |                                                            |   | f <sub>A</sub> =   | 1,000 -      |
| Gewählter Niederschlag:                                  |                                             |                                                            |   | 1                  |              |
| Überschreitungshäufigkeit:                               |                                             |                                                            |   | n = 0.330/a        |              |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,8               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,7               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,6                | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,7                | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 33,0                | 214                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,1                | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                | 160                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,7                 | 115                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 223 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 36 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:           | 7. EA7             | Abfluss nach:          | 0 |                 |           |
|-------------------|--------------------|------------------------|---|-----------------|-----------|
| Bezeichnung:      | EZG 10 - RRB       |                        |   |                 |           |
| Bemessungsg       | rundlagen          |                        |   |                 |           |
| Fläche des kar    | nalisierten Einzug | gsgebietes             |   | $A_{E,k} =$     | 3,91 ha   |
| Befestigte Fläc   | he                 |                        |   | $A_{E,b} =$     | 1,31 ha   |
| Mittlerer Abflus  | sbeiwert der bet   | estigten Fläche        |   | $\psi_{m,b} =$  | 0,999 -   |
| Nicht befestigte  | e Fläche           |                        |   | $A_{E,nb} =$    | 2,60 ha   |
| Mittlerer Abflus  | sbeiwert der nic   | ht befestigten Fläche  |   | $\psi_{m,nb} =$ | 0,001 -   |
| Rechnerische I    | Fließzeit im Kan   | alnetz bei Vollfüllung |   | $t_f =$         | 10,00 min |
| Mittlerer täglich | er Trockenwette    | rabfluss               |   | $Q_{T,d,aM} =$  | 0,00 l/s  |
| Drosselabfluss    |                    |                        |   | $Q_{Dr} =$      | 19,60 l/s |
| Zuschlagsfakto    | r                  |                        |   | $f_z =$         | 1,20 -    |
| Berechnungse      | raebnisse          |                        |   |                 |           |

Undurchlässige Fläche:  $A_u = A_{E,b} * \psi_{m,b} + A_{E,nb} * \psi_{m,nb}$   $A_u = 1,31 \text{ ha}$  Regenanteil der Drosselabflussspende  $q_{Dr,R,u}$   $q_{Dr,R,u} = 14,96 \text{ l/s} \cdot \text{ha}$  Abminderungsfaktor aus  $t_f = 10,00$  min und n = 0,10/a  $f_A = 0,988$  - Gewählter Niederschlag:

Überschreitungshäufigkeit: n = 0,100/a

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 20,4                   | 226,7                     | 15,0                      | 211,7               | 226                        |
| 20 min     | 23,0                   | 191,7                     | 15,0                      | 176,7               | 251                        |
| 30 min     | 26,7                   | 148,3                     | 15,0                      | 133,4               | 285                        |
| 45 min     | 30,6                   | 113,3                     | 15,0                      | 98,4                | 315                        |
| 60 min     | 33,4                   | 92,8                      | 15,0                      | 77,8                | 332                        |
| 90 min     | 35,6                   | 65,9                      | 15,0                      | 51,0                | 326                        |
| 2 h        | 37,2                   | 51,7                      | 15,0                      | 36,7                | 313                        |
| 3 h        | 39,7                   | 36,8                      | 15,0                      | 21,8                | 279                        |
| 4 h        | 41,7                   | 29,0                      | 15,0                      | 14,0                | 239                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 332 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 435 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:           | 8.1 EA8                                       | Abfluss nach:                                              | 0                |                    |          |
|-------------------|-----------------------------------------------|------------------------------------------------------------|------------------|--------------------|----------|
| Bezeichnung:      | EZG 11 links                                  |                                                            |                  |                    |          |
| Bemessungsg       | rundlagen                                     |                                                            |                  |                    |          |
| Fläche des kar    | nalisierten Einzugsg                          | ebietes                                                    |                  | A <sub>E,k</sub> = | 0,98 ha  |
| Befestigte Fläc   | he                                            |                                                            |                  | A <sub>E,b</sub> = | 0,28 ha  |
| Mittlerer Abflus  | sbeiwert der befes                            | tigten Fläche                                              |                  | $\psi_{m,b} =$     | 0,999 -  |
| Nicht befestigte  | e Fläche                                      |                                                            |                  | $A_{E,nb} =$       | 0,70 ha  |
| Mittlerer Abflus  | sbeiwert der nicht                            | befestigten Fläche                                         |                  | $\psi_{m,nb} =$    | 0,001 -  |
| Rechnerische I    | Fließzeit im Kanaln                           | etz bei Vollfüllung                                        |                  | $t_f =$            | 0,00 min |
| Mittlerer täglich | ner Trockenwetterab                           | ofluss                                                     |                  | $Q_{T,d,aM} =$     | 0,00 l/s |
| Drosselabfluss    |                                               |                                                            |                  | $Q_{Dr} =$         | 4,20 l/s |
| Zuschlagsfakto    | r                                             |                                                            |                  | $f_z =$            | 1,20 -   |
| Berechnungse      | ergebnisse                                    |                                                            |                  |                    |          |
| Undurchlässige    | e Fläche: A <sub>u</sub> = A <sub>E,b</sub> ' | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |                  | A <sub>u</sub> =   | 0,28 ha  |
| Regenanteil de    | er Drosselabflusssp                           |                                                            | $q_{Dr,R,u} =$   | 15,00 l/s·ha       |          |
| Abminderungsf     | faktor aus $t_f = 0.00$                       |                                                            | f <sub>A</sub> = | 1,000 -            |          |
| Gewählter Nied    | derschlag:                                    |                                                            | 1                |                    |          |
| Überschreitung    | shäufigkeit:                                  |                                                            | n = 0,330/a      |                    |          |
|                   |                                               |                                                            |                  |                    |          |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,8               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,7               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,6                | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,7                | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 33,0                | 214                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,1                | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                | 160                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,7                 | 115                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 223 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 62 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

Überschreitungshäufigkeit:

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:           | 8.2 EA8                                     | Abfluss nach:                                                | 0                |                    |          |
|-------------------|---------------------------------------------|--------------------------------------------------------------|------------------|--------------------|----------|
| Bezeichnung:      | EZG 11 rechts                               |                                                              |                  |                    |          |
| Bemessungsg       | rundlagen                                   |                                                              |                  |                    |          |
| Fläche des kar    | nalisierten Einzugs                         | sgebietes                                                    |                  | A <sub>E,k</sub> = | 0,86 ha  |
| Befestigte Fläc   | he                                          |                                                              |                  | $A_{E,b} =$        | 0,56 ha  |
| Mittlerer Abflus  | sbeiwert der befe                           | stigten Fläche                                               |                  | $\psi_{m,b} =$     | 0,999 -  |
| Nicht befestigte  | e Fläche                                    |                                                              |                  | $A_{E,nb} =$       | 0,30 ha  |
| Mittlerer Abflus  | sbeiwert der nich                           | t befestigten Fläche                                         |                  | $\psi_{m,nb} =$    | 0,001 -  |
| Rechnerische I    | Fließzeit im Kana                           | lnetz bei Vollfüllung                                        |                  | $t_f =$            | 0,00 min |
| Mittlerer täglich | ner Trockenwetter                           | abfluss                                                      |                  | $Q_{T,d,aM} =$     | 0,00 l/s |
| Drosselabfluss    |                                             |                                                              |                  | $Q_{Dr} =$         | 8,40 l/s |
| Zuschlagsfakto    | r                                           |                                                              |                  | $f_z =$            | 1,20 -   |
| Berechnungse      | ergebnisse                                  |                                                              |                  |                    |          |
| Undurchlässige    | e Fläche: A <sub>u</sub> = A <sub>E,i</sub> | b * Ψ <sub>m,b</sub> + A <sub>E,nb</sub> * Ψ <sub>m,nb</sub> |                  | A <sub>u</sub> =   | 0,56 ha  |
| Regenanteil de    | er Drosselabflusss                          |                                                              | $q_{Dr,R,u} =$   | 15,00 l/s·ha       |          |
| Abminderungsf     | faktor aus t <sub>f</sub> = 0,0             |                                                              | f <sub>A</sub> = | 1,000 -            |          |
| Gewählter Nied    | derschlag:                                  |                                                              | 1                |                    |          |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | $V_{s,u}$                  |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,8               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,7               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,6                | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,7                | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 33,0                | 214                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,1                | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                | 160                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,7                 | 115                        |

n = 0.330/a

Erforderliches spezifisches Volumen  $V_{s,u} = 223 \text{ m}^3/\text{ha}$ Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 125 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:           | 9.1 EA9                                     | Abfluss nach:                                              | 0                |                    |          |
|-------------------|---------------------------------------------|------------------------------------------------------------|------------------|--------------------|----------|
| Bezeichnung:      | EZG 12 links                                |                                                            |                  |                    |          |
| Bemessungsg       | rundlagen                                   |                                                            |                  |                    |          |
| Fläche des kar    | nalisierten Einzugs                         | gebietes                                                   |                  | A <sub>E,k</sub> = | 0,06 ha  |
| Befestigte Fläc   | he                                          |                                                            |                  | A <sub>E,b</sub> = | 0,04 ha  |
| Mittlerer Abflus  | sbeiwert der befes                          | tigten Fläche                                              |                  | $\psi_{m,b} =$     | 0,999 -  |
| Nicht befestigte  | e Fläche                                    |                                                            |                  | $A_{E,nb} =$       | 0,02 ha  |
| Mittlerer Abflus  | sbeiwert der nicht                          | befestigten Fläche                                         |                  | $\psi_{m,nb} =$    | 0,001 -  |
| Rechnerische I    | Fließzeit im Kanalr                         | etz bei Vollfüllung                                        |                  | $t_f =$            | 0,00 min |
| Mittlerer täglich | ner Trockenwetteral                         | ofluss                                                     |                  | $Q_{T,d,aM} =$     | 0,00 l/s |
| Drosselabfluss    |                                             |                                                            |                  | $Q_{Dr} =$         | 0,60 l/s |
| Zuschlagsfakto    | r                                           |                                                            |                  | f <sub>z</sub> =   | 1,20 -   |
| Berechnungse      | ergebnisse                                  |                                                            |                  |                    |          |
| Undurchlässige    | e Fläche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |                  | A <sub>u</sub> =   | 0,04 ha  |
| Regenanteil de    | er Drosselabflusssp                         |                                                            | $q_{Dr,R,u} =$   | 15,00 l/s·ha       |          |
| Abminderungsf     | faktor aus t <sub>f</sub> = 0,00            |                                                            | f <sub>A</sub> = | 1,000 -            |          |
| Gewählter Nied    | derschlag:                                  |                                                            | 1                |                    |          |
| Überschreitung    | shäufigkeit:                                |                                                            | n = 0.330/a      |                    |          |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | Q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | V <sub>s,u</sub>           |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 15 min     | 15,1                   | 167,8                     | 15,0                      | 152,8               | 165                        |
| 20 min     | 17,0                   | 141,7                     | 15,0                      | 126,7               | 182                        |
| 30 min     | 19,7                   | 109,4                     | 15,0                      | 94,4                | 204                        |
| 45 min     | 22,3                   | 82,6                      | 15,0                      | 67,6                | 219                        |
| 60 min     | 24,0                   | 66,7                      | 15,0                      | 51,7                | 223                        |
| 90 min     | 25,9                   | 48,0                      | 15,0                      | 33,0                | 214                        |
| 2 h        | 27,4                   | 38,1                      | 15,0                      | 23,1                | 199                        |
| 3 h        | 29,5                   | 27,3                      | 15,0                      | 12,3                | 160                        |
| 4 h        | 31,2                   | 21,7                      | 15,0                      | 6,7                 | 115                        |

Erforderliches spezifisches Volumen  $V_{s,u} = 223 \text{ m}^3/\text{ha}$  Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 9 \text{ m}^3$ 

Projekt: B 470, A 7 AS Bad Windsheim – Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

#### Einzelbeckenberechnung gem. DWA-A 117

| Becken:           | 9.2 EA9                                     | Abfluss nach:                                              | 0                |                    |          |
|-------------------|---------------------------------------------|------------------------------------------------------------|------------------|--------------------|----------|
| Bezeichnung:      | EZG 12 rechts                               |                                                            |                  |                    |          |
| Bemessungsg       | rundlagen                                   |                                                            |                  |                    |          |
| Fläche des kar    | nalisierten Einzugs                         | gebietes                                                   |                  | A <sub>E,k</sub> = | 0,03 ha  |
| Befestigte Fläc   | he                                          |                                                            |                  | A <sub>E,b</sub> = | 0,01 ha  |
| Mittlerer Abflus  | sbeiwert der befe                           | stigten Fläche                                             |                  | $\psi_{m,b} =$     | 0,999 -  |
| Nicht befestigte  | e Fläche                                    |                                                            |                  | $A_{E,nb} =$       | 0,02 ha  |
| Mittlerer Abflus  | sbeiwert der nicht                          | befestigten Fläche                                         |                  | $\psi_{m,nb} =$    | 0,001 -  |
| Rechnerische I    | Fließzeit im Kanalı                         | netz bei Vollfüllung                                       |                  | $t_f =$            | 2,00 min |
| Mittlerer täglich | ner Trockenwettera                          | bfluss                                                     |                  | $Q_{T,d,aM} =$     | 0,00 l/s |
| Drosselabfluss    |                                             |                                                            |                  | $Q_{Dr} =$         | 0,20 l/s |
| Zuschlagsfakto    | r                                           |                                                            |                  | f <sub>z</sub> =   | 1,20 -   |
| Berechnungse      | ergebnisse                                  |                                                            |                  |                    |          |
| Undurchlässige    | e Fläche: A <sub>u</sub> = A <sub>E,b</sub> | * ψ <sub>m,b</sub> + A <sub>E,nb</sub> * ψ <sub>m,nb</sub> |                  | A <sub>u</sub> =   | 0,01 ha  |
| Regenanteil de    | er Drosselabflusss                          |                                                            | $q_{Dr,R,u} =$   | 20,00 l/s·ha       |          |
| Abminderungsf     | aktor aus t <sub>f</sub> = 2,00             |                                                            | f <sub>A</sub> = | 1,000 -            |          |
| Gewählter Nied    | derschlag:                                  |                                                            | 1                |                    |          |
| Überschreitung    | shäufigkeit:                                |                                                            | n = 0.330/a      |                    |          |

| Dauerstufe | Niederschlags-<br>höhe | Zugehörige<br>Regenspende | Drosselabfluss-<br>spende | Differenz           | Spez. Speicher-<br>volumen |
|------------|------------------------|---------------------------|---------------------------|---------------------|----------------------------|
| D          | hN                     | r                         | Q <sub>Dr,R,u</sub>       | <b>r - q</b> Dr,R,u | Vs.u                       |
| min, h     | mm                     | l/s·ha                    | l/s·ha                    | l/s·ha              | m³/ha                      |
| 10 min     | 12,4                   | 206,7                     | 20,0                      | 186,7               | 134                        |
| 15 min     | 15,1                   | 167,8                     | 20,0                      | 147,8               | 160                        |
| 20 min     | 17,0                   | 141,7                     | 20,0                      | 121,7               | 175                        |
| 30 min     | 19,7                   | 109,4                     | 20,0                      | 89,4                | 193                        |
| 45 min     | 22,3                   | 82,6                      | 20,0                      | 62,6                | 203                        |
| 60 min     | 24,0                   | 66,7                      | 20,0                      | 46,7                | 202                        |
| 90 min     | 25,9                   | 48,0                      | 20,0                      | 28,0                | 181                        |
| 2 h        | 27,4                   | 38,1                      | 20,0                      | 18,1                | 156                        |
| 3 h        | 29,5                   | 27,3                      | 20,0                      | 7,3                 | 95                         |

Erforderliches spezifisches Volumen  $V_{s,u} = 203 \text{ m}^3/\text{ha}$  Erforderliches Rückhaltevolumen  $V = V_{s,u} \cdot A_u$   $V = 2 \text{ m}^3$ 

Anlage 5

#### A7 AS Bad Windsheim – Neustadt a. d. Aisch Ortsumgehung Lenkersheim

#### Bemessung Gewässerdurchlässe nach REwS

## Außen-EZG 1 - Durchlass 1

St 0 + 770.00

| AEZG1<br>HQ10          | =       | 10,10 ha<br>0,16 m³/s                    |                                                                                     |
|------------------------|---------|------------------------------------------|-------------------------------------------------------------------------------------|
| hEin<br>hAus<br>Δh     | = = = = | 304,19 m<br>303,92 m<br>0,27 m<br>0,60 m | 20 and a in proticition Demoklara                                                   |
| A<br>I<br>kst<br>rhydr | = = =   | 0,20 m²<br>36 m<br>65 -<br>0,12 m        | <ul><li>20 cm eingetiefter Durchlass</li><li>20 cm eingetiefter Durchlass</li></ul> |

Q =  $0,22 \text{ m}^3/\text{s} \text{ DN } 600$ 

#### A7 AS Bad Windsheim – Neustadt a. d. Aisch Ortsumgehung Lenkersheim

## Bemessung Gewässerdurchlässe nach REwS

## Außen-EZG 2 - Durchlass 2

St 1 + 030.00

| AEZG2            | = | 367,00 ha           |                              |
|------------------|---|---------------------|------------------------------|
| HQ <sub>10</sub> | = | 4,60 m³/s           |                              |
|                  |   |                     |                              |
| L                | _ | 004.40              |                              |
| hEin             | = | 304,10 m            |                              |
| hAus             | = | 303,98 m            |                              |
| Δh               | = | 0,12 m              |                              |
| d                | = | 1,80 m              |                              |
| A                | = | 2,39 m <sup>2</sup> | 20 cm eingetiefter Durchlass |
| 1                | = | 37,00 m             |                              |
| kst              | = | 65 -                |                              |
| <b>l</b> hydr    | = | 0,43 m              | 20 cm eingetiefter Durchlass |
|                  |   |                     |                              |
| Q                | = | 2,57 m³/s           |                              |
| Q x 2            | = | •                   | DN 1800 x 2                  |

Anlage 5

#### A7 AS Bad Windsheim – Neustadt a. d. Aisch Ortsumgehung Lenkersheim

#### Bemessung Gewässerdurchlässe nach REwS

## Außen-EZG 3 - Durchlass 3

St 1 + 250.00

Q

| AEZG3<br>HQ10           | =           | 23,00 ha<br>0,40 m³/s                                                                        |                                                              |
|-------------------------|-------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| hEin hAus Δ h d A I kst | = = = = = = | 304,78 m<br>304,58 m<br>0,20 m<br>0,80 m<br>0,40 m <sup>2</sup><br>24,50 m<br>65 -<br>0,17 m | 20 cm eingetiefter Durchlass<br>20 cm eingetiefter Durchlass |
|                         |             |                                                                                              |                                                              |

0,49 m<sup>3</sup>/s DN 800

#### A7 AS Bad Windsheim – Neustadt a. d. Aisch Ortsumgehung Lenkersheim

## Bemessung Gewässerdurchlässe nach REwS

## Außen-EZG 4 - Durchlass 4

St 1 + 650.00

| Q x 2            | = | 1,03 m³s   | DN 1000 x 2                  |
|------------------|---|------------|------------------------------|
| Q                | = | 0,515 m³/s | _                            |
| <b>F</b> hydr    | = | 0,23 m     | 35 cm eingetiefter Durchlass |
| kst              | = | 65 -       |                              |
| 1                | = | 20,00 m    |                              |
| A                | = | 0,54 m²    | 35 cm eingetiefter Durchlass |
| d                | = | 1,00 m     |                              |
| Δh               | = | 0,10 m     |                              |
| hAus             | = | 305,11 m   |                              |
| hEin             | = | 305,21 m   |                              |
|                  |   | ,          |                              |
| HQ <sub>10</sub> | = | 1,00 m³/s  |                              |
| AEZG4            |   | 74,40 ha   |                              |

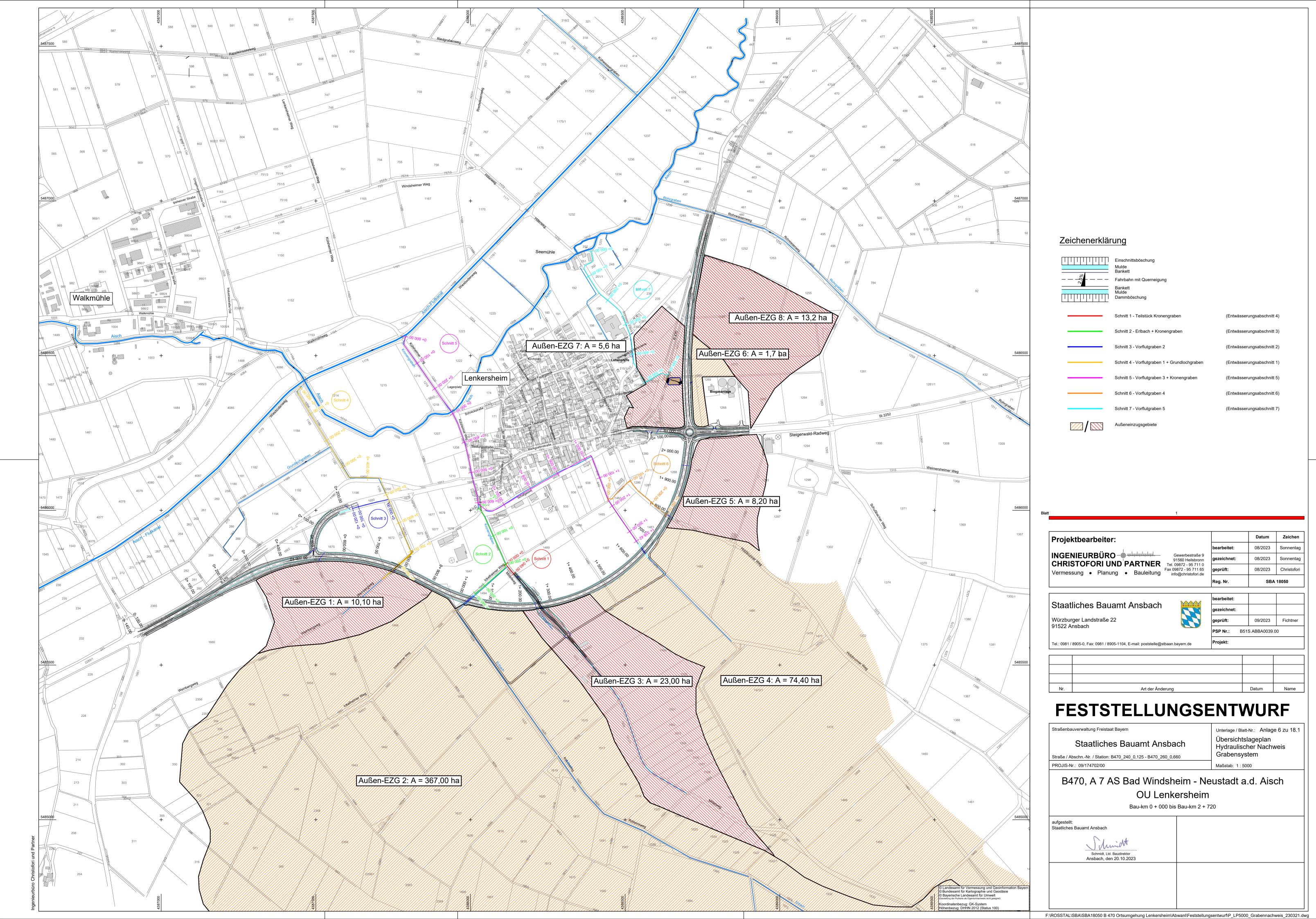
#### A7 AS Bad Windsheim – Neustadt a. d. Aisch Ortsumgehung Lenkersheim

## Bemessung Gewässerdurchlässe nach REwS

## <u>Außen-EZG 5 - Durchlass 5</u>

St 1 + 790.00

| AEZG5            | = | 8,20 ha             |                              |
|------------------|---|---------------------|------------------------------|
| HQ <sub>10</sub> | = | 0,13 m³/s           |                              |
|                  |   |                     |                              |
| hEin             | = | 306,50 m            |                              |
| hAus             | = | 305,88 m            |                              |
| Δh               | = | 0,62 m              |                              |
| d                | = | 0,50 m              |                              |
| A                | = | 0,12 m <sup>2</sup> | 20 cm eingetiefter Durchlass |
| 1                | = | 24,00 m             |                              |
| kst              | = | 65 -                |                              |
| <b>r</b> hydr    | = | 0,09 m              | 20 cm eingetiefter Durchlass |
|                  |   |                     | -                            |
|                  |   |                     |                              |
| Q                | = | 0,21 m³/s           | DN 500                       |
|                  |   |                     |                              |


#### A7 AS Bad Windsheim – Neustadt a. d. Aisch Ortsumgehung Lenkersheim

## Bemessung Gewässerdurchlässe nach REwS

## <u>Außen-EZG 6 - Durchlass 6</u>

St 2 + 230.00

| AEZG6            | = | 1,70 ha             |                              |
|------------------|---|---------------------|------------------------------|
| HQ <sub>10</sub> | = | 0,03 m³/s           |                              |
|                  |   |                     |                              |
| hEin             | = | 305,12 m            |                              |
| hAus             | = | 304,30 m            |                              |
| Δh               | = | 0,82 m              |                              |
| d                | = | 0,60 m              |                              |
| A                | = | 0,12 m <sup>2</sup> | 20 cm eingetiefter Durchlass |
| 1                | = | 40,00 m             | -                            |
| kst              | = | 65 -                |                              |
| <b>r</b> hydr    | = | 0,09 m              | 20 cm eingetiefter Durchlass |
|                  |   |                     | -                            |
|                  |   |                     |                              |
| Q                | = | 0,199 m³/s          | DN 500                       |
|                  |   |                     |                              |



# B 470 A7 AS Bad Windsheim – Neustadt a. d. Aisch Ortsumgehung Lenkersheim

Eingangsdaten - Hydraulischer Nachweis Gräben und Durchlässe

| Schnitt Gowässer/Vorflutgrahen |                        | Zugehöriger<br>direkter     |                         |            |                      |           |         |                            |       | Qr <sub>Nachweis</sub> | √achweis        |            |       |                                   |            |       |
|--------------------------------|------------------------|-----------------------------|-------------------------|------------|----------------------|-----------|---------|----------------------------|-------|------------------------|-----------------|------------|-------|-----------------------------------|------------|-------|
|                                |                        | Entwässerungs-<br>abschnitt | Nachweis-R              | egenspende | Qr <sub>direkt</sub> | [Nr.]     | $A_{E}$ | Basisabfluss-<br>spende    | $Q_B$ | Beginn                 | Zufluss Schnitt |            |       | Zufluss<br>Entwässerungsabschnitt |            |       |
| [Nr.]                          | [-]                    | [Nr.]                       | [-]                     | [l/(s·ha)] | [l/s]                |           | [ha]    | q <sub>B</sub> [l/(s·km²)] | [l/s] | [l/s]                  | [Nr.]           | Ab Station | [l/s] | [Nr.]                             | Ab Station | [l/s] |
| 1                              | Teilstück Kronengraben | EA4                         | qr <sub>15,n=0,33</sub> | 167,8      | 35                   | AE3       | 23      | 8                          | 2     | 37                     | -               | -          | 37    | -                                 | -          | 37    |
| 2                              | Erlbach + Kronengraben | EA3                         | qr <sub>15,n=0,33</sub> | 167,8      | 103                  | AE2       | 367     | 8                          | 29    | 132                    | 1               | 200        | 169   | -                                 | -          | 169   |
| 3                              | VG 2                   | EA2                         | qr <sub>15,n=1,00</sub> | 113,3      | 63                   | -         | -       | -                          | -     | 63                     | -               | -          | 63    | -                                 | -          | 63    |
| 4                              | VG 1 + Grundlochgraben | EA1                         | qr <sub>15,n=1,00</sub> | 113,3      | 185                  | AE1       | 10      | 8                          | 1     | 186                    | 3               | 515        | 249   | -                                 | -          | 249   |
| 5                              | VG 3 + Kronengraben    | EA5                         | qr <sub>15,n=0,33</sub> | 167,8      | 125                  | AE4       | 74      | 8                          | 6     | 131                    | 6               | 1175       | 214   | 2                                 | 606        | 384   |
| 6                              | VG 4                   | EA6                         | qr <sub>15,n=0,33</sub> | 167,8      | 82                   | AE5       | 8       | 8                          | 1     | 83                     | -               | -          | 83    | -                                 | -          | 83    |
| 7                              | VG 5                   | EA7                         | qr <sub>15,n=0,33</sub> | 167,8      | 255                  | AE6 + AE7 | 7       | 8                          | 1     | 255                    | -               | -          | 255   | -                                 | -          | 255   |

# Schnitt 1 - Kronengraben Teilstück Entwässerungsabschnitt 4

#### Berechnungsverfahren:

- Nach Manning-Strickler
- Mit Berücksichtigung der Rauheitswerte aus Lastfall 1 Fließgewässerrauheiten (Sandrauheiten) im Sommer

#### Gewählte Berechnungsparameter:

- Projektnummer : 1

- Berechnung von Station + 0 km + 0,01 m bis Station + 0 km + 40,00 m

- Anfangswasserspiegel Grenztiefe = 303,769 m+NN
- Stationierung gegen Fließrichtung
- mit Ermittlung des schießenden Fließzustandes
- Iterationsgenauigkeit der Wasserspiegel von 5,0 mm
- Berechnung FROUDE-Zahl nach Knauf-Könemann

#### PROGRAMM REHM/FLUSS 15.1 (1D)

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt : Schnitt 1 - Kronengraben Teilstück Entwässerungsabschnitt 4

Projektnummer: 1

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)         | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re     |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|-----------------------|---------------|-------------|-------------|-----------------|--------------|--------------|-----------------|
| <b>0+000,01</b> 4    | 0,00<br>0,03<br>0,00 | 0,00<br>0,49<br>0,00 | 0,00<br>1,07<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>1,00<br>0,00    | 0,037       | 303,83               | 303,77                | 0,13          | 1,12        | 7,60        | 303,64          | 10,634       | -0,19<br>sch | 0,19<br>nießend |
| <b>0+010,41</b><br>4 | 0,00<br>0,04<br>0,00 | 0,00<br>0,51<br>0,00 | 0,00<br>0,95<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>10,40<br>0,00   | 0,037       | 303,93               | 303,88                | 0,14          | 1,00        | 5,85        | 303,74          | 7,628        | -0,19<br>sch | 0,19<br>nießend |
| <b>0+010,42</b><br>1 | 0,00<br>0,11<br>0,00 | 0,00<br>0,92<br>0,00 | 0,00<br>0,34<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,037       | 303,94<br>SonstigeVe | 303,94<br>erlust = 0, | 0,20<br>020 m | 0,30        | 2,71        | 303,74          | 2,327        | -0,40        | 0,38            |
| <b>0+020,00</b><br>1 | 0,00<br>0,08<br>0,00 | 0,00<br>0,88<br>0,00 | 0,00<br>0,45<br>0,00 | 30,0<br>30,0<br>30,0 | 9,58<br>9,58<br>9,58    | 0,037       | 303,98               | 303,97                | 0,14          | 0,45        | 4,95        | 303,83          | 5,311        | -0,45        | 0,34            |
| <b>0+040,00</b><br>1 | 0,00<br>0,06<br>0,00 | 0,00<br>0,78<br>0,00 | 0,00<br>0,57<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,037       | 304,14               | 304,12                | 0,14          | 0,60        | 8,36        | 303,98          | 10,045       | -0,38        | 0,32            |

# Schnitt 2 - Erlbach + Kronengraben Entwässerungsabschnitt 3

#### Berechnungsverfahren:

- Nach Manning-Strickler
- Mit Berücksichtigung der Rauheitswerte aus Lastfall 1 Fließgewässerrauheiten (Sandrauheiten) im Sommer

#### Gewählte Berechnungsparameter:

- Projektnummer : 2

- Berechnung von Station + 0 km + 0,00 m bis Station + 0 km + 340,00 m

- Anfangswasserspiegel Grenztiefe = 303,233 m+NN
- Stationierung gegen Fließrichtung
- mit Ermittlung des schießenden Fließzustandes
- Iterationsgenauigkeit der Wasserspiegel von 5,0 mm
- Berechnung FROUDE-Zahl nach Knauf-Könemann

#### PROGRAMM REHM/FLUSS 15.1 (1D)

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 2 - Erlbach + Kronengraben

Entwässerungsabschnitt 3

Projektnummer: 2

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN )       | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re    |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|----------------------|---------------|-------------|-------------|-----------------|--------------|--------------|----------------|
| <b>0+000,00</b><br>1 | 0,00<br>0,09<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>1,87<br>0,00 | 30,0<br>30,0<br>30,0 | 0,00<br>1,00<br>1,00    | 0,170       | 303,41               | 303,23               | 0,15          | 2,16        | 93,56       | 303,08          | 129,95       | -1,41<br>scl | -0,2<br>nießen |
| <b>0+000,01</b><br>3 | 0,00<br>0,16<br>0,00 | 0,00<br>1,57<br>0,00 | 0,00<br>1,05<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,170       | 303,42               | 303,36               | 0,25          | 1,00        | 6,47        | 303,11          | 6,262        | -0,65<br>scl | 0,6<br>nießer  |
| <b>0+014,35</b><br>3 | 0,00<br>0,47<br>0,00 | 0,00<br>2,03<br>0,00 | 0,00<br>0,36<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>14,34<br>0,00   | 0,170       | 303,49<br>SonstigeVe | 303,48<br>rlust = 0, | 0,38<br>025 m | 0,19        | 0,58        | 303,10          | 0,249        | -0,65        | 0,0            |
| <b>0+014,36</b><br>1 | 0,00<br>0,54<br>0,00 | 0,00<br>2,15<br>0,00 | 0,00<br>0,31<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,170       | 303,49<br>SonstigeVe | 303,48<br>rlust = 0, | 0,39<br>001 m | 0,18        | 1,73        | 303,09          | 0,684        | -0,90        | 0,9            |
| <b>0+020,00</b><br>1 | 0,00<br>0,49<br>0,00 | 0,00<br>2,08<br>0,00 | 0,00<br>0,35<br>0,00 | 30,0<br>30,0<br>30,0 | 5,64<br>5,64<br>5,64    | 0,170       | 303,49               | 303,49               | 0,36          | 0,21        | 2,14        | 303,12          | 0,901        | -0,96        | 0,8            |
| <b>0+040,00</b><br>1 | 0,00<br>0,24<br>0,00 | 0,00<br>1,47<br>0,00 | 0,00<br>0,72<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,170       | 303,58<br>Stossver   | 303,55<br>flust = 0, | 0,24<br>007 m | 0,54        | 10,61       | 303,31          | 6,593        | -0,59        | 0,             |
| <b>0+060,00</b><br>1 | 0,00<br>0,28<br>0,00 | 0,00<br>1,53<br>0,00 | 0,00<br>0,61<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,170       | 303,68               | 303,66               | 0,29          | 0,43        | 7,35        | 303,37          | 4,050        | -0,65        | 0,             |
| <b>0+080,00</b><br>1 | 0,00<br>0,34<br>0,00 | 0,00<br>1,69<br>0,00 | 0,00<br>0,50<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,170       | 303,74               | 303,73               | 0,35          | 0,33        | 4,74        | 303,38          | 2,356        | -0,78        | 0,             |
| <b>0+100,00</b><br>1 | 0,00<br>0,36<br>0,00 | 0,00<br>1,83<br>0,00 | 0,00<br>0,47<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,170       | 303,79               | 303,78               | 0,32          | 0,32        | 4,28        | 303,46          | 2,177        | -0,91        | 0,             |
| <b>0+120,00</b><br>1 | 0,00<br>0,36<br>0,00 | 0,00<br>1,81<br>0,00 | 0,00<br>0,47<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,170       | 303,83               | 303,82               | 0,30          | 0,32        | 4,17        | 303,51          | 2,077        | -0,82        | 0,             |
| <b>0+140,00</b><br>1 | 0,00<br>0,46<br>0,00 | 0,00<br>2,01<br>0,00 | 0,00<br>0,37<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,170       | 303,86               | 303,85               | 0,35          | 0,23        | 2,49        | 303,50          | 1,093        | -0,91        | 0,             |
| <b>0+160,00</b><br>1 | 0,00<br>0,33<br>0,00 | 0,00<br>1,74<br>0,00 | 0,00<br>0,51<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,170       | 303,89               | 303,88               | 0,29          | 0,36        | 5,09        | 303,59          | 2,678        | -0,79        | 0,             |
| <b>0+180,00</b><br>1 | 0,00<br>0,41<br>0,00 | 0,00<br>1,92<br>0,00 | 0,00<br>0,41<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>0,00  | 0,170       | 303,93               | 303,93               | 0,33          | 0,27        | 3,20        | 303,59          | 1,500        | -0,68        | 1,             |

#### PROGRAMM REHM/FLUSS 15.1 (1D)

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 2 - Erlbach + Kronengraben

Entwässerungsabschnitt 3

Projektnummer: 2

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)         | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|-----------------------|---------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+200,00</b><br>1 | 0,00<br>0,77<br>0,00 | 0,00<br>2,45<br>0,00 | 0,00<br>0,22<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,170       | 303,95               | 303,95                | 0,59          | 0,11        | 0,79        | 303,36          | 0,252        | -0,99      | 0,9         |
| <b>0+200,16</b><br>1 | 0,00<br>0,69<br>0,00 | 0,00<br>2,23<br>0,00 | 0,00<br>0,19<br>0,00 | 30,0<br>30,0<br>30,0 | 0,16<br>0,16<br>0,16    | 0,133       | 303,95               | 303,95                | 0,60          | 0,10        | 0,62        | 303,35          | 0,201        | -0,88      | 0,7         |
| <b>0+200,17</b><br>4 | 0,00<br>0,50<br>0,00 | 0,00<br>1,80<br>0,00 | 0,00<br>0,26<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,133       | 303,95               | 303,95                | 0,62          | 0,12        | 0,30        | 303,33          | 0,107        | -0,48      | 0,4         |
| <b>0+210,89</b><br>4 | 0,00<br>0,39<br>0,00 | 0,00<br>1,58<br>0,00 | 0,00<br>0,34<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>10,72<br>0,00   | 0,133       | 303,95<br>SonstigeVe | 303,95<br>erlust = 0, | 0,51<br>001 m | 0,17        | 0,50        | 303,44          | 0,201        | -0,50      | 0,5         |
| <b>0+210,90</b><br>1 | 0,00<br>0,46<br>0,00 | 0,00<br>1,77<br>0,00 | 0,00<br>0,29<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,133       | 303,95               | 303,95                | 0,51          | 0,15        | 1,48        | 303,44          | 0,573        | -0,45      | 0,7         |
| <b>0+220,00</b><br>1 | 0,00<br>0,33<br>0,00 | 0,00<br>1,73<br>0,00 | 0,00<br>0,40<br>0,00 | 30,0<br>30,0<br>30,0 | 9,10<br>9,10<br>9,10    | 0,133       | 303,96               | 303,96                | 0,30          | 0,28        | 3,08        | 303,65          | 1,607        | -0,83      | 0,7         |
| <b>0+240,00</b><br>1 | 0,00<br>0,25<br>0,00 | 0,00<br>1,52<br>0,00 | 0,00<br>0,52<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,133       | 304,01               | 304,00                | 0,25          | 0,39        | 5,52        | 303,75          | 3,309        | -0,73      | 0,6         |
| <b>0+260,00</b><br>1 | 0,00<br>0,30<br>0,00 | 0,00<br>1,66<br>0,00 | 0,00<br>0,45<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,133       | 304,07               | 304,06                | 0,30          | 0,32        | 3,97        | 303,76          | 2,223        | -0,65      | 0,8         |
| <b>0+280,00</b><br>1 | 0,00<br>0,29<br>0,00 | 0,00<br>1,72<br>0,00 | 0,00<br>0,46<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,133       | 304,12               | 304,11                | 0,30          | 0,35        | 4,33        | 303,81          | 2,590        | -0,69      | 0,8         |
| <b>0+300,00</b><br>1 | 0,00<br>0,24<br>0,00 | 0,00<br>1,45<br>0,00 | 0,00<br>0,55<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,133       | 304,18               | 304,17                | 0,32          | 0,41        | 6,21        | 303,85          | 3,747        | -0,64      | 0,64        |
| <b>0+320,00</b><br>1 | 0,00<br>0,36<br>0,00 | 0,00<br>1,87<br>0,00 | 0,00<br>0,37<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,133       | 304,23               | 304,23                | 0,33          | 0,26        | 2,71        | 303,89          | 1,426        | -0,71      | 1,00        |
| <b>0+340,00</b><br>1 | 0,00<br>0,32<br>0,00 | 0,00<br>1,74<br>0,00 | 0,00<br>0,42<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,133       | 304,26               | 304,26                | 0,32          | 0,30        | 3,49        | 303,94          | 1,930        | -0,64      | 0,94        |

Schnitt 3 - Vorflutgraben 2 Entwässerungsabschnitt 2

#### Berechnungsverfahren:

- Nach Manning-Strickler
- Mit Berücksichtigung der Rauheitswerte aus Lastfall 1 Fließgewässerrauheiten (Sandrauheiten) im Sommer

#### Gewählte Berechnungsparameter:

- Projektnummer : 3

- Berechnung von Station + 0 km + 0,00 m bis Station + 0 km + 120,00 m

- Anfangswasserspiegel Grenztiefe = 303,600 m+NN
- Stationierung gegen Fließrichtung
- mit Ermittlung des schießenden Fließzustandes
- Iterationsgenauigkeit der Wasserspiegel von 5,0 mm
- Berechnung FROUDE-Zahl nach Knauf-Könemann

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 3 - Vorflutgraben 2 Entwässerungsabschnitt 2

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN) | Wsp<br>(m+NN) | Tiefe<br>(m) | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re     |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|-------------------|---------------|--------------|-------------|-------------|-----------------|--------------|--------------|-----------------|
| <b>0+000,00</b><br>1 | 0,00<br>0,07<br>0,00 | 0,00<br>0,83<br>0,00 | 0,00<br>0,89<br>0,00 | 30,0<br>30,0<br>30,0 | 1,00<br>1,00<br>1,00    | 0,063       | 303,64            | 303,60        | 0,17         | 1,00        | 19,96       | 303,43          | 23,331       | -0,27<br>scl | 0,48<br>hießend |
| <b>0+020,00</b><br>1 | 0,00<br>0,34<br>0,00 | 0,00<br>1,83<br>0,00 | 0,00<br>0,18<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,063       | 303,88            | 303,88        | 0,36         | 0,13        | 0,65        | 303,51          | 0,348        | -0,90        | 0,76            |
| <b>0+040,00</b><br>1 | 0,00<br>0,17<br>0,00 | 0,00<br>1,34<br>0,00 | 0,00<br>0,36<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,063       | 303,90            | 303,90        | 0,24         | 0,31        | 2,86        | 303,65          | 2,199        | -0,62        | 0,62            |
| <b>0+060,00</b><br>1 | 0,00<br>0,14<br>0,00 | 0,00<br>1,32<br>0,00 | 0,00<br>0,44<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,063       | 303,97            | 303,96        | 0,21         | 0,42        | 4,57        | 303,75          | 4,239        | -0,62        | 0,62            |
| <b>0+080,00</b><br>1 | 0,00<br>0,14<br>0,00 | 0,00<br>1,25<br>0,00 | 0,00<br>0,46<br>0,00 | 30,0<br>30,0<br>30,0 | 0,00<br>20,00<br>20,00  | 0,063       | 304,06            | 304,05        | 0,21         | 0,43        | 4,94        | 303,84          | 4,528        | -0,58        | 0,59            |
| <b>0+100,00</b><br>1 | 0,00<br>0,23<br>0,00 | 0,00<br>1,62<br>0,00 | 0,00<br>0,27<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,063       | 304,11            | 304,11        | 0,27         | 0,22        | 1,58        | 303,84          | 1,108        | -0,66        | 0,85            |
| <b>0+120,00</b><br>1 | 0,00<br>0,12<br>0,00 | 0,00<br>1,15<br>0,00 | 0,00<br>0,52<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,063       | 304,19            | 304,18        | 0,19         | 0,49        | 6,42        | 303,98          | 6,112        | -0,43        | 0,63            |

Schnitt 4 - Vorflutgraben 1 Entwässerungsabschnitt 1

#### Berechnungsverfahren:

- Nach Manning-Strickler
- Mit Berücksichtigung der Rauheitswerte aus Lastfall 1 Fließgewässerrauheiten (Sandrauheiten) im Sommer

#### Gewählte Berechnungsparameter:

- Projektnummer : 4

- Berechnung von Station + 0 km + 0,00 m bis Station + 0 km + 760,00 m

- Anfangswasserspiegel Grenztiefe = 302,500 m+NN
- Stationierung gegen Fließrichtung
- mit Ermittlung des schießenden Fließzustandes
- Iterationsgenauigkeit der Wasserspiegel von 5,0 mm
- Berechnung FROUDE-Zahl nach Knauf-Könemann

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 4 - Vorflutgraben 1 Entwässerungsabschnitt 1

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN) | Wsp<br>(m+NN) | Tiefe<br>(m) | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re   |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|-------------------|---------------|--------------|-------------|-------------|-----------------|--------------|--------------|---------------|
| <b>0+000,00</b><br>1 | 0,00<br>0,20<br>0,00 | 0,00<br>1,33<br>0,00 | 0,00<br>1,22<br>0,00 | 30,0<br>30,0<br>30,0 | 1,00<br>1,00<br>1,00    | 0,249       | 302,58            | 302,50        | 0,27         | 1,00        | 31,11       | 302,23          | 20,359       | -0,51<br>scl | 0,6<br>nießen |
| <b>0+020,00</b><br>1 | 0,00<br>0,61<br>0,00 | 0,00<br>2,25<br>0,00 | 0,00<br>0,41<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 302,79            | 302,78        | 0,42         | 0,23        | 2,91        | 302,36          | 1,081        | -0,98        | 0,9           |
| <b>0+040,00</b><br>1 | 0,00<br>0,73<br>0,00 | 0,00<br>2,50<br>0,00 | 0,00<br>0,34<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 302,81            | 302,80        | 0,46         | 0,19        | 1,96        | 302,34          | 0,672        | -1,05        | 1,            |
| <b>0+060,00</b><br>1 | 0,00<br>0,96<br>0,00 | 0,00<br>2,86<br>0,00 | 0,00<br>0,26<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 302,82            | 302,81        | 0,56         | 0,13        | 1,06        | 302,25          | 0,315        | -1,17        | 1,            |
| <b>0+080,00</b><br>1 | 0,00<br>0,99<br>0,00 | 0,00<br>2,94<br>0,00 | 0,00<br>0,25<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 302,82            | 302,82        | 0,56         | 0,13        | 1,02        | 302,26          | 0,304        | -1,18        | 1,            |
| <b>0+100,00</b><br>1 | 0,00<br>0,70<br>0,00 | 0,00<br>2,67<br>0,00 | 0,00<br>0,35<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 302,83            | 302,83        | 0,40         | 0,21        | 2,18        | 302,43          | 0,829        | -1,12        | 1,            |
| <b>0+120,00</b><br>1 | 0,00<br>0,55<br>0,00 | 0,00<br>2,50<br>0,00 | 0,00<br>0,45<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 302,86            | 302,85        | 0,29         | 0,29        | 3,71        | 302,56          | 1,676        | -1,09        | 1,            |
| <b>0+140,00</b><br>1 | 0,00<br>0,70<br>0,00 | 0,00<br>2,69<br>0,00 | 0,00<br>0,36<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 302,88            | 302,87        | 0,36         | 0,22        | 2,23        | 302,51          | 0,862        | -1,17        | 1,            |
| <b>0+160,00</b><br>1 | 0,00<br>0,77<br>0,00 | 0,00<br>2,80<br>0,00 | 0,00<br>0,32<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 302,90            | 302,89        | 0,42         | 0,19        | 1,76        | 302,47          | 0,638        | -1,20        | 1,            |
| <b>0+180,00</b><br>1 | 0,00<br>0,62<br>0,00 | 0,00<br>2,45<br>0,00 | 0,00<br>0,40<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 302,91            | 302,91        | 0,39         | 0,24        | 2,83        | 302,52          | 1,114        | -1,06        | 1,            |
| <b>0+200,00</b><br>1 | 0,00<br>0,44<br>0,00 | 0,00<br>1,98<br>0,00 | 0,00<br>0,57<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 302,95            | 302,94        | 0,33         | 0,37        | 5,96        | 302,61          | 2,702        | -0,87        | 0,            |
| <b>0+212,97</b><br>1 | 0,00<br>0,37<br>0,00 | 0,00<br>1,78<br>0,00 | 0,00<br>0,68<br>0,00 | 30,0<br>30,0<br>30,0 | 12,97<br>12,97<br>12,97 | 0,249       | 303,00            | 302,97        | 0,31         | 0,45        | 8,68        | 302,66          | 4,221        | -0,77        | 0             |
| <b>0+212,98</b><br>4 | 0,00<br>0,13<br>0,00 | 0,00<br>0,93<br>0,00 | 0,00<br>1,99<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,249       | 303,11            | 302,90        | 0,24         | 1,53        | 21,39       | 302,66          | 15,829       | -0,37<br>scl | 0,<br>nießei  |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 4 - Vorflutgraben 1 Entwässerungsabschnitt 1

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)   | Wsp<br>(m+NN)       | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re     |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|---------------------|---------------------|---------------|-------------|-------------|-----------------|--------------|--------------|-----------------|
| <b>0+225,25</b><br>4 | 0,00<br>0,18<br>0,00 | 0,00<br>1,07<br>0,00 | 0,00<br>1,41<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>12,27<br>0,00   | 0,249       | 303,24              | 303,14              | 0,31          | 1,00        | 10,06       | 302,83          | 6,091        | -0,39<br>scl | 0,39<br>nießend |
| <b>0+225,26</b><br>1 | 0,00<br>2,89<br>0,00 | 0,00<br>7,12<br>0,00 | 0,00<br>0,09<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,249       | 303,24              | 303,24              | 0,58          | 0,04        | 0,11        | 302,66          | 0,027        | -1,85        | 5,0             |
| <b>0+240,00</b><br>1 | 0,00<br>1,20<br>0,00 | 0,00<br>3,30<br>0,00 | 0,00<br>0,21<br>0,00 | 30,0<br>30,0<br>30,0 | 14,74<br>14,74<br>14,74 | 0,249       | 303,25              | 303,24              | 0,57          | 0,10        | 0,68        | 302,67          | 0,186        | -1,37        | 1,5             |
| <b>0+260,00</b><br>1 | 0,00<br>1,16<br>0,00 | 0,00<br>3,43<br>0,00 | 0,00<br>0,22<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 303,25              | 303,25              | 0,51          | 0,11        | 0,74        | 302,74          | 0,220        | -1,47        | 1,68            |
| <b>0+280,00</b><br>1 | 0,00<br>1,08<br>0,00 | 0,00<br>3,34<br>0,00 | 0,00<br>0,23<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 303,26              | 303,25              | 0,48          | 0,12        | 0,86        | 302,77          | 0,265        | -1,46        | 1,6             |
| <b>0+300,00</b><br>1 | 0,00<br>0,93<br>0,00 | 0,00<br>3,13<br>0,00 | 0,00<br>0,27<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 303,26              | 303,26              | 0,46          | 0,15        | 1,19        | 302,80          | 0,398        | -1,38        | 1,5             |
| <b>0+320,00</b><br>1 | 0,00<br>0,81<br>0,00 | 0,00<br>2,80<br>0,00 | 0,00<br>0,31<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 303,27              | 303,27              | 0,44          | 0,17        | 1,59        | 302,83          | 0,550        | -1,30        | 1,2             |
| <b>0+340,00</b><br>1 | 0,00<br>0,62<br>0,00 | 0,00<br>2,20<br>0,00 | 0,00<br>0,40<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 303,29              | 303,28              | 0,64          | 0,22        | 2,74        | 302,64          | 0,976        | -0,78        | 0,9             |
| <b>0+340,01</b><br>4 | 0,00<br>0,12<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>2,00<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,249       | 303,48<br>Stossverl | 303,28<br>lust = 0, | 0,64<br>131 m |             | 24,16       | 302,64          | 24,490       |              |                 |
| <b>0+346,65</b><br>4 | 0,00<br>0,12<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>2,01<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>6,64<br>0,00    | 0,249       | 303,64              | 303,44              | 0,65          |             | 24,27       | 302,79          | 24,669       |              |                 |
| <b>0+346,66</b><br>1 | 0,00<br>1,29<br>0,00 | 0,00<br>3,18<br>0,00 | 0,00<br>0,19<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,249       | 303,64              | 303,64              | 0,85          | 0,09        | 0,55        | 302,79          | 0,136        | -0,98        | 1,5             |
| <b>0+360,00</b><br>1 | 0,00<br>1,66<br>0,00 | 0,00<br>3,95<br>0,00 | 0,00<br>0,15<br>0,00 | 30,0<br>30,0<br>30,0 | 13,34<br>13,34<br>13,34 | 0,249       | 303,65              | 303,65              | 0,79          | 0,07        | 0,33        | 302,85          | 0,079        | -1,89        | 1,6             |
| <b>0+380,00</b><br>1 | 0,00<br>1,39<br>0,00 | 0,00<br>3,50<br>0,00 | 0,00<br>0,18<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 303,65              | 303,65              | 0,71          | 0,09        | 0,49        | 302,94          | 0,124        | -1,51        | 1,59            |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 4 - Vorflutgraben 1 Entwässerungsabschnitt 1

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)        | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|----------------------|---------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+400,00</b><br>1 | 0,00<br>1,21<br>0,00 | 0,00<br>3,30<br>0,00 | 0,00<br>0,21<br>0,00 | 30,0<br>30,0<br>30,0 | 0,00<br>20,00<br>20,00  | 0,249       | 303,65               | 303,65               | 0,62          | 0,10        | 0,66        | 303,03          | 0,179        | -1,36      | 1,5         |
| <b>0+420,00</b><br>1 | 0,00<br>1,14<br>0,00 | 0,00<br>3,29<br>0,00 | 0,00<br>0,22<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 303,66               | 303,65               | 0,54          | 0,11        | 0,76        | 303,11          | 0,220        | -1,40      | 1,5         |
| <b>0+440,00</b><br>1 | 0,00<br>1,13<br>0,00 | 0,00<br>3,38<br>0,00 | 0,00<br>0,22<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 303,66               | 303,66               | 0,53          | 0,12        | 0,77        | 303,13          | 0,229        | -1,56      | 1,5         |
| <b>0+445,03</b><br>1 | 0,00<br>0,87<br>0,00 | 0,00<br>3,09<br>0,00 | 0,00<br>0,29<br>0,00 | 30,0<br>30,0<br>30,0 | 5,03<br>5,03<br>5,03    | 0,249       | 303,66               | 303,66               | 0,56          | 0,17        | 1,39        | 303,10          | 0,493        | -1,66      | 1,2         |
| <b>0+445,04</b><br>4 | 0,00<br>0,19<br>0,00 | 0,00<br>1,58<br>0,00 | 0,00<br>1,28<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,249       | 303,74<br>Stossver   | 303,66<br>lust = 0,  | 0,55<br>050 m |             | 9,12        | 303,11          | 7,390        |            |             |
| <b>0+456,95</b><br>4 | 0,00<br>0,19<br>0,00 | 0,00<br>1,58<br>0,00 | 0,00<br>1,28<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>11,91<br>0,00   | 0,249       | 303,83               | 303,75               | 0,57          |             | 9,12        | 303,18          | 7,390        |            |             |
| <b>0+456,96</b><br>1 | 0,00<br>1,13<br>0,00 | 0,00<br>3,23<br>0,00 | 0,00<br>0,22<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,249       | 303,83               | 303,83               | 0,64          | 0,11        | 0,77        | 303,19          | 0,219        | -1,03      | 1,8         |
| <b>0+460,00</b><br>1 | 0,00<br>1,14<br>0,00 | 0,00<br>3,43<br>0,00 | 0,00<br>0,22<br>0,00 | 30,0<br>30,0<br>30,0 | 3,04<br>3,04<br>3,04    | 0,249       | 303,83               | 303,83               | 0,49          | 0,12        | 0,76        | 303,34          | 0,228        | -1,37      | 1,          |
| <b>0+480,00</b><br>1 | 0,00<br>1,10<br>0,00 | 0,00<br>3,31<br>0,00 | 0,00<br>0,23<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,249       | 303,84               | 303,83               | 0,52          | 0,12        | 0,82        | 303,31          | 0,246        | -1,32      | 1,          |
| <b>0+496,97</b><br>1 | 0,00<br>0,95<br>0,18 | 0,00<br>3,71<br>2,74 | 0,00<br>0,24<br>0,10 | 30,0<br>30,0<br>30,0 | 16,97<br>16,97<br>16,97 | 0,249       | 303,84               | 303,84               | 0,40          | 0,18        | 0,71        | 303,44          | 0,406        | -1,29      | 7,          |
| <b>0+496,98</b><br>4 | 0,00<br>0,27<br>0,00 | 0,00<br>1,33<br>0,00 | 0,00<br>0,91<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,249       | 303,87<br>Stossver   | 303,82<br>lust = 0,  | 0,38<br>023 m | 0,55        | 3,90        | 303,44          | 1,893        | -0,48      | 0,          |
| <b>0+524,09</b><br>4 | 0,00<br>0,26<br>0,00 | 0,00<br>1,29<br>0,00 | 0,00<br>0,73<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>27,11<br>0,00   | 0,186       | 303,91<br>SonstigeVe | 303,89<br>rlust = 0, | 0,37<br>008 m | 0,45        | 2,51        | 303,52          | 1,263        | -0,48      | 0,          |
| <b>0+524,10</b><br>1 | 0,00<br>0,38<br>0,00 | 0,00<br>2,05<br>0,00 | 0,00<br>0,49<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,186       | 303,91               | 303,90               | 0,38          | 0,35        | 4,64        | 303,52          | 2,499        | -1,16      | 0,          |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 4 - Vorflutgraben 1 Entwässerungsabschnitt 1

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)  | Wsp<br>(m+NN)       | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|--------------------|---------------------|---------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+540,00</b><br>1 | 0,00<br>2,61<br>0,00 | 0,00<br>6,43<br>0,00 | 0,00<br>0,07<br>0,00 | 30,0<br>30,0<br>30,0 | 15,90<br>15,90<br>15,90 | 0,186       | 303,93             | 303,93              | 0,74          | 0,04        | 0,08        | 303,19          | 0,019        | -2,94      | 3,2         |
| <b>0+560,00</b><br>1 | 0,00<br>2,01<br>0,00 | 0,00<br>5,64<br>0,00 | 0,00<br>0,09<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,186       | 303,93             | 303,93              | 0,66          | 0,05        | 0,14        | 303,27          | 0,038        | -2,71      | 2,          |
| <b>0+580,00</b><br>1 | 0,00<br>1,27<br>0,00 | 0,00<br>4,19<br>0,00 | 0,00<br>0,15<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,186       | 303,93             | 303,93              | 0,56          | 0,08        | 0,35        | 303,37          | 0,116        | -1,68      | 2,          |
| <b>0+585,65</b><br>1 | 0,00<br>0,62<br>0,00 | 0,00<br>2,10<br>0,00 | 0,00<br>0,30<br>0,00 | 30,0<br>30,0<br>30,0 | 5,65<br>5,65<br>5,65    | 0,186       | 303,94             | 303,93              | 0,53          | 0,16        | 1,51        | 303,40          | 0,512        | -0,66      | 0,          |
| <b>0+585,66</b><br>4 | 0,00<br>0,12<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>1,49<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,186       | 304,05<br>Stossver | 303,93<br>lust = 0, | 0,53<br>072 m |             | 13,34       | 303,40          | 13,484       |            |             |
| <b>0+590,63</b> 4    | 0,00<br>0,12<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>1,49<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>4,97<br>0,00    | 0,186       | 304,11             | 304,00              | 0,45          |             | 13,39       | 303,55          | 13,544       |            |             |
| <b>0+590,64</b><br>1 | 0,00<br>0,75<br>0,00 | 0,00<br>2,53<br>0,00 | 0,00<br>0,25<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,186       | 304,11             | 304,11              | 0,56          | 0,13        | 1,02        | 303,55          | 0,343        | -0,71      | 1,          |
| <b>0+600,00</b><br>1 | 0,00<br>1,35<br>0,00 | 0,00<br>3,68<br>0,00 | 0,00<br>0,14<br>0,00 | 30,0<br>30,0<br>30,0 | 9,36<br>9,36<br>9,36    | 0,186       | 304,12             | 304,12              | 0,56          | 0,07        | 0,29        | 303,56          | 0,080        | -1,66      | 1,          |
| <b>0+620,00</b><br>1 | 0,00<br>2,04<br>0,00 | 0,00<br>5,63<br>0,00 | 0,00<br>0,09<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,186       | 304,12             | 304,12              | 0,52          | 0,05        | 0,13        | 303,60          | 0,036        | -3,12      | 2,          |
| <b>0+640,00</b><br>1 | 0,00<br>1,86<br>0,00 | 0,00<br>5,58<br>0,00 | 0,00<br>0,10<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,186       | 304,12             | 304,12              | 0,57          | 0,05        | 0,16        | 303,55          | 0,048        | -3,36      | 2,          |
| <b>0+660,00</b><br>1 | 0,00<br>1,86<br>0,00 | 0,00<br>6,24<br>0,00 | 0,00<br>0,10<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,186       | 304,13             | 304,12              | 0,50          | 0,06        | 0,16        | 303,62          | 0,055        | -3,50      | 2,          |
| <b>0+680,00</b><br>1 | 0,00<br>1,16<br>0,00 | 0,00<br>4,63<br>0,00 | 0,00<br>0,16<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,186       | 304,13             | 304,13              | 0,45          | 0,10        | 0,46        | 303,68          | 0,183        | -2,51      | 2,          |
| <b>0+700,00</b><br>1 | 0,00<br>0,39<br>0,00 | 0,00<br>1,86<br>0,00 | 0,00<br>0,48<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,186       | 304,16<br>Stossver | 304,15<br>lust = 0, | 0,43<br>005 m | 0,31        | 4,28        | 303,72          | 2,052        | -0,77      | 0,          |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 4 - Vorflutgraben 1 Entwässerungsabschnitt 1

| Profil-l | km A<br>Art (m2 |                      | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)        | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------|-----------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|----------------------|---------------|-------------|-------------|-----------------|--------------|------------|-------------|
| 0+700    | 1 (             | 0,00<br>0,35<br>0,00 | 0,00<br>1,74<br>0,00 | 0,00<br>0,53<br>0,00 | 30,0<br>30,0<br>30,0 | 0,99<br>0,99<br>0,99    | 0,186       | 304,16               | 304,15               | 0,42          | 0,35        | 5,33        | 303,73          | 2,642        | -0,70      | 0,79        |
| 0+701    | 4               | 0,00<br>0,16<br>0,00 | 0,00<br>1,08<br>0,00 | 0,00<br>1,15<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,186       | 304,19<br>Stossver   | 304,12<br>lust = 0,  | 0,39<br>020 m | 0,60        | 6,93        | 303,73          | 4,631        | -0,21      | 0,21        |
| 0+706    | 4 (             | 0,00<br>0,16<br>0,00 | 0,00<br>1,07<br>0,00 | 0,00<br>1,16<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>5,87<br>0,00    | 0,186       | 304,21<br>SonstigeVe | 304,14<br>rlust = 0, | 0,38<br>001 m | 0,61        | 7,09        | 303,76          | 4,735        | -0,22      | 0,22        |
| 0+706    | 1 (             | 0,00<br>0,45<br>0,00 | 0,00<br>1,95<br>0,00 | 0,00<br>0,42<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,186       | 304,21               | 304,20               | 0,44          | 0,26        | 3,13        | 303,76          | 1,359        | -0,91      | 0,77        |
| 0+720    | 1 (             | 0,00<br>0,35<br>0,00 | 0,00<br>1,72<br>0,00 | 0,00<br>0,53<br>0,00 | 30,0<br>30,0<br>30,0 | 0,00<br>13,12<br>13,12  | 0,186       | 304,24               | 304,22               | 0,42          | 0,35        | 5,28        | 303,80          | 2,583        | -0,73      | 0,74        |
| 0+740    | 1 (             | 0,00<br>0,34<br>0,00 | 0,00<br>1,69<br>0,00 | 0,00<br>0,55<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,186       | 304,29               | 304,27               | 0,41          | 0,36        | 5,76        | 303,86          | 2,880        | -0,72      | 0,72        |
| 0+760    | 1 (             | 0,00<br>0,36<br>0,00 | 0,00<br>1,80<br>0,00 | 0,00<br>0,51<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,186       | 304,34               | 304,33               | 0,41          | 0,34        | 5,02        | 303,92          | 2,494        | -0,86      | 0,72        |

# Schnitt 5 - Vorflutgraben 3 + Kronengraben Entwässerungsabschnitt 5

#### Berechnungsverfahren:

- Nach Manning-Strickler
- Mit Berücksichtigung der Rauheitswerte aus Lastfall 1 Fließgewässerrauheiten (Sandrauheiten) im Sommer

#### Gewählte Berechnungsparameter:

- Projektnummer : 5

- Berechnung von Station + 0 km + 23,57 m bis Station + 1 km + 338,42 m

- Anfangswasserspiegel Grenztiefe = 301,880 m+NN
- Stationierung gegen Fließrichtung
- mit Ermittlung des schießenden Fließzustandes
- Iterationsgenauigkeit der Wasserspiegel von 5,0 mm
- Berechnung FROUDE-Zahl nach Knauf-Könemann

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 5 - Vorflutgraben 3 + Kronengraben

Entwässerungsabschnitt 5

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)  | Wsp<br>(m+NN)       | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re   |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|--------------------|---------------------|---------------|-------------|-------------|-----------------|--------------|--------------|---------------|
| <b>0+023,57</b><br>1 | 0,00<br>0,30<br>0,00 | 0,00<br>1,90<br>0,00 | 0,00<br>1,27<br>0,00 | 30,0<br>30,0<br>30,0 | 1,00<br>1,00<br>1,00    | 0,384       | 301,96             | 301,88              | 0,22          | 1,00        | 33,33       | 301,66          | 21,016       | -1,02<br>scl | 0,7<br>hießen |
| <b>0+040,00</b><br>1 | 0,00<br>1,81<br>0,00 | 0,00<br>3,83<br>0,00 | 0,00<br>0,21<br>0,00 | 30,0<br>30,0<br>30,0 | 16,43<br>16,43<br>16,43 | 0,384       | 302,13             | 302,13              | 0,83          | 0,09        | 0,65        | 301,30          | 0,137        | -1,52        | 1,7           |
| <b>0+060,00</b><br>1 | 0,00<br>1,92<br>0,00 | 0,00<br>3,93<br>0,00 | 0,00<br>0,20<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,14             | 302,14              | 0,87          | 0,08        | 0,57        | 301,27          | 0,116        | -1,53        | 1,8           |
| <b>0+080,00</b><br>1 | 0,00<br>1,84<br>0,00 | 0,00<br>3,88<br>0,00 | 0,00<br>0,21<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,14             | 302,14              | 0,82          | 0,09        | 0,63        | 301,32          | 0,132        | -1,54        | 1,7           |
| <b>0+100,00</b><br>1 | 0,00<br>1,63<br>0,00 | 0,00<br>3,65<br>0,00 | 0,00<br>0,24<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,14             | 302,14              | 0,75          | 0,11        | 0,81        | 301,39          | 0,182        | -1,50        | 1,6           |
| <b>0+120,00</b><br>1 | 0,00<br>1,27<br>0,00 | 0,00<br>3,24<br>0,00 | 0,00<br>0,30<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,15             | 302,14              | 0,65          | 0,14        | 1,40        | 301,49          | 0,357        | -1,38        | 1,4           |
| <b>0+140,00</b><br>1 | 0,00<br>0,94<br>0,00 | 0,00<br>2,82<br>0,00 | 0,00<br>0,41<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,16             | 302,15              | 0,57          | 0,21        | 2,67        | 301,58          | 0,803        | -1,25        | 1,2           |
| <b>0+160,00</b><br>1 | 0,00<br>0,79<br>0,00 | 0,00<br>2,60<br>0,00 | 0,00<br>0,49<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,18             | 302,17              | 0,53          | 0,26        | 3,92        | 301,64          | 1,290        | -1,11        | 1,1           |
| <b>0+180,00</b><br>1 | 0,00<br>0,78<br>0,00 | 0,00<br>2,52<br>0,00 | 0,00<br>0,49<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,20             | 302,19              | 0,52          | 0,26        | 3,94        | 301,67          | 1,266        | -1,00        | 1,1           |
| <b>0+200,00</b><br>1 | 0,00<br>0,78<br>0,00 | 0,00<br>2,51<br>0,00 | 0,00<br>0,49<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,22             | 302,21              | 0,51          | 0,26        | 3,92        | 301,70          | 1,254        | -0,98        | 1,1           |
| <b>0+220,00</b><br>1 | 0,00<br>0,74<br>0,00 | 0,00<br>2,36<br>0,00 | 0,00<br>0,52<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,25             | 302,23              | 0,51          | 0,26        | 4,34        | 301,72          | 1,375        | -0,97        | 0,9           |
| <b>0+224,14</b><br>1 | 0,00<br>0,72<br>0,00 | 0,00<br>2,33<br>0,00 | 0,00<br>0,53<br>0,00 | 30,0<br>30,0<br>30,0 | 4,14<br>4,14<br>4,14    | 0,384       | 302,25             | 302,24              | 0,50          | 0,27        | 4,67        | 301,73          | 1,508        | -0,97        | 0,9           |
| <b>0+224,15</b><br>4 | 0,00<br>0,37<br>0,00 | 0,00<br>1,53<br>0,00 | 0,00<br>1,04<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,384       | 302,27<br>Stossver | 302,21<br>dust = 0, | 0,48<br>013 m | 0,55        | 4,82        | 301,73          | 1,993        | -0,50        | 0,5           |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 5 - Vorflutgraben 3 + Kronengraben

Entwässerungsabschnitt 5

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)                | Wsp<br>(m+NN)                     | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------------------|-----------------------------------|---------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+232,44</b><br>4 | 0,00<br>0,29<br>0,00 | 0,00<br>1,36<br>0,00 | 0,00<br>1,33<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>8,29<br>0,00    | 0,384       | 302,31<br>SonstigeVe             | 302,22<br>rlust = 0,              | 0,40<br>018 m | 0,78        | 8,25        | 301,82          | 3,889        | -0,49      | 0,49        |
| <b>0+232,45</b><br>1 | 0,00<br>0,82<br>0,00 | 0,00<br>2,56<br>0,00 | 0,00<br>0,47<br>0,00 | 30,0<br>30,0<br>30,0 | 7,55<br>0,01<br>7,55    | 0,384       | 302,31                           | 302,30                            | 0,51          | 0,24        | 3,56        | 301,79          | 1,110        | -1,17      | 1,01        |
| <b>0+240,00</b><br>1 | 0,00<br>0,85<br>0,00 | 0,00<br>2,60<br>0,00 | 0,00<br>0,45<br>0,00 | 30,0<br>30,0<br>30,0 | 7,55<br>7,55<br>7,55    | 0,384       | 302,32                           | 302,31                            | 0,52          | 0,23        | 3,31        | 301,79          | 1,013        | -1,18      | 1,03        |
| <b>0+260,00</b><br>1 | 0,00<br>1,09<br>0,00 | 0,00<br>2,98<br>0,00 | 0,00<br>0,35<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,33                           | 302,33                            | 0,62          | 0,17        | 1,94        | 301,71          | 0,533        | -1,48      | 1,07        |
| <b>0+280,00</b><br>1 | 0,00<br>1,34<br>0,00 | 0,00<br>3,33<br>0,00 | 0,00<br>0,29<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,34                           | 302,34                            | 0,70          | 0,13        | 1,24        | 301,64          | 0,307        | -1,64      | 1,22        |
| <b>0+283,77</b><br>1 | 0,00<br>1,37<br>0,00 | 0,00<br>3,25<br>0,00 | 0,00<br>0,28<br>0,00 | 30,0<br>30,0<br>30,0 | 3,77<br>3,77<br>3,77    | 0,384       | 302,35                           | 302,34                            | 0,72          | 0,13        | 1,17        | 301,62          | 0,276        | -1,46      | 1,26        |
| <b>0+283,78</b><br>4 | 0,00<br>0,60<br>0,00 | 0,00<br>2,02<br>0,00 | 0,00<br>0,64<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,384       | 302,36<br>Stossver<br>SonstigeVe | 302,34<br>lust = 0,<br>rlust = 0, |               | 0,25        | 1,70        | 301,62          | 0,574        | -0,44      | 0,44        |
| <b>0+301,44</b><br>4 | 0,00<br>0,41<br>0,00 | 0,00<br>1,60<br>0,00 | 0,00<br>0,95<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>17,66<br>0,00   | 0,384       | 302,39<br>Stossver<br>SonstigeVe | 302,35<br>lust = 0,<br>rlust = 0, |               | 0,47        | 3,93        | 301,83          | 1,550        | -0,50      | 0,50        |
| <b>0+301,45</b><br>1 | 0,00<br>0,83<br>0,00 | 0,00<br>2,61<br>0,00 | 0,00<br>0,46<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,384       | 302,39                           | 302,38                            | 0,55          | 0,24        | 3,45        | 301,83          | 1,077        | -1,13      | 1,10        |
| <b>0+320,00</b><br>1 | 0,00<br>0,61<br>0,00 | 0,00<br>2,26<br>0,00 | 0,00<br>0,63<br>0,00 | 30,0<br>30,0<br>30,0 | 18,55<br>18,55<br>18,55 | 0,384       | 302,43                           | 302,41                            | 0,40          | 0,36        | 6,91        | 302,01          | 2,575        | -1,06      | 0,87        |
| <b>0+340,00</b><br>1 | 0,00<br>0,49<br>0,00 | 0,00<br>2,30<br>0,00 | 0,00<br>0,78<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,50                           | 302,47                            | 0,28          | 0,51        | 11,39       | 302,19          | 5,343        | -1,10      | 0,96        |
| <b>0+360,00</b><br>1 | 0,00<br>0,39<br>0,00 | 0,00<br>1,80<br>0,00 | 0,00<br>0,99<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,64                           | 302,59                            | 0,31          | 0,61        | 18,05       | 302,28          | 8,365        | -0,68      | 0,76        |
| <b>0+366,84</b><br>1 | 0,00<br>0,33<br>0,00 | 0,00<br>1,59<br>0,00 | 0,00<br>1,16<br>0,00 | 30,0<br>30,0<br>30,0 | 6,84<br>6,84<br>6,84    | 0,384       | 302,71                           | 302,64                            | 0,33          | 0,68        | 25,28       | 302,31          | 12,132       | -0,60      | 0,52        |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 5 - Vorflutgraben 3 + Kronengraben

Entwässerungsabschnitt 5

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)         | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li  | -Ufer<br>re     |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|-----------------------|---------------|-------------|-------------|-----------------|--------------|-------------|-----------------|
| <b>0+366,85</b><br>4 | 0,00<br>0,25<br>0,00 | 0,00<br>1,28<br>0,00 | 0,00<br>1,54<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,384       | 302,79               | 302,67                | 0,36          | 1,00        | 11,39       | 302,31          | 5,840        | -0,48<br>sc | 0,44<br>hießend |
| <b>0+372,51</b><br>4 | 0,00<br>0,38<br>0,00 | 0,00<br>1,54<br>0,00 | 0,00<br>1,02<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>5,66<br>0,00    | 0,384       | 302,84<br>SonstigeVe | 302,79<br>erlust = 0, | 0,49<br>034 m | 0,53        | 4,60        | 302,30          | 1,882        | -0,50       | 0,5             |
| <b>0+372,52</b><br>1 | 0,00<br>0,69<br>0,00 | 0,00<br>2,22<br>0,00 | 0,00<br>0,56<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,384       | 302,84               | 302,82                | 0,52          | 0,28        | 5,13        | 302,30          | 1,657        | -0,85       | 0,8             |
| <b>0+380,00</b><br>1 | 0,00<br>0,91<br>0,00 | 0,00<br>2,64<br>0,00 | 0,00<br>0,42<br>0,00 | 30,0<br>30,0<br>30,0 | 7,48<br>7,48<br>7,48    | 0,384       | 302,85               | 302,84                | 0,54          | 0,21        | 2,80        | 302,30          | 0,809        | -1,10       | 1,1             |
| <b>0+400,00</b><br>1 | 0,00<br>1,13<br>0,00 | 0,00<br>3,11<br>0,00 | 0,00<br>0,34<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,87               | 302,86                | 0,55          | 0,17        | 1,79        | 302,31          | 0,490        | -1,28       | 1,4             |
| <b>0+420,00</b><br>1 | 0,00<br>1,22<br>0,00 | 0,00<br>3,27<br>0,00 | 0,00<br>0,31<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,88               | 302,87                | 0,57          | 0,15        | 1,52        | 302,30          | 0,408        | -1,41       | 1,4             |
| <b>0+440,00</b><br>1 | 0,00<br>1,03<br>0,00 | 0,00<br>2,95<br>0,00 | 0,00<br>0,37<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,89               | 302,88                | 0,51          | 0,19        | 2,21        | 302,37          | 0,632        | -1,24       | 1,2             |
| <b>0+460,00</b><br>1 | 0,00<br>0,83<br>0,00 | 0,00<br>2,80<br>0,00 | 0,00<br>0,46<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,91               | 302,89                | 0,41          | 0,26        | 3,61        | 302,48          | 1,224        | -1,23       | 1,2             |
| <b>0+480,00</b><br>1 | 0,00<br>0,81<br>0,00 | 0,00<br>2,83<br>0,00 | 0,00<br>0,47<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,93               | 302,92                | 0,40          | 0,26        | 3,75        | 302,52          | 1,303        | -1,16       | 1,3             |
| <b>0+500,00</b><br>1 | 0,00<br>1,19<br>0,00 | 0,00<br>3,33<br>0,00 | 0,00<br>0,32<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 302,94               | 302,94                | 0,50          | 0,16        | 1,64        | 302,44          | 0,460        | -1,34       | 1,5             |
| <b>0+517,38</b><br>1 | 0,00<br>1,42<br>0,00 | 0,00<br>3,61<br>0,00 | 0,00<br>0,27<br>0,00 | 30,0<br>30,0<br>30,0 | 17,38<br>17,38<br>17,38 | 0,384       | 302,95               | 302,95                | 0,58          | 0,13        | 1,11        | 302,37          | 0,282        | -1,47       | 1,6             |
| <b>0+517,39</b><br>3 | 0,00<br>1,31<br>0,00 | 0,00<br>3,48<br>0,00 | 0,00<br>0,29<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,384       | 302,95               | 302,95                | 0,58          | 0,13        | 0,33        | 302,37          | 0,089        | -1,31       | 1,3             |
| <b>0+530,79</b> 3    | 0,00<br>1,07<br>0,00 | 0,00<br>3,18<br>0,00 | 0,00<br>0,36<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>13,40<br>0,00   | 0,384       | 302,95<br>SonstigeVe | 302,95<br>erlust = 0, | 0,58<br>001 m | 0,18        | 0,52        | 302,37          | 0,155        | -1,31       | 1,3             |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 5 - Vorflutgraben 3 + Kronengraben

Entwässerungsabschnitt 5

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)  | Wsp<br>(m+NN)       | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re   |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|--------------------|---------------------|---------------|-------------|-------------|-----------------|--------------|--------------|---------------|
| <b>0+530,80</b><br>1 | 0,00<br>1,29<br>0,00 | 0,00<br>3,53<br>0,00 | 0,00<br>0,30<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,384       | 302,95             | 302,95              | 0,48          | 0,15        | 1,37        | 302,47          | 0,374        | -1,37        | 1,6           |
| <b>0+540,00</b><br>1 | 0,00<br>0,56<br>0,00 | 0,00<br>2,44<br>0,00 | 0,00<br>0,69<br>0,00 | 30,0<br>30,0<br>30,0 | 9,20<br>9,20<br>9,20    | 0,384       | 302,98<br>Stossver | 302,96<br>lust = 0, | 0,36<br>008 m | 0,44        | 8,66        | 302,60          | 3,791        | -1,27        | 0,9           |
| <b>0+560,00</b><br>1 | 0,00<br>0,61<br>0,00 | 0,00<br>2,57<br>0,00 | 0,00<br>0,63<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 303,05             | 303,03              | 0,33          | 0,39        | 7,03        | 302,70          | 2,952        | -1,09        | 1,2           |
| <b>0+580,00</b><br>1 | 0,00<br>0,44<br>0,00 | 0,00<br>2,27<br>0,00 | 0,00<br>0,87<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 303,15             | 303,11              | 0,26          | 0,62        | 14,71       | 302,85          | 7,615        | -1,09        | 1,0           |
| <b>0+600,00</b><br>1 | 0,00<br>0,37<br>0,00 | 0,00<br>2,03<br>0,00 | 0,00<br>1,04<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,384       | 303,34             | 303,29              | 0,25          | 0,75        | 21,13       | 303,04          | 11,619       | -0,86        | 1,0           |
| <b>0+606,23</b><br>1 | 0,00<br>0,48<br>0,00 | 0,00<br>2,11<br>0,00 | 0,00<br>0,44<br>0,00 | 30,0<br>30,0<br>30,0 | 6,23<br>6,23<br>6,23    | 0,214       | 303,38             | 303,37              | 0,33          | 0,27        | 3,56        | 303,04          | 1,558        | -1,54        | 0,2           |
| <b>0+606,24</b><br>4 | 0,00<br>0,15<br>0,00 | 0,00<br>1,04<br>0,00 | 0,00<br>1,44<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 303,43             | 303,33              | 0,25          | 1,10        | 10,94       | 303,08          | 7,605        | -0,43<br>scl | 0,4<br>nießer |
| <b>0+625,25</b><br>4 | 0,00<br>0,17<br>0,00 | 0,00<br>1,08<br>0,00 | 0,00<br>1,28<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>19,01<br>0,00   | 0,214       | 303,56             | 303,48              | 0,27          | 1,00        | 8,46        | 303,21          | 5,471        | -0,44<br>scl | 0,<br>nießer  |
| <b>0+625,26</b><br>1 | 0,00<br>0,33<br>0,00 | 0,00<br>1,60<br>0,00 | 0,00<br>0,65<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 303,56             | 303,54              | 0,33          | 0,41        | 8,05        | 303,21          | 3,923        | -0,49        | 0,            |
| <b>0+640,00</b><br>1 | 0,00<br>0,46<br>0,00 | 0,00<br>2,13<br>0,00 | 0,00<br>0,47<br>0,00 | 30,0<br>30,0<br>30,0 | 14,74<br>14,74<br>14,74 | 0,214       | 303,61             | 303,60              | 0,36          | 0,31        | 4,11        | 303,24          | 1,920        | -1,09        | 0,            |
| <b>0+660,00</b><br>1 | 0,00<br>0,41<br>0,00 | 0,00<br>1,86<br>0,00 | 0,00<br>0,52<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,214       | 303,65             | 303,64              | 0,40          | 0,32        | 4,98        | 303,24          | 2,252        | -0,81        | 0,            |
| <b>0+680,00</b><br>1 | 0,00<br>0,55<br>0,00 | 0,00<br>2,16<br>0,00 | 0,00<br>0,39<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,214       | 303,68             | 303,68              | 0,47          | 0,23        | 2,70        | 303,20          | 1,071        | -0,92        | 0,            |
| <b>0+700,00</b><br>1 | 0,00<br>0,46<br>0,00 | 0,00<br>1,95<br>0,00 | 0,00<br>0,46<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,214       | 303,71             | 303,70              | 0,45          | 0,28        | 3,86        | 303,25          | 1,627        | -0,73        | 0,            |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 5 - Vorflutgraben 3 + Kronengraben

Entwässerungsabschnitt 5

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN )         | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|------------------------|---------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+712,99</b><br>1 | 0,00<br>0,36<br>0,00 | 0,00<br>1,72<br>0,00 | 0,00<br>0,59<br>0,00 | 30,0<br>30,0<br>30,0 | 12,99<br>12,99<br>12,99 | 0,214       | 303,74               | 303,72                 | 0,44          | 0,38        | 6,60        | 303,28          | 3,151        | -0,62      | 0,8         |
| <b>0+713,00</b><br>4 | 0,00<br>0,24<br>0,00 | 0,00<br>1,24<br>0,00 | 0,00<br>0,89<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 303,75<br>Stossver   | 303,70<br>rlust = 0,0  | 0,42<br>005 m | 0,48        | 3,85        | 303,28          | 2,001        | -0,34      | 0,3         |
| <b>0+718,74</b><br>4 | 0,00<br>0,20<br>0,00 | 0,00<br>1,12<br>0,00 | 0,00<br>1,08<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>5,74<br>0,00    | 0,214       | 303,77<br>SonstigeVe | 303,71<br>rlust = 0,   | 0,36<br>009 m | 0,64        | 5,73        | 303,35          | 3,236        | -0,35      | 0,3         |
| <b>0+718,75</b><br>1 | 0,00<br>0,31<br>0,00 | 0,00<br>1,58<br>0,00 | 0,00<br>0,70<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 303,77               | 303,74                 | 0,42          | 0,46        | 9,37        | 303,32          | 4,822        | -0,54      | 0,7         |
| <b>0+720,00</b><br>1 | 0,00<br>0,24<br>0,00 | 0,00<br>1,45<br>0,00 | 0,00<br>0,88<br>0,00 | 30,0<br>30,0<br>30,0 | 1,25<br>1,25<br>1,25    | 0,214       | 303,78               | 303,74                 | 0,41          | 0,62        | 15,61       | 303,33          | 9,312        | -0,46      | 0,7         |
| <b>0+729,35</b><br>1 | 0,00<br>0,37<br>0,00 | 0,00<br>1,72<br>0,00 | 0,00<br>0,58<br>0,00 | 30,0<br>30,0<br>30,0 | 9,35<br>9,35<br>9,35    | 0,214       | 303,83               | 303,82                 | 0,47          | 0,36        | 6,20        | 303,35          | 2,877        | -0,57      | 0,8         |
| <b>0+729,36</b><br>4 | 0,00<br>0,27<br>0,00 | 0,00<br>1,33<br>0,00 | 0,00<br>0,80<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 303,85               | 303,82                 | 0,47          | 0,43        | 3,01        | 303,35          | 1,493        | -0,33      | 0,3         |
| <b>0+733,99</b><br>4 | 0,00<br>0,37<br>0,00 | 0,00<br>1,83<br>0,00 | 0,00<br>0,58<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>4,63<br>0,00    | 0,214       | 303,86<br>SonstigeVe | 303,84<br>erlust = 0,0 | 0,65<br>007 m | 0,18        | 1,61        | 303,19          | 0,805        | -0,17      | 0,          |
| <b>0+734,00</b><br>1 | 0,00<br>0,69<br>0,00 | 0,00<br>2,36<br>0,00 | 0,00<br>0,31<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 303,86               | 303,85                 | 0,66          | 0,16        | 1,59        | 303,19          | 0,541        | -0,85      | 1,0         |
| <b>0+740,00</b><br>1 | 0,00<br>0,74<br>0,00 | 0,00<br>2,41<br>0,00 | 0,00<br>0,29<br>0,00 | 30,0<br>30,0<br>30,0 | 6,00<br>6,00<br>6,00    | 0,214       | 303,86               | 303,86                 | 0,70          | 0,15        | 1,39        | 303,16          | 0,455        | -0,87      | 1,0         |
| <b>0+748,39</b><br>1 | 0,00<br>0,75<br>0,00 | 0,00<br>2,39<br>0,00 | 0,00<br>0,28<br>0,00 | 30,0<br>30,0<br>30,0 | 8,39<br>8,39<br>8,39    | 0,214       | 303,87               | 303,87                 | 0,76          | 0,14        | 1,32        | 303,11          | 0,417        | -0,98      | 0,          |
| <b>0+748,40</b><br>4 | 0,00<br>0,38<br>0,00 | 0,00<br>2,19<br>0,00 | 0,00<br>0,57<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 303,88<br>SonstigeVe | 303,87<br>erlust = 0,0 | 0,76<br>006 m |             | 1,60        | 303,11          | 0,930        |            |             |
| <b>0+753,11</b><br>4 | 0,00<br>0,38<br>0,00 | 0,00<br>2,18<br>0,00 | 0,00<br>0,57<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>4,71<br>0,00    | 0,214       | 303,89               | 303,87                 | 0,70          | 0,03        | 1,59        | 303,17          | 0,919        | -0,01      | 0,0         |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 5 - Vorflutgraben 3 + Kronengraben

Entwässerungsabschnitt 5

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)         | Tiefe<br>(m) | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|-----------------------|--------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+753,12</b><br>1 | 0,00<br>0,67<br>0,00 | 0,00<br>2,27<br>0,00 | 0,00<br>0,32<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 303,89               | 303,88                | 0,71         | 0,16        | 1,68        | 303,17          | 0,565        | -0,84      | 0,8         |
| <b>0+760,00</b><br>1 | 0,00<br>0,59<br>0,00 | 0,00<br>2,16<br>0,00 | 0,00<br>0,36<br>0,00 | 30,0<br>30,0<br>30,0 | 6,88<br>6,88<br>6,88    | 0,214       | 303,89               | 303,89                | 0,68         | 0,19        | 2,26        | 303,21          | 0,828        | -0,65      | 0,9         |
| <b>0+768,75</b><br>1 | 0,00<br>0,55<br>0,00 | 0,00<br>2,07<br>0,00 | 0,00<br>0,39<br>0,00 | 30,0<br>30,0<br>30,0 | 8,75<br>8,75<br>8,75    | 0,214       | 303,90               | 303,90                | 0,63         | 0,21        | 2,59        | 303,27          | 0,972        | -0,59      | 0,9         |
| <b>0+768,76</b><br>4 | 0,00<br>0,42<br>0,00 | 0,00<br>1,75<br>0,00 | 0,00<br>0,51<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 303,91               | 303,90                | 0,63         | 0,21        | 1,17        | 303,27          | 0,489        | -0,32      | 0,3         |
| <b>0+773,29</b><br>4 | 0,00<br>0,43<br>0,00 | 0,00<br>1,79<br>0,00 | 0,00<br>0,50<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>4,53<br>0,00    | 0,214       | 303,91               | 303,90                | 0,64         | 0,19        | 1,11        | 303,26          | 0,463        | -0,31      | 0,3         |
| <b>0+773,30</b><br>1 | 0,00<br>0,63<br>0,00 | 0,00<br>2,20<br>0,00 | 0,00<br>0,34<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 303,91               | 303,90                | 0,64         | 0,18        | 1,94        | 303,26          | 0,676        | -0,76      | 0,9         |
| <b>0+780,00</b><br>1 | 0,00<br>0,85<br>0,00 | 0,00<br>2,62<br>0,00 | 0,00<br>0,25<br>0,00 | 30,0<br>30,0<br>30,0 | 6,70<br>6,70<br>6,70    | 0,214       | 303,91               | 303,91                | 0,61         | 0,13        | 1,03        | 303,30          | 0,319        | -1,08      | 1,1         |
| <b>0+800,00</b><br>1 | 0,00<br>0,54<br>0,00 | 0,00<br>2,02<br>0,00 | 0,00<br>0,39<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,214       | 303,93               | 303,92                | 0,56         | 0,22        | 2,69        | 303,36          | 1,003        | -0,70      | 0,9         |
| <b>0+800,92</b><br>1 | 0,00<br>0,53<br>0,00 | 0,00<br>2,00<br>0,00 | 0,00<br>0,41<br>0,00 | 30,0<br>30,0<br>30,0 | 0,92<br>0,92<br>0,92    | 0,214       | 303,93               | 303,92                | 0,56         | 0,22        | 2,86        | 303,36          | 1,085        | -0,69      | 0,8         |
| <b>0+800,93</b> 4    | 0,00<br>0,32<br>0,00 | 0,00<br>1,54<br>0,00 | 0,00<br>0,66<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 303,94               | 303,92                | 0,56         | 0,29        | 2,03        | 303,36          | 0,962        | -0,28      | 0,2         |
| <b>0+805,84</b><br>4 | 0,00<br>0,31<br>0,00 | 0,00<br>1,47<br>0,00 | 0,00<br>0,69<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>4,91<br>0,00    | 0,214       | 303,95<br>SonstigeVe | 303,93<br>erlust = 0, |              | 0,31        | 2,25        | 303,39          | 1,073        | -0,30      | 0,3         |
| <b>0+805,85</b><br>1 | 0,00<br>0,42<br>0,00 | 0,00<br>1,78<br>0,00 | 0,00<br>0,51<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 303,95               | 303,94                | 0,54         | 0,29        | 4,67        | 303,39          | 1,980        | -0,62      | 0,7         |
| <b>0+807,85</b><br>1 | 0,00<br>0,43<br>0,00 | 0,00<br>1,85<br>0,00 | 0,00<br>0,50<br>0,00 | 30,0<br>30,0<br>30,0 | 2,00<br>2,00<br>2,00    | 0,214       | 303,95               | 303,94                | 0,62         | 0,29        | 4,56        | 303,32          | 1,978        | -0,64      | 0,7         |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 5 - Vorflutgraben 3 + Kronengraben

Entwässerungsabschnitt 5

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)        | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufei<br>re |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|----------------------|---------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+807,86</b> 4    | 0,00<br>0,36<br>0,00 | 0,00<br>1,74<br>0,00 | 0,00<br>0,60<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 303,96               | 303,94               | 0,63          | 0,21        | 1,68        | 303,31          | 0,814        | -0,21      | 0,          |
| <b>0+812,54</b><br>4 | 0,00<br>0,32<br>0,00 | 0,00<br>1,54<br>0,00 | 0,00<br>0,66<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>4,68<br>0,00    | 0,214       | 303,96<br>SonstigeVe | 303,94<br>rlust = 0, | 0,55<br>002 m | 0,28        | 2,04        | 303,39          | 0,968        | -0,28      | 0,          |
| <b>0+812,55</b><br>1 | 0,00<br>0,48<br>0,00 | 0,00<br>1,93<br>0,00 | 0,00<br>0,44<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 303,96               | 303,95               | 0,56          | 0,25        | 3,50        | 303,39          | 1,406        | -0,66      | 0,          |
| <b>0+820,00</b><br>1 | 0,00<br>0,52<br>0,00 | 0,00<br>1,99<br>0,00 | 0,00<br>0,41<br>0,00 | 30,0<br>30,0<br>30,0 | 7,45<br>7,45<br>7,45    | 0,214       | 303,97               | 303,96               | 0,59          | 0,23        | 3,00        | 303,37          | 1,160        | -0,66      | 0,          |
| <b>0+836,98</b><br>1 | 0,00<br>0,61<br>0,00 | 0,00<br>2,18<br>0,00 | 0,00<br>0,35<br>0,00 | 30,0<br>30,0<br>30,0 | 0,00<br>16,98<br>16,98  | 0,214       | 303,99               | 303,98               | 0,64          | 0,19        | 2,13        | 303,34          | 0,768        | -0,92      | 0,          |
| <b>0+836,99</b><br>4 | 0,00<br>0,28<br>0,00 | 0,00<br>1,88<br>0,00 | 0,00<br>0,77<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 304,01<br>Stossver   | 303,98<br>rlust = 0, | 0,64<br>009 m |             | 3,09        | 303,34          | 2,088        |            |             |
| <b>0+843,81</b><br>4 | 0,00<br>0,25<br>0,00 | 0,00<br>1,36<br>0,00 | 0,00<br>0,87<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>6,82<br>0,00    | 0,214       | 304,03<br>SonstigeVe | 304,00<br>rlust = 0, | 0,49<br>004 m | 0,38        | 3,73        | 303,50          | 2,067        | -0,23      | 0           |
| <b>0+843,82</b><br>1 | 0,00<br>0,37<br>0,00 | 0,00<br>1,69<br>0,00 | 0,00<br>0,59<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 304,03               | 304,02               | 0,52          | 0,35        | 6,34        | 303,50          | 2,940        | -0,62      | 0           |
| <b>0+860,00</b><br>1 | 0,00<br>0,54<br>0,00 | 0,00<br>2,03<br>0,00 | 0,00<br>0,40<br>0,00 | 30,0<br>30,0<br>30,0 | 16,18<br>16,18<br>16,18 | 0,214       | 304,07               | 304,06               | 0,61          | 0,22        | 2,77        | 303,45          | 1,048        | -0,73      | 0           |
| <b>0+861,41</b><br>1 | 0,00<br>0,54<br>0,00 | 0,00<br>2,05<br>0,00 | 0,00<br>0,39<br>0,00 | 30,0<br>30,0<br>30,0 | 1,41<br>1,41<br>1,41    | 0,214       | 304,07               | 304,06               | 0,61          | 0,22        | 2,68        | 303,45          | 1,009        | -0,74      | 0           |
| <b>0+861,42</b><br>4 | 0,00<br>0,35<br>0,00 | 0,00<br>1,70<br>0,00 | 0,00<br>0,61<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 304,08               | 304,06               | 0,61          | 0,23        | 1,74        | 303,45          | 0,838        | -0,22      | 0           |
| <b>0+866,21</b><br>4 | 0,00<br>0,38<br>0,00 | 0,00<br>1,97<br>0,00 | 0,00<br>0,57<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>4,79<br>0,00    | 0,214       | 304,08<br>SonstigeVe | 304,06<br>rlust = 0, | 0,68<br>001 m | 0,14        | 1,56        | 303,38          | 0,812        | -0,11      | 0           |
| <b>0+866,22</b><br>1 | 0,00<br>0,66<br>0,00 | 0,00<br>2,30<br>0,00 | 0,00<br>0,32<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 304,08               | 304,07               | 0,69          | 0,17        | 1,74        | 303,38          | 0,603        | -0,92      | 0           |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 5 - Vorflutgraben 3 + Kronengraben

Entwässerungsabschnitt 5

| Profil-km<br>-Art     | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)                | Wsp<br>(m+NN)                     | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|-----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------------------|-----------------------------------|---------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+876,55</b><br>1  | 0,00<br>0,63<br>0,00 | 0,00<br>2,20<br>0,00 | 0,00<br>0,34<br>0,00 | 30,0<br>30,0<br>30,0 | 10,33<br>10,33<br>10,33 | 0,214       | 304,09                           | 304,08                            | 0,65          | 0,18        | 1,98        | 303,43          | 0,697        | -0,87      | 0,8         |
| <b>+876,56</b> 4      | 0,00<br>0,37<br>0,00 | 0,00<br>1,85<br>0,00 | 0,00<br>0,58<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 304,10                           | 304,08                            | 0,65          | 0,19        | 1,60        | 303,43          | 0,800        | -0,16      | 0,1         |
| <b>)+883,33</b><br>4  | 0,00<br>0,37<br>0,00 | 0,00<br>1,94<br>0,00 | 0,00<br>0,57<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>6,77<br>0,00    | 0,214       | 304,11                           | 304,09                            | 0,68          | 0,15        | 1,57        | 303,41          | 0,812        | -0,12      | 0,1         |
| <b>)+883,34</b><br>1  | 0,00<br>0,69<br>0,00 | 0,00<br>2,35<br>0,00 | 0,00<br>0,31<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 304,11                           | 304,10                            | 0,69          | 0,16        | 1,60        | 303,41          | 0,545        | -1,00      | 0,8         |
| <b>0+894,55</b><br>1  | 0,00<br>0,57<br>0,00 | 0,00<br>2,14<br>0,00 | 0,00<br>0,37<br>0,00 | 30,0<br>30,0<br>30,0 | 11,21<br>11,21<br>11,21 | 0,214       | 304,12                           | 304,11                            | 0,62          | 0,21        | 2,39        | 303,49          | 0,888        | -0,84      | 0,8         |
| 0 <b>+894,56</b><br>4 | 0,00<br>0,36<br>0,00 | 0,00<br>1,74<br>0,00 | 0,00<br>0,60<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 304,13<br>SonstigeVe             | 304,11<br>rlust = 0,              | 0,62<br>006 m | 0,21        | 1,69        | 303,49          | 0,821        | -0,21      | 0,2         |
| 0 <b>+900,91</b><br>4 | 0,00<br>0,34<br>0,00 | 0,00<br>1,60<br>0,00 | 0,00<br>0,64<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>6,35<br>0,00    | 0,214       | 304,14<br>SonstigeVe             | 304,12<br>rlust = 0,              | 0,58<br>001 m | 0,25        | 1,91        | 303,54          | 0,908        | -0,26      | 0,2         |
| <b>0+900,92</b><br>1  | 0,00<br>0,59<br>0,00 | 0,00<br>2,19<br>0,00 | 0,00<br>0,36<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 304,14                           | 304,13                            | 0,59          | 0,20        | 2,28        | 303,54          | 0,847        | -0,88      | 0,9         |
| <b>0+913,17</b><br>1  | 0,00<br>0,55<br>0,00 | 0,00<br>2,08<br>0,00 | 0,00<br>0,39<br>0,00 | 30,0<br>30,0<br>30,0 | 12,25<br>12,25<br>12,25 | 0,214       | 304,15                           | 304,14                            | 0,60          | 0,22        | 2,68        | 303,54          | 1,019        | -0,89      | 0,7         |
| <b>0+913,18</b><br>4  | 0,00<br>0,28<br>0,00 | 0,00<br>1,88<br>0,00 | 0,00<br>0,77<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 304,17<br>Stossver<br>SonstigeVe | 304,14<br>lust = 0,<br>rlust = 0, |               |             | 3,09        | 303,54          | 2,083        |            |             |
| <b>0+919,52</b><br>4  | 0,00<br>0,28<br>0,00 | 0,00<br>1,68<br>0,00 | 0,00<br>0,77<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>6,34<br>0,00    | 0,214       | 304,18                           | 304,15                            | 0,58          | 0,21        | 3,03        | 303,57          | 1,842        | -0,10      | 0,1         |
| <b>0+919,53</b><br>1  | 0,00<br>0,60<br>0,00 | 0,00<br>2,26<br>0,00 | 0,00<br>0,35<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>-6,35   | 0,214       | 304,18                           | 304,17                            | 0,60          | 0,20        | 2,17        | 303,57          | 0,815        | -0,98      | 0,9         |
| <b>0+926,26</b><br>1  | 0,00<br>0,55<br>0,00 | 0,00<br>2,07<br>0,00 | 0,00<br>0,39<br>0,00 | 30,0<br>30,0<br>30,0 | 6,73<br>6,73<br>6,73    | 0,214       | 304,19                           | 304,18                            | 0,61          | 0,21        | 2,62        | 303,57          | 0,989        | -0,88      | 0,7         |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 5 - Vorflutgraben 3 + Kronengraben

Entwässerungsabschnitt 5

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN )        | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re   |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|-----------------------|---------------|-------------|-------------|-----------------|--------------|--------------|---------------|
| <b>0+926,27</b><br>4 | 0,00<br>0,40<br>0,00 | 0,00<br>1,69<br>0,00 | 0,00<br>0,53<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 304,19               | 304,18                | 0,61          | 0,22        | 1,26        | 303,57          | 0,530        | -0,34        | 0,3           |
| <b>0+929,74</b><br>4 | 0,00<br>0,38<br>0,00 | 0,00<br>1,60<br>0,00 | 0,00<br>0,57<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>3,47<br>0,00    | 0,214       | 304,20<br>SonstigeVe | 304,18<br>erlust = 0, | 0,57<br>001 m | 0,25        | 1,45        | 303,61          | 0,616        | -0,36        | 0,3           |
| <b>0+929,75</b><br>1 | 0,00<br>0,53<br>0,00 | 0,00<br>2,14<br>0,00 | 0,00<br>0,40<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 304,20               | 304,19                | 0,57          | 0,24        | 2,87        | 303,62          | 1,158        | -0,84        | 0,9           |
| <b>0+933,71</b><br>1 | 0,00<br>0,43<br>0,00 | 0,00<br>1,92<br>0,00 | 0,00<br>0,49<br>0,00 | 30,0<br>30,0<br>30,0 | 3,96<br>3,96<br>3,96    | 0,214       | 304,20               | 304,19                | 0,49          | 0,30        | 4,42        | 303,70          | 1,951        | -0,90        | 0,7           |
| <b>0+933,72</b><br>4 | 0,00<br>0,32<br>0,00 | 0,00<br>1,43<br>0,00 | 0,00<br>0,68<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 304,21               | 304,19                | 0,48          | 0,36        | 2,12        | 303,71          | 0,959        | -0,39        | 0,3           |
| <b>0+940,38</b><br>4 | 0,00<br>0,35<br>0,00 | 0,00<br>1,53<br>0,00 | 0,00<br>0,60<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>6,66<br>0,00    | 0,214       | 304,22<br>SonstigeVe | 304,20<br>erlust = 0, | 0,53<br>003 m | 0,28        | 1,65        | 303,67          | 0,710        | -0,38        | 0,3           |
| <b>0+940,39</b><br>1 | 0,00<br>0,56<br>0,00 | 0,00<br>2,19<br>0,00 | 0,00<br>0,38<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 304,22               | 304,21                | 0,54          | 0,23        | 2,60        | 303,67          | 1,023        | -0,90        | 0,9           |
| <b>0+960,00</b><br>1 | 0,00<br>0,24<br>0,00 | 0,00<br>1,36<br>0,00 | 0,00<br>0,88<br>0,00 | 30,0<br>30,0<br>30,0 | 19,61<br>19,61<br>19,61 | 0,214       | 304,33<br>Stossver   | 304,29<br>rlust = 0,  | 0,37<br>013 m | 0,60        | 15,43       | 303,92          | 8,665        | -0,63        | 0,4           |
| <b>0+961,92</b><br>1 | 0,00<br>0,21<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>1,04<br>0,00 | 30,0<br>30,0<br>30,0 | 1,92<br>1,92<br>1,92    | 0,214       | 304,35               | 304,29                | 0,35          | 0,73        | 21,81       | 303,94          | 13,353       | -0,61        | 0,3           |
| <b>0+961,93</b><br>4 | 0,00<br>0,21<br>0,00 | 0,00<br>1,15<br>0,00 | 0,00<br>1,03<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 304,35               | 304,29                | 0,35          | 0,64        | 5,17        | 303,94          | 2,858        | -0,39        | 0,3           |
| <b>1+008,93</b> 4    | 0,00<br>0,18<br>0,00 | 0,00<br>1,07<br>0,00 | 0,00<br>1,20<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>47,00<br>0,00   | 0,214       | 304,53<br>SonstigeVe | 304,46<br>erlust = 0, |               | 0,80        | 7,30        | 304,14          | 4,404        | -0,39        | 0,3           |
| <b>1+008,94</b><br>1 | 0,00<br>0,47<br>0,00 | 0,00<br>2,09<br>0,00 | 0,00<br>0,46<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 304,53               | 304,52                | 0,37          | 0,29        | 3,85        | 304,15          | 1,725        | -0,79        | 1,            |
| <b>1+020,00</b><br>1 | 0,00<br>0,21<br>0,00 | 0,00<br>1,75<br>0,00 | 0,00<br>1,03<br>0,00 | 30,0<br>30,0<br>30,0 | 11,06<br>11,06<br>11,06 | 0,214       | 304,75               | 304,70                | 0,20          | 1,00        | 24,17       | 304,50          | 20,461       | -0,69<br>scl | 1,0<br>nießer |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 5 - Vorflutgraben 3 + Kronengraben

Entwässerungsabschnitt 5

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)        | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|----------------------|---------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>1+023,99</b><br>1 | 0,00<br>0,91<br>0,00 | 0,00<br>3,10<br>0,00 | 0,00<br>0,24<br>0,00 | 30,0<br>30,0<br>30,0 | 11,06<br>3,99<br>11,06  | 0,214       | 304,79               | 304,79               | 0,56          | 0,13        | 0,93        | 304,23          | 0,317        | -1,24      | 1,6         |
| <b>1+024,00</b><br>4 | 0,00<br>0,37<br>0,00 | 0,00<br>1,57<br>0,00 | 0,00<br>0,58<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,214       | 304,80<br>Stossver   | 304,78<br>lust = 0,  | 0,55<br>006 m | 0,26        | 1,53        | 304,23          | 0,655        | -0,37      | 0,3         |
| <b>1+035,87</b><br>4 | 0,00<br>0,38<br>0,00 | 0,00<br>1,60<br>0,00 | 0,00<br>0,57<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>11,87<br>0,00   | 0,214       | 304,81<br>SonstigeVe | 304,79<br>rlust = 0, | 0,56<br>001 m | 0,25        | 1,46        | 304,23          | 0,620        | -0,36      | 0,3         |
| <b>1+035,88</b><br>1 | 0,00<br>0,64<br>0,00 | 0,00<br>2,12<br>0,00 | 0,00<br>0,33<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,214       | 304,81               | 304,80               | 0,57          | 0,16        | 1,86        | 304,23          | 0,616        | -0,86      | 0,6         |
| <b>1+040,00</b><br>1 | 0,00<br>0,52<br>0,00 | 0,00<br>1,98<br>0,00 | 0,00<br>0,41<br>0,00 | 30,0<br>30,0<br>30,0 | 4,12<br>4,12<br>4,12    | 0,214       | 304,81               | 304,80               | 0,48          | 0,23        | 2,94        | 304,32          | 1,120        | -0,79      | 0,7         |
| <b>1+060,00</b><br>1 | 0,00<br>0,52<br>0,00 | 0,00<br>2,17<br>0,00 | 0,00<br>0,41<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,214       | 304,83               | 304,82               | 0,47          | 0,25        | 2,96        | 304,35          | 1,222        | -1,11      | 0,          |
| <b>1+080,00</b><br>1 | 0,00<br>0,51<br>0,00 | 0,00<br>2,04<br>0,39 | 0,00<br>0,42<br>0,04 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,214       | 304,85               | 304,84               | 0,51          | 0,25        | 2,58        | 304,33          | 1,218        | -0,99      | 1,          |
| <b>1+100,00</b><br>1 | 0,00<br>0,47<br>0,01 | 0,00<br>1,93<br>0,28 | 0,00<br>0,46<br>0,08 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,214       | 304,88               | 304,87               | 0,49          | 0,28        | 3,28        | 304,38          | 1,531        | -0,90      | 1,          |
| <b>1+120,00</b><br>1 | 0,00<br>0,44<br>0,01 | 0,00<br>1,87<br>0,96 | 0,00<br>0,48<br>0,07 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,214       | 304,91               | 304,90               | 0,46          | 0,32        | 2,82        | 304,44          | 1,756        | -0,84      | 1,          |
| <b>1+140,00</b><br>1 | 0,00<br>0,39<br>0,01 | 0,00<br>1,74<br>0,56 | 0,00<br>0,55<br>0,08 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,214       | 304,95               | 304,93               | 0,45          | 0,37        | 4,34        | 304,48          | 2,551        | -0,76      | 1,          |
| <b>1+160,00</b><br>1 | 0,00<br>0,39<br>0,00 | 0,00<br>1,76<br>0,00 | 0,00<br>0,55<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,214       | 305,00               | 304,98               | 0,46          | 0,33        | 5,63        | 304,52          | 2,555        | -0,77      | 0,          |
| <b>1+175,55</b><br>1 | 0,00<br>0,61<br>0,00 | 0,00<br>2,08<br>0,00 | 0,00<br>0,21<br>0,00 | 30,0<br>30,0<br>30,0 | 15,55<br>15,55<br>15,55 | 0,131       | 305,02               | 305,02               | 0,55          | 0,11        | 0,77        | 304,47          | 0,262        | -0,75      | 0,          |
| <b>1+175,56</b><br>4 | 0,00<br>0,36<br>0,00 | 0,00<br>1,56<br>0,00 | 0,00<br>0,36<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,131       | 305,02               | 305,02               | 0,55          | 0,17        | 0,59        | 304,47          | 0,253        | -0,37      | 0,          |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 5 - Vorflutgraben 3 + Kronengraben

Entwässerungsabschnitt 5

| Profil-km<br>-Art    | A<br>(m2)                    | Lu<br>(m)                    | v<br>(m/s)           | kst                  | Länge<br>(m)                 | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN) | Tiefe<br>(m) | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|------------------------------|------------------------------|----------------------|----------------------|------------------------------|-------------|----------------------|---------------|--------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>1+182,63</b> 4    | 0,00<br>0,29<br>0,00         | 0,00<br>1,36<br>0,00         | 0,00<br>0,45<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>7,07<br>0,00         | 0,131       | 305,03<br>SonstigeVe | 305,02        | 0,46         | 0,24        | 0,95        | 304,56          | 0,447        | -0,39      | 0,39        |
| <b>1+182,64</b><br>1 | 0,00<br>0,00<br>0,25<br>0,00 | 0,00<br>0,00<br>1,47<br>0,00 | 0,00<br>0,53<br>0,00 | 30,0<br>30,0<br>30,0 | 0,00<br>0,01<br>0,01<br>0,01 | 0,131       | 305,03               | 305,02        | 0,38         | 0,37        | 5,54        | 304,64          | 3,267        | -0,73      | 0,51        |
| <b>1+200,00</b><br>1 | 0,00<br>0,37<br>0,00         | 0,00<br>1,82<br>0,00         | 0,00<br>0,36<br>0,00 | 30,0<br>30,0<br>30,0 | 17,36<br>17,36<br>17,36      | 0,131       | 305,07               | 305,06        | 0,41         | 0,24        | 2,41        | 304,65          | 1,190        | -0,71      | 0,88        |
| <b>1+220,00</b><br>1 | 0,00<br>0,23<br>0,00         | 0,00<br>1,43<br>0,00         | 0,00<br>0,56<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00      | 0,131       | 305,12               | 305,10        | 0,31         | 0,42        | 6,50        | 304,79          | 4,015        | -0,59      | 0,67        |
| <b>1+240,00</b><br>1 | 0,00<br>0,25<br>0,00         | 0,00<br>1,45<br>0,00         | 0,00<br>0,52<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00      | 0,131       | 305,19               | 305,17        | 0,34         | 0,37        | 5,36        | 304,83          | 3,075        | -0,55      | 0,69        |
| <b>1+260,00</b><br>1 | 0,00<br>0,28<br>0,00         | 0,00<br>1,56<br>0,00         | 0,00<br>0,47<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00      | 0,131       | 305,24               | 305,23        | 0,37         | 0,33        | 4,36        | 304,86          | 2,435        | -0,57      | 0,77        |
| <b>1+280,00</b><br>1 | 0,00<br>0,30<br>0,00         | 0,00<br>1,53<br>0,00         | 0,00<br>0,44<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00      | 0,131       | 305,28               | 305,27        | 0,41         | 0,29        | 3,70        | 304,86          | 1,894        | -0,59      | 0,66        |
| <b>1+300,00</b><br>1 | 0,00<br>0,29<br>0,00         | 0,00<br>1,58<br>0,00         | 0,00<br>0,45<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00      | 0,131       | 305,32               | 305,31        | 0,40         | 0,31        | 4,03        | 304,91          | 2,199        | -0,62      | 0,70        |
| <b>1+320,00</b><br>1 | 0,00<br>0,28<br>0,00         | 0,00<br>1,52<br>0,00         | 0,00<br>0,46<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00      | 0,131       | 305,36               | 305,35        | 0,37         | 0,32        | 4,21        | 304,98          | 2,274        | -0,65      | 0,66        |
| <b>1+338,42</b><br>1 | 0,00<br>0,20<br>0,00         | 0,00<br>1,27<br>0,00         | 0,00<br>0,67<br>0,00 | 30,0<br>30,0<br>30,0 | 18,42<br>18,42<br>18,42      | 0,131       | 305,43               | 305,41        | 0,30         | 0,50        | 9,25        | 305,11          | 6,005        | -0,62      | 0,47        |

Schnitt 6 - Vorflutgraben 4 Entwässerungsabschnitt 6

#### Berechnungsverfahren:

- Nach Manning-Strickler
- Mit Berücksichtigung der Rauheitswerte aus Lastfall 1 Fließgewässerrauheiten (Sandrauheiten) im Sommer

#### Gewählte Berechnungsparameter:

- Projektnummer : 6

- Berechnung von Station + 0 km + 0,01 m bis Station + 0 km + 260,00 m

- Anfangswasserspiegel Grenztiefe = 304,850 m+NN
- Stationierung gegen Fließrichtung
- mit Ermittlung des schießenden Fließzustandes
- Iterationsgenauigkeit der Wasserspiegel von 5,0 mm
- Berechnung FROUDE-Zahl nach Knauf-Könemann

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 6 - Vorflutgraben 4 Entwässerungsabschnitt 6

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)        | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re   |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|----------------------|---------------|-------------|-------------|-----------------|--------------|--------------|---------------|
| <b>0+000,01</b> 4    | 0,00<br>0,07<br>0,00 | 0,00<br>0,66<br>0,00 | 0,00<br>1,22<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>1,00<br>0,00    | 0,083       | 304,93               | 304,85               | 0,21          | 1,00        | 8,84        | 304,64          | 8,561        | -0,20<br>scl | 0,2<br>nießen |
| <b>0+014,03</b> 4    | 0,00<br>0,09<br>0,00 | 0,00<br>0,76<br>0,00 | 0,00<br>0,94<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>14,02<br>0,00   | 0,083       | 305,03<br>SonstigeVe | 304,98<br>rlust = 0, | 0,26<br>015 m | 0,63        | 5,04        | 304,72          | 4,354        | -0,19        | 0,            |
| <b>0+014,04</b><br>1 | 0,00<br>0,15<br>0,00 | 0,00<br>1,24<br>0,00 | 0,00<br>0,56<br>0,00 | 30,0<br>30,0<br>30,0 | -8,07<br>0,01<br>-8,07  | 0,083       | 305,03               | 305,01               | 0,21          | 0,50        | 7,15        | 304,80          | 5,997        | -0,47        | 0,6           |
| <b>0+020,00</b><br>1 | 0,00<br>0,19<br>0,00 | 0,00<br>1,38<br>0,00 | 0,00<br>0,44<br>0,00 | 30,0<br>30,0<br>30,0 | 5,96<br>5,96<br>5,96    | 0,083       | 305,06               | 305,05               | 0,25          | 0,36        | 4,12        | 304,80          | 2,999        | -0,53        | 0,7           |
| <b>0+040,00</b><br>1 | 0,00<br>0,31<br>0,00 | 0,00<br>1,66<br>0,00 | 0,00<br>0,26<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,083       | 305,09               | 305,09               | 0,36          | 0,18        | 1,35        | 304,72          | 0,717        | -0,76        | 0,6           |
| <b>0+056,10</b><br>1 | 0,00<br>0,33<br>0,00 | 0,00<br>1,63<br>0,00 | 0,00<br>0,25<br>0,00 | 30,0<br>30,0<br>30,0 | 16,10<br>16,10<br>16,10 | 0,083       | 305,10               | 305,10               | 0,41          | 0,17        | 1,21        | 304,69          | 0,602        | -0,69        | 0,            |
| <b>0+056,11</b><br>4 | 0,00<br>0,07<br>0,00 | 0,00<br>0,95<br>0,00 | 0,00<br>1,17<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,083       | 305,17<br>Stossver   | 305,10<br>lust = 0,  | 0,41<br>043 m |             | 9,11        | 304,69          | 12,259       |              |               |
| <b>0+066,19</b><br>4 | 0,00<br>0,07<br>0,00 | 0,00<br>0,95<br>0,00 | 0,00<br>1,18<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>10,08<br>0,00   | 0,083       | 305,29<br>SonstigeVe | 305,22<br>rlust = 0, | 0,48<br>001 m |             | 9,19        | 304,74          | 12,383       |              |               |
| <b>0+066,20</b><br>1 | 0,00<br>0,40<br>0,00 | 0,30<br>1,82<br>0,00 | 0,03<br>0,20<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,083       | 305,29               | 305,28               | 0,49          | 0,13        | 0,67        | 304,79          | 0,347        | -0,97        | 0,            |
| <b>0+080,00</b><br>1 | 0,01<br>0,63<br>0,00 | 0,56<br>2,49<br>0,00 | 0,03<br>0,13<br>0,00 | 30,0<br>30,0<br>30,0 | 13,80<br>13,80<br>13,80 | 0,083       | 305,29               | 305,29               | 0,53          | 0,08        | 0,26        | 304,76          | 0,123        | -1,92        | 0,            |
| <b>0+087,68</b><br>1 | 0,00<br>0,47<br>0,00 | 0,00<br>2,02<br>0,00 | 0,00<br>0,18<br>0,00 | 30,0<br>30,0<br>30,0 | 7,68<br>7,68<br>7,68    | 0,083       | 305,29               | 305,29               | 0,50          | 0,11        | 0,57        | 304,79          | 0,249        | -0,64        | 1,            |
| <b>0+087,69</b> 4    | 0,00<br>0,13<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>0,66<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,083       | 305,31<br>Stossver   | 305,29<br>Hust = 0,  |               |             | 2,62        | 304,79          | 2,633        |              |               |
| <b>0+098,07</b> 4    | 0,00<br>0,13<br>0,00 | 0,00<br>1,27<br>0,00 | 0,00<br>0,66<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>10,38<br>0,00   | 0,083       | 305,34               | 305,32               | 0,46          |             | 2,63        | 304,85          | 2,653        |              |               |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 6 - Vorflutgraben 4 Entwässerungsabschnitt 6

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)      | Wsp<br>(m+NN)       | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re  |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|------------------------|---------------------|---------------|-------------|-------------|-----------------|--------------|--------------|--------------|
| <b>0+098,08</b><br>1 | 0,00<br>0,52<br>0,34 | 0,00<br>2,14<br>3,07 | 0,00<br>0,12<br>0,07 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,083       | 305,34                 | 305,34              | 0,49          | 0,08        | 0,16        | 304,84          | 0,097        | -0,76        | 4,2          |
| <b>0+100,00</b><br>1 | 0,00<br>0,50<br>0,40 | 0,00<br>2,02<br>3,38 | 0,00<br>0,11<br>0,07 | 30,0<br>30,0<br>30,0 | 1,92<br>1,92<br>1,92    | 0,083       | 305,34                 | 305,34              | 0,48          | 0,08        | 0,15        | 304,86          | 0,088        | -0,81        | 4,2          |
| <b>0+120,00</b><br>1 | 0,00<br>0,33<br>0,19 | 0,00<br>1,72<br>2,38 | 0,00<br>0,19<br>0,11 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,083       | 305,34                 | 305,34              | 0,31          | 0,15        | 0,46        | 305,03          | 0,358        | -0,68        | 4,0          |
| <b>0+140,00</b><br>1 | 0,00<br>0,13<br>0,01 | 0,00<br>1,16<br>0,32 | 0,00<br>0,63<br>0,18 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,083       | 305,44<br>Stossverli   | 305,42<br>ust = 0,0 | 0,18<br>010 m | 0,61        | 7,43        | 305,24          | 8,070        | -0,57        | 3,6          |
| <b>0+160,00</b><br>1 | 0,00<br>0,11<br>0,03 | 0,00<br>1,00<br>1,46 | 0,00<br>0,70<br>0,23 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,083       | 305,63                 | 305,60              | 0,20          | 0,85        | 5,88        | 305,40          | 10,443       | -0,49        | 7,0          |
| <b>0+162,81</b><br>1 | 0,00<br>0,13<br>0,00 | 0,00<br>1,11<br>0,36 | 0,00<br>0,63<br>0,07 | 30,0<br>30,0<br>30,0 | 2,81<br>2,81<br>2,81    | 0,083       | 305,65                 | 305,63              | 0,20          | 0,59        | 6,93        | 305,43          | 7,711        | -0,58        | 7,0          |
| <b>0+162,82</b><br>4 | 0,00<br>0,06<br>0,00 | 0,00<br>0,65<br>0,00 | 0,00<br>1,43<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,083       | 305,77                 | 305,66              | 0,23          | 1,00        | 12,77       | 305,43          | 14,286       | -0,12<br>sch | 0,<br>nießer |
| <b>0+175,10</b><br>4 | 0,00<br>0,07<br>0,00 | 0,00<br>0,95<br>0,00 | 0,00<br>1,17<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>12,28<br>0,00   | 0,083       | 305,94<br>SonstigeVerl | 305,87<br>lust = 0, | 0,34<br>017 m |             | 9,11        | 305,53          | 12,259       |              |              |
| <b>0+175,11</b><br>1 | 0,00<br>0,66<br>0,38 | 0,00<br>2,81<br>7,00 | 0,00<br>0,10<br>0,04 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,083       | 305,94                 | 305,94              | 0,41          | 0,10        | 0,09        | 305,53          | 0,083        | -1,12        | 10,          |
| <b>0+180,00</b><br>1 | 0,00<br>0,35<br>0,00 | 0,00<br>2,05<br>0,00 | 0,00<br>0,24<br>0,00 | 30,0<br>30,0<br>30,0 | 4,89<br>4,89<br>4,89    | 0,083       | 305,95                 | 305,94              | 0,34          | 0,18        | 1,13        | 305,60          | 0,659        | -0,95        | 0,           |
| <b>0+200,00</b><br>1 | 0,00<br>0,16<br>0,00 | 0,00<br>1,10<br>0,00 | 0,00<br>0,51<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,083       | 305,99                 | 305,97              | 0,27          | 0,38        | 5,56        | 305,70          | 3,778        | -0,39        | 0,           |
| <b>0+220,00</b><br>1 | 0,00<br>0,14<br>0,00 | 0,00<br>1,01<br>0,00 | 0,00<br>0,59<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,083       | 306,08                 | 306,06              | 0,30          | 0,44        | 7,53        | 305,76          | 5,417        | -0,36        | 0,           |
| <b>0+227,68</b><br>1 | 0,00<br>0,14<br>0,00 | 0,00<br>1,00<br>0,00 | 0,00<br>0,60<br>0,00 | 30,0<br>30,0<br>30,0 | 7,68<br>7,68<br>7,68    | 0,083       | 306,11                 | 306,10              | 0,32          | 0,43        | 7,80        | 305,78          | 5,655        | -0,42        | 0,           |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 6 - Vorflutgraben 4 Entwässerungsabschnitt 6

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN) | Wsp<br>(m+NN) | Tiefe<br>(m) | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|-------------------|---------------|--------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+240,00</b><br>1 | 0,00<br>0,20<br>0,00 | 0,00<br>1,27<br>0,00 | 0,00<br>0,41<br>0,00 | 30,0<br>30,0<br>30,0 | 12,32<br>12,32<br>12,32 | 0,083       | 306,16            | 306,15        | 0,33         | 0,30        | 3,49        | 305,82          | 2,200        | -0,44      | 0,61        |
| <b>0+240,25</b><br>1 | 0,00<br>0,22<br>0,00 | 0,00<br>1,32<br>0,00 | 0,00<br>0,37<br>0,00 | 30,0<br>30,0<br>30,0 | 0,25<br>0,25<br>0,25    | 0,083       | 306,16            | 306,15        | 0,33         | 0,26        | 2,83        | 305,82          | 1,686        | -0,47      | 0,61        |
| <b>0+260,00</b><br>1 | 0,00<br>0,14<br>0,00 | 0,00<br>1,07<br>0,00 | 0,00<br>0,57<br>0,00 | 30,0<br>30,0<br>30,0 | 19,75<br>19,75<br>19,75 | 0,083       | 306,23            | 306,21        | 0,27         | 0,45        | 7,12        | 305,94          | 5,252        | -0,37      | 0,51        |

Schnitt 7 - Vorflutgraben 5 Entwässerungsabschnitt 7 - Drosselabfluss RRB

#### Berechnungsverfahren:

- Nach Manning-Strickler
- Mit Berücksichtigung der Rauheitswerte aus Lastfall 1 Fließgewässerrauheiten (Sandrauheiten) im Sommer

#### Gewählte Berechnungsparameter:

- Projektnummer : 7

- Berechnung von Station + 0 km + 0,00 m bis Station + 0 km + 586,78 m

- Anfangswasserspiegel Grenztiefe = 301,580 m+NN
- Stationierung gegen Fließrichtung
- mit Ermittlung des schießenden Fließzustandes
- Iterationsgenauigkeit der Wasserspiegel von 5,0 mm
- Berechnung FROUDE-Zahl nach Knauf-Könemann

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 7 - Vorflutgraben 5

Entwässerungsabschnitt 7 - Drosselabfluss RRB

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN )       | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re     |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|----------------------|---------------|-------------|-------------|-----------------|--------------|--------------|-----------------|
| <b>0+000,00</b><br>1 | 0,00<br>0,14<br>0,00 | 0,00<br>1,67<br>0,00 | 0,00<br>0,14<br>0,00 | 30,0<br>30,0<br>30,0 | 1,00<br>1,00<br>1,00    | 0,020       | 301,58               | 301,58               | 0,10          | 0,15        | 0,48        | 301,48          | 0,558        | -0,81        | 0,80            |
| <b>0+005,14</b><br>1 | 0,00<br>0,01<br>0,00 | 0,00<br>0,60<br>0,00 | 0,00<br>1,46<br>0,00 | 30,0<br>30,0<br>30,0 | 0,00<br>5,14<br>5,14    | 0,020       | 301,77               | 301,67               | 0,02          | 3,01        | 82,73       | 301,64          | 358,44       | -0,31<br>scl | 0,26<br>hießend |
| <b>0+005,15</b><br>4 | 0,00<br>0,03<br>0,00 | 0,00<br>0,47<br>0,00 | 0,00<br>0,72<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,020       | 301,78               | 301,75               | 0,10          | 1,00        | 3,70        | 301,65          | 6,208        | -0,20<br>scl | 0,20<br>hießend |
| <b>0+011,06</b><br>4 | 0,00<br>0,07<br>0,00 | 0,00<br>0,68<br>0,00 | 0,00<br>0,29<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>5,91<br>0,00    | 0,020       | 301,81<br>SonstigeVe | 301,80<br>rlust = 0, | 0,19<br>011 m | 0,24        | 0,49        | 301,61          | 0,476        | -0,25        | 0,25            |
| <b>0+011,07</b><br>1 | 0,00<br>0,14<br>0,00 | 0,00<br>1,06<br>0,00 | 0,00<br>0,15<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,020       | 301,81               | 301,80               | 0,19          | 0,12        | 0,48        | 301,61          | 0,373        | -0,51        | 0,37            |
| <b>0+020,00</b><br>1 | 0,00<br>0,13<br>0,00 | 0,00<br>1,01<br>0,00 | 0,00<br>0,15<br>0,00 | 30,0<br>30,0<br>30,0 | 8,93<br>8,93<br>8,93    | 0,020       | 301,81               | 301,81               | 0,20          | 0,13        | 0,53        | 301,61          | 0,411        | -0,45        | 0,37            |
| <b>0+023,70</b><br>1 | 0,00<br>0,13<br>0,00 | 0,00<br>1,02<br>0,00 | 0,00<br>0,15<br>0,00 | 30,0<br>30,0<br>30,0 | 3,70<br>3,70<br>3,70    | 0,020       | 301,82               | 301,81               | 0,20          | 0,12        | 0,50        | 301,61          | 0,380        | -0,39        | 0,46            |
| <b>0+023,71</b><br>4 | 0,00<br>0,08<br>0,00 | 0,00<br>0,70<br>0,00 | 0,00<br>0,26<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,020       | 301,82               | 301,81               | 0,20          | 0,22        | 0,41        | 301,61          | 0,376        | -0,25        | 0,25            |
| <b>0+029,69</b><br>4 | 0,00<br>0,06<br>0,00 | 0,00<br>0,62<br>0,00 | 0,00<br>0,34<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>5,98<br>0,00    | 0,020       | 301,83<br>SonstigeVe | 301,82<br>rlust = 0, | 0,17<br>001 m | 0,31        | 0,72        | 301,65          | 0,764        | -0,23        | 0,23            |
| <b>0+029,70</b><br>1 | 0,00<br>0,10<br>0,00 | 0,00<br>0,93<br>0,00 | 0,00<br>0,19<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,020       | 301,83               | 301,82               | 0,17          | 0,16        | 0,84        | 301,65          | 0,745        | -0,40        | 0,35            |
| <b>0+040,00</b><br>1 | 0,00<br>0,17<br>0,00 | 0,00<br>1,35<br>0,00 | 0,00<br>0,12<br>0,00 | 30,0<br>30,0<br>30,0 | 10,30<br>10,30<br>0,00  | 0,020       | 301,83               | 301,83               | 0,19          | 0,10        | 0,32        | 301,64          | 0,255        | -0,61        | 0,61            |
| <b>0+060,00</b><br>1 | 0,00<br>0,10<br>0,00 | 0,00<br>0,99<br>0,00 | 0,00<br>0,21<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,020       | 301,84               | 301,84               | 0,15          | 0,21        | 1,07        | 301,69          | 1,108        | -0,48        | 0,42            |
| <b>0+060,70</b><br>1 | 0,00<br>0,09<br>0,00 | 0,00<br>0,95<br>0,00 | 0,00<br>0,22<br>0,00 | 30,0<br>30,0<br>30,0 | 0,70<br>0,70<br>0,70    | 0,020       | 301,84               | 301,84               | 0,15          | 0,22        | 1,18        | 301,69          | 1,229        | -0,47        | 0,40            |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 7 - Vorflutgraben 5

Entwässerungsabschnitt 7 - Drosselabfluss RRB

| Profil-km<br>-Art     | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)        | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|-----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|----------------------|---------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+060,71</b><br>4  | 0,00<br>0,04<br>0,00 | 0,00<br>0,53<br>0,00 | 0,00<br>0,46<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,020       | 301,85               | 301,84               | 0,15          | 0,51        | 1,37        | 301,69          | 1,688        | -0,20      | 0,20        |
| 0 <b>+071,20</b><br>4 | 0,00<br>0,03<br>0,00 | 0,00<br>0,46<br>0,00 | 0,00<br>0,66<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>10,49<br>0,00   | 0,020       | 301,89<br>SonstigeVe | 301,87<br>rlust = 0, | 0,12<br>006 m | 0,74        | 3,03        | 301,75          | 4,583        | -0,18      | 0,18        |
| <b>0+071,21</b><br>1  | 0,00<br>0,24<br>0,00 | 0,00<br>1,54<br>0,00 | 0,00<br>0,08<br>0,00 | 30,0<br>30,0<br>30,0 | -1,71<br>0,01<br>-1,71  | 0,020       | 301,89               | 301,89               | 0,24          | 0,07        | 0,15        | 301,65          | 0,096        | -0,65      | 0,75        |
| <b>0+080,00</b><br>1  | 0,00<br>0,24<br>0,00 | 0,00<br>1,55<br>0,00 | 0,00<br>0,08<br>0,00 | 30,0<br>30,0<br>30,0 | 8,79<br>8,79<br>8,79    | 0,020       | 301,89               | 301,89               | 0,24          | 0,06        | 0,14        | 301,65          | 0,091        | -0,65      | 0,76        |
| <b>0+100,00</b><br>1  | 0,00<br>0,16<br>0,00 | 0,00<br>1,30<br>0,00 | 0,00<br>0,12<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,020       | 301,89               | 301,89               | 0,19          | 0,11        | 0,34        | 301,70          | 0,267        | -0,58      | 0,61        |
| <b>0+120,00</b><br>1  | 0,00<br>0,12<br>0,00 | 0,00<br>1,06<br>0,00 | 0,00<br>0,16<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,020       | 301,90               | 301,90               | 0,17          | 0,15        | 0,62        | 301,73          | 0,546        | -0,46      | 0,48        |
| <b>0+140,00</b><br>1  | 0,00<br>0,12<br>0,00 | 0,00<br>1,06<br>0,00 | 0,00<br>0,16<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,020       | 301,91               | 301,91               | 0,18          | 0,15        | 0,62        | 301,73          | 0,537        | -0,47      | 0,49        |
| <b>0+166,16</b><br>1  | 0,00<br>0,20<br>0,00 | 0,00<br>1,40<br>0,00 | 0,00<br>0,10<br>0,00 | 30,0<br>30,0<br>30,0 | 26,16<br>26,16<br>26,16 | 0,020       | 301,92               | 301,92               | 0,23          | 0,08        | 0,21        | 301,69          | 0,141        | -0,66      | 0,6         |
| <b>0+166,17</b><br>4  | 0,00<br>0,02<br>0,00 | 0,00<br>0,42<br>0,00 | 0,00<br>0,81<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,020       | 301,95<br>Stossver   | 301,91<br>lust = 0,  | 0,10<br>026 m | 0,96        | 4,63        | 301,81          | 7,838        | -0,17      | 0,17        |
| <b>0+175,00</b><br>4  | 0,00<br>0,03<br>0,00 | 0,00<br>0,47<br>0,00 | 0,00<br>0,63<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>8,83<br>0,00    | 0,020       | 302,00<br>SonstigeVe | 301,98<br>rlust = 0, | 0,12<br>006 m | 0,69        | 2,75        | 301,86          | 4,054        | -0,18      | 0,18        |
| <b>0+175,01</b><br>1  | 0,00<br>0,08<br>0,00 | 0,00<br>0,94<br>0,00 | 0,00<br>0,24<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,020       | 302,00               | 302,00               | 0,14          | 0,24        | 1,40        | 301,86          | 1,549        | -0,47      | 0,39        |
| <b>0+180,00</b><br>1  | 0,00<br>0,06<br>0,00 | 0,00<br>0,80<br>0,00 | 0,00<br>0,34<br>0,00 | 30,0<br>30,0<br>30,0 | 4,99<br>4,99<br>4,99    | 0,020       | 302,01               | 302,01               | 0,11          | 0,39        | 3,09        | 301,90          | 4,209        | -0,39      | 0,38        |
| <b>0+200,00</b><br>1  | 0,00<br>0,04<br>0,00 | 0,00<br>0,68<br>0,00 | 0,00<br>0,49<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,020       | 302,17               | 302,16               | 0,08          | 0,61        | 6,76        | 302,07          | 11,183       | -0,28      | 0,3         |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 7 - Vorflutgraben 5

Entwässerungsabschnitt 7 - Drosselabfluss RRB

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)         | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re               |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|-----------------------|---------------|-------------|-------------|-----------------|--------------|--------------|---------------------------|
| <b>0+209,19</b><br>1 | 0,00<br>0,05<br>0,00 | 0,00<br>0,68<br>0,00 | 0,00<br>0,43<br>0,00 | 30,0<br>30,0<br>30,0 | 9,19<br>9,19<br>9,19    | 0,020       | 302,25               | 302,24                | 0,10          | 0,50        | 5,06        | 302,14          | 7,409        | -0,22        | 0,3                       |
| <b>0+209,20</b><br>4 | 0,00<br>0,02<br>0,00 | 0,00<br>0,39<br>0,00 | 0,00<br>0,87<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,020       | 302,30               | 302,26                | 0,11          | 1,00        | 5,36        | 302,15          | 9,081        | -0,15<br>sch | 0, <sup>-</sup><br>nießer |
| <b>0+224,78</b><br>4 | 0,00<br>0,03<br>0,00 | 0,00<br>0,41<br>0,00 | 0,00<br>0,76<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>15,58<br>0,00   | 0,020       | 302,42<br>SonstigeVe | 302,39<br>rlust = 0,0 | 0,12<br>004 m | 0,82        | 4,06        | 302,27          | 6,410        | -0,15        | 0,                        |
| <b>0+224,79</b><br>1 | 0,00<br>0,08<br>0,00 | 0,00<br>0,84<br>0,00 | 0,00<br>0,26<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,020       | 302,42               | 302,42                | 0,15          | 0,26        | 1,69        | 302,27          | 1,857        | -0,40        | 0,3                       |
| <b>0+238,54</b><br>1 | 0,00<br>0,05<br>0,00 | 0,00<br>0,76<br>0,00 | 0,00<br>0,38<br>0,00 | 30,0<br>30,0<br>30,0 | 13,75<br>13,75<br>13,75 | 0,020       | 302,48               | 302,47                | 0,10          | 0,44        | 3,89        | 302,37          | 5,614        | -0,36        | 0,:                       |
| <b>0+238,55</b><br>4 | 0,00<br>0,03<br>0,00 | 0,00<br>0,44<br>0,00 | 0,00<br>0,74<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,020       | 302,51               | 302,48                | 0,11          | 1,00        | 3,80        | 302,37          | 6,109        | -0,18<br>sch | 0,<br>nießer              |
| <b>0+256,93</b><br>4 | 0,00<br>0,03<br>0,00 | 0,00<br>0,46<br>0,00 | 0,00<br>0,66<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>18,38<br>0,00   | 0,020       | 302,61<br>SonstigeVe | 302,59<br>rlust = 0,0 | 0,12<br>003 m | 0,73        | 3,02        | 302,47          | 4,569        | -0,18        | 0,                        |
| <b>0+256,94</b><br>1 | 0,00<br>0,07<br>0,00 | 0,00<br>0,74<br>0,00 | 0,00<br>0,30<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,020       | 302,61               | 302,60                | 0,13          | 0,30        | 2,27        | 302,47          | 2,554        | -0,34        | 0,                        |
| <b>0+260,00</b><br>1 | 0,00<br>0,06<br>0,00 | 0,00<br>0,70<br>0,00 | 0,00<br>0,35<br>0,00 | 30,0<br>30,0<br>30,0 | 3,06<br>3,06<br>3,06    | 0,020       | 302,62               | 302,61                | 0,12          | 0,36        | 3,09        | 302,49          | 3,762        | -0,31        | 0,                        |
| <b>0+280,00</b><br>1 | 0,00<br>0,04<br>0,00 | 0,00<br>0,62<br>0,00 | 0,00<br>0,45<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,020       | 302,73               | 302,72                | 0,11          | 0,50        | 5,40        | 302,61          | 7,526        | -0,27        | 0,                        |
| <b>0+300,00</b><br>1 | 0,00<br>0,06<br>0,00 | 0,00<br>0,76<br>0,00 | 0,00<br>0,33<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,020       | 302,83               | 302,83                | 0,12          | 0,35        | 2,77        | 302,71          | 3,467        | -0,38        | 0,                        |
| <b>0+304,04</b><br>1 | 0,00<br>0,06<br>0,00 | 0,00<br>0,71<br>0,00 | 0,00<br>0,36<br>0,00 | 30,0<br>30,0<br>30,0 | 4,04<br>4,04<br>4,04    | 0,020       | 302,85               | 302,84                | 0,11          | 0,39        | 3,35        | 302,73          | 4,293        | -0,35        | 0,                        |
| <b>0+304,05</b> 4    | 0,00<br>0,03<br>0,00 | 0,00<br>0,43<br>0,00 | 0,00<br>0,75<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,020       | 302,87               | 302,84                | 0,11          | 1,00        | 3,93        | 302,73          | 6,365        | -0,18<br>sch | 0,<br>nießer              |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 7 - Vorflutgraben 5

Entwässerungsabschnitt 7 - Drosselabfluss RRB

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)        | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re    |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|----------------------|---------------|-------------|-------------|-----------------|--------------|--------------|----------------|
| <b>0+446,67</b><br>4 | 0,00<br>0,04<br>0,00 | 0,00<br>0,52<br>0,00 | 0,00<br>0,49<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>142,62<br>0,00  | 0,020       | 303,48<br>SonstigeVe | 303,46<br>rlust = 0, | 0,14<br>008 m | 0,48        | 1,56        | 303,32          | 2,003        | -0,20        | 0,2            |
| <b>0+446,68</b><br>1 | 0,00<br>0,10<br>0,00 | 0,00<br>1,14<br>0,00 | 0,00<br>0,20<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,020       | 303,48               | 303,47               | 0,15          | 0,21        | 1,03        | 303,32          | 1,193        | -0,39        | 0,7            |
| <b>0+474,00</b><br>1 | 0,00<br>0,07<br>0,00 | 0,00<br>0,93<br>0,00 | 0,00<br>0,29<br>0,00 | 30,0<br>30,0<br>30,0 | 27,32<br>27,32<br>27,32 | 0,020       | 303,53               | 303,53               | 0,14          | 0,33        | 2,23        | 303,39          | 3,012        | -0,38        | 0,4            |
| <b>0+494,00</b><br>1 | 0,00<br>0,05<br>0,00 | 0,00<br>0,76<br>0,00 | 0,00<br>0,44<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,020       | 303,66               | 303,65               | 0,10          | 0,55        | 5,44        | 303,55          | 8,998        | -0,48        | 0,2            |
| <b>0+504,00</b><br>1 | 0,00<br>0,05<br>0,00 | 0,00<br>0,65<br>0,00 | 0,00<br>0,40<br>0,00 | 30,0<br>30,0<br>30,0 | 10,00<br>10,00<br>10,00 | 0,020       | 303,73               | 303,72               | 0,13          | 0,44        | 4,21        | 303,59          | 5,527        | -0,29        | 0,2            |
| <b>0+504,01</b><br>4 | 0,00<br>0,07<br>0,00 | 0,00<br>0,65<br>0,00 | 0,00<br>0,30<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,020       | 303,73               | 303,72               | 0,21          | 0,23        | 0,53        | 303,51          | 0,514        | -0,20        | 0,2            |
| <b>0+508,97</b><br>4 | 0,00<br>0,07<br>0,00 | 0,00<br>0,64<br>0,00 | 0,00<br>0,31<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>4,96<br>0,00    | 0,020       | 303,73<br>SonstigeVe | 303,73 rlust = 0,    | 0,21<br>002 m | 0,24        | 0,56        | 303,52          | 0,557        | -0,20        | 0,2            |
| <b>0+508,98</b><br>1 | 0,00<br>0,03<br>0,00 | 0,00<br>0,55<br>0,00 | 0,00<br>0,70<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,020       | 303,76               | 303,74               | 0,09          | 1,00        | 14,65       | 303,65          | 28,133       | -0,23<br>sch | 0,2<br>nießen  |
| <b>0+522,51</b><br>1 | 0,00<br>0,13<br>0,00 | 0,00<br>1,25<br>0,91 | 0,00<br>0,15<br>0,02 | 30,0<br>30,0<br>30,0 | 13,53<br>13,53<br>13,53 | 0,020       | 303,95               | 303,95               | 0,19          | 0,16        | 0,31        | 303,76          | 0,483        | -0,61        | 5,0            |
| <b>0+528,98</b><br>1 | 0,00<br>0,08<br>0,00 | 0,00<br>1,16<br>0,00 | 0,00<br>0,24<br>0,00 | 30,0<br>30,0<br>30,0 | 6,47<br>6,47<br>6,47    | 0,020       | 303,96               | 303,96               | 0,12          | 0,28        | 1,55        | 303,84          | 2,162        | -0,47        | 0,6            |
| <b>0+548,98</b><br>1 | 0,00<br>0,04<br>0,00 | 0,00<br>0,82<br>0,00 | 0,00<br>0,49<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,020       | 304,13               | 304,12               | 0,09          | 0,69        | 7,24        | 304,03          | 14,548       | -0,43        | 0,3            |
| <b>0+567,13</b><br>1 | 0,00<br>0,04<br>0,00 | 0,00<br>0,94<br>0,00 | 0,00<br>0,50<br>0,00 | 30,0<br>30,0<br>30,0 | 18,15<br>18,15<br>18,15 | 0,020       | 304,43               | 304,42               | 0,07          | 0,78        | 8,10        | 304,35          | 19,176       | -0,54        | 0,3            |
| <b>0+567,14</b><br>4 | 0,00<br>0,02<br>0,00 | 0,00<br>0,39<br>0,00 | 0,00<br>0,95<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,020       | 304,47               | 304,42               | 0,09          | 1,20        | 6,70        | 304,33          | 12,535       | -0,16<br>sch | 0,1<br>nießend |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 7 - Vorflutgraben 5

Entwässerungsabschnitt 7 - Drosselabfluss RRB

| Profil-km            | A                    | Lu                   | v                    | kst                | Länge                 | Q      | E-Linie | Wsp    | Tiefe | Frou- | S      | Sohle  | Je     | Wsp.        | -Ufer            |
|----------------------|----------------------|----------------------|----------------------|--------------------|-----------------------|--------|---------|--------|-------|-------|--------|--------|--------|-------------|------------------|
| -Art                 | (m2)                 | (m)                  | (m/s)                |                    | (m)                   | (m3/s) | (m+NN)  | (m+NN) | (m)   | de    | (N/m2) | (m+NN) | (o/oo) | li          | re               |
| <b>0+586,78</b><br>4 | 0,00<br>0,02<br>0,00 | 0,00<br>0,42<br>0,00 | 0,00<br>0,82<br>0,00 | 0,0<br>60,0<br>0,0 | 0,00<br>19,64<br>0,00 | 0,020  | 304,68  | 304,64 | 0,10  | 1,00  | 4,83   | 304,54 | 8,272  | -0,17<br>sc | 0,17<br>chießend |

Schnitt 7 - Vorflutgraben 5 Entwässerungsabschnitt 7 - Entlastungsabfluss RRB

#### Berechnungsverfahren:

- Nach Manning-Strickler
- Mit Berücksichtigung der Rauheitswerte aus Lastfall 1 Fließgewässerrauheiten (Sandrauheiten) im Sommer

## Gewählte Berechnungsparameter:

- Projektnummer : 8

- Berechnung von Station + 0 km + 0,00 m bis Station + 0 km + 586,78 m

- Anfangswasserspiegel Grenztiefe = 301,630 m+NN
- Stationierung gegen Fließrichtung
- mit Ermittlung des schießenden Fließzustandes
- Iterationsgenauigkeit der Wasserspiegel von 5,0 mm
- Berechnung FROUDE-Zahl nach Knauf-Könemann

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt : Schnitt 7 - Vorflutgraben 5 Entwässerungsabschnitt 7 - Entlastungsabfluss RRB

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)        | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li   | -Ufer<br>re   |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|----------------------|---------------|-------------|-------------|-----------------|--------------|--------------|---------------|
| <b>0+000,00</b><br>1 | 0,00<br>0,23<br>0,00 | 0,00<br>1,88<br>0,00 | 0,00<br>1,11<br>0,00 | 30,0<br>30,0<br>30,0 | 1,00<br>1,00<br>1,00    | 0,255       | 301,69               | 301,63               | 0,15          | 1,00        | 27,56       | 301,48          | 22,554       | -0,91<br>sc  | 0,8<br>hießer |
| <b>0+005,14</b><br>1 | 0,00<br>0,09<br>0,00 | 0,00<br>0,93<br>0,00 | 0,00<br>2,69<br>0,00 | 30,0<br>30,0<br>30,0 | 0,00<br>5,14<br>5,14    | 0,255       | 302,15               | 301,78               | 0,14          | 2,51        | 171,85      | 301,64          | 168,00       | -0,41<br>sc  | 0,<br>hieße   |
| <b>0+005,15</b><br>4 | 0,00<br>0,15<br>0,00 | 0,00<br>1,01<br>0,00 | 0,00<br>1,74<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,255       | 302,15               | 302,00               | 0,35          | 1,00        | 15,98       | 301,65          | 11,010       | -0,23<br>scl | ,0<br>nießer  |
| <b>0+011,06</b><br>4 | 0,00<br>0,19<br>0,00 | 0,00<br>1,58<br>0,00 | 0,00<br>1,31<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>5,91<br>0,00    | 0,255       | 302,24<br>SonstigeVe | 302,15<br>rlust = 0, | 0,54<br>033 m |             | 9,56        | 301,61          | 7,750        |              |               |
| <b>0+011,07</b><br>1 | 0,00<br>0,67<br>0,00 | 0,00<br>2,20<br>0,00 | 0,00<br>0,38<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,255       | 302,24               | 302,23               | 0,62          | 0,19        | 2,39        | 301,61          | 0,785        | -0,99        | 0,            |
| <b>0+020,00</b><br>1 | 0,00<br>0,65<br>0,00 | 0,00<br>2,18<br>0,00 | 0,00<br>0,39<br>0,00 | 30,0<br>30,0<br>30,0 | 8,93<br>8,93<br>8,93    | 0,255       | 302,24               | 302,24               | 0,63          | 0,20        | 2,57        | 301,61          | 0,864        | -0,88        | 0,            |
| <b>0+023,70</b><br>1 | 0,00<br>0,66<br>0,00 | 0,00<br>2,19<br>0,00 | 0,00<br>0,38<br>0,00 | 30,0<br>30,0<br>30,0 | 3,70<br>3,70<br>3,70    | 0,255       | 302,25               | 302,24               | 0,63          | 0,19        | 2,45        | 301,61          | 0,809        | -0,81        | 0             |
| <b>0+023,71</b><br>4 | 0,00<br>0,19<br>0,00 | 0,00<br>1,58<br>0,00 | 0,00<br>1,31<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,255       | 302,33<br>Stossver   | 302,24<br>dust = 0,  | 0,63<br>044 m |             | 9,56        | 301,61          | 7,750        |              |               |
| <b>0+029,69</b><br>4 | 0,00<br>0,19<br>0,00 | 0,00<br>1,58<br>0,00 | 0,00<br>1,31<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>5,98<br>0,00    | 0,255       | 302,37<br>SonstigeVe | 302,28<br>rlust = 0, | 0,63<br>001 m |             | 9,66        | 301,65          | 7,877        |              |               |
| <b>0+029,70</b><br>1 | 0,00<br>0,75<br>0,00 | 0,00<br>2,34<br>0,00 | 0,00<br>0,34<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,255       | 302,37               | 302,36               | 0,71          | 0,16        | 1,85        | 301,65          | 0,576        | -0,69        | 0,            |
| <b>0+040,00</b><br>1 | 0,00<br>1,13<br>0,00 | 0,00<br>2,90<br>0,00 | 0,00<br>0,23<br>0,00 | 30,0<br>30,0<br>30,0 | 10,30<br>10,30<br>0,00  | 0,255       | 302,38               | 302,38               | 0,73          | 0,10        | 0,77        | 301,64          | 0,197        | -1,14        | 1,            |
| <b>0+060,00</b><br>1 | 0,00<br>1,14<br>0,04 | 0,00<br>3,56<br>1,13 | 0,00<br>0,22<br>0,05 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,255       | 302,38               | 302,38               | 0,69          | 0,13        | 0,63        | 301,69          | 0,247        | -1,71        | 2             |
| <b>0+060,70</b><br>1 | 0,00<br>1,00<br>0,00 | 0,00<br>2,98<br>0,00 | 0,00<br>0,25<br>0,00 | 30,0<br>30,0<br>30,0 | 0,70<br>0,70<br>0,70    | 0,255       | 302,38               | 302,38               | 0,69          | 0,13        | 1,04        | 301,69          | 0,309        | -1,70        | 0             |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt: Schnitt 7 - Vorflutgraben 5

Entwässerungsabschnitt 7 - Entlastungsabfluss RRB

| Profil-km<br>-Art    | A<br>(m2)            | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)  | Wsp<br>(m+NN)        | Tiefe<br>(m)   | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|--------------------|----------------------|----------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+060,71</b><br>4 | 0,00<br>0,13<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>2,03<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,255       | 302,59<br>Stossver | 302,38<br>·lust = 0, | 0,69<br>,161 m |             | 24,72       | 301,69          | 24,853       |            |             |
| <b>0+071,20</b><br>4 | 0,00<br>0,13<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>2,03<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>10,49<br>0,00   | 0,255       | 302,85             | 302,64               | 0,89           |             | 24,72       | 301,75          | 24,853       |            |             |
| <b>0+071,21</b><br>1 | 0,00<br>2,99<br>0,76 | 0,00<br>4,34<br>3,76 | 0,00<br>0,08<br>0,03 | 30,0<br>30,0<br>30,0 | -1,71<br>0,01<br>-1,71  | 0,255       | 302,85             | 302,85               | 1,20           | 0,03        | 0,05        | 301,65          | 0,011        | -1,69      | 5,          |
| <b>0+080,00</b><br>1 | 0,00<br>3,02<br>0,80 | 0,00<br>4,35<br>3,77 | 0,00<br>0,08<br>0,03 | 30,0<br>30,0<br>30,0 | 8,79<br>8,79<br>8,79    | 0,255       | 302,86             | 302,85               | 1,20           | 0,03        | 0,05        | 301,65          | 0,010        | -1,69      | 5           |
| <b>0+100,00</b><br>1 | 0,02<br>2,54<br>0,81 | 0,44<br>3,39<br>2,98 | 0,01<br>0,09<br>0,04 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,255       | 302,86             | 302,86               | 1,15           | 0,04        | 0,06        | 301,70          | 0,012        | -1,32      | 4           |
| <b>0+120,00</b><br>1 | 0,00<br>2,15<br>0,58 | 0,00<br>3,57<br>2,87 | 0,00<br>0,10<br>0,05 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,255       | 302,86             | 302,86               | 1,13           | 0,05        | 0,10        | 301,73          | 0,024        | -1,24      | 4           |
| <b>0+140,00</b><br>1 | 0,32<br>2,08<br>0,41 | 1,15<br>3,07<br>2,75 | 0,06<br>0,11<br>0,04 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,255       | 302,86             | 302,86               | 1,13           | 0,05        | 0,09        | 301,73          | 0,021        | -1,90      | 4           |
| <b>0+166,16</b><br>1 | 1,54<br>2,63<br>0,15 | 3,85<br>3,85<br>2,01 | 0,05<br>0,07<br>0,02 | 30,0<br>30,0<br>30,0 | 26,16<br>26,16<br>26,16 | 0,255       | 302,86             | 302,86               | 1,17           | 0,03        | 0,04        | 301,69          | 0,009        | -4,74      | 3           |
| <b>0+166,17</b><br>4 | 0,00<br>0,13<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>2,03<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,255       | 303,07<br>Stossver | 302,86<br>·lust = 0, | 1,05<br>,073 m |             | 24,71       | 301,81          | 24,852       |            |             |
| <b>0+175,00</b><br>4 | 0,00<br>0,13<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>2,03<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>8,83<br>0,00    | 0,255       | 303,29             | 303,08               | 1,22           |             | 24,71       | 301,86          | 24,850       |            |             |
| <b>0+175,01</b><br>1 | 0,00<br>3,51<br>1,24 | 0,49<br>4,04<br>4,11 | 0,00<br>0,06<br>0,03 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,255       | 303,29             | 303,29               | 1,43           | 0,02        | 0,03        | 301,86          | 0,005        | -2,05      | 5           |
| <b>0+180,00</b><br>1 | 0,00<br>3,72<br>0,81 | 0,00<br>5,02<br>2,91 | 0,00<br>0,06<br>0,03 | 30,0<br>30,0<br>30,0 | 4,99<br>4,99<br>4,99    | 0,255       | 303,29             | 303,29               | 1,39           | 0,02        | 0,03        | 301,90          | 0,006        | -2,00      | 4           |
| <b>0+200,00</b><br>1 | 0,00<br>2,76<br>0,22 | 0,00<br>4,43<br>2,34 | 0,00<br>0,09<br>0,03 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,255       | 303,29             | 303,29               | 1,22           | 0,04        | 0,08        | 302,07          | 0,017        | -1,80      | 4           |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt : Schnitt 7 - Vorflutgraben 5 Entwässerungsabschnitt 7 - Entlastungsabfluss RRB

| Profil-km<br>-Art    | A<br>(m2)             | Lu<br>(m)            | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)    | Wsp<br>(m+NN)        | Tiefe<br>(m)  | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|-----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|----------------------|----------------------|---------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+209,19</b><br>1 | 0,00<br>2,36<br>0,04  | 0,00<br>4,31<br>1,05 | 0,00<br>0,11<br>0,02 | 30,0<br>30,0<br>30,0 | 9,19<br>9,19<br>9,19    | 0,255       | 303,29               | 303,29               | 1,15          | 0,05        | 0,13        | 302,14          | 0,029        | -1,71      | 2,9         |
| <b>0+209,20</b><br>4 | 0,00<br>0,07<br>0,00  | 0,00<br>0,95<br>0,00 | 0,00<br>3,61<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,255       | 303,95<br>Stossver   | 303,29<br>lust = 0,  | 1,14<br>624 m |             | 85,96       | 302,15          | 115,72       |            |             |
| <b>0+224,78</b><br>4 | 0,00<br>0,07<br>0,00  | 0,00<br>0,95<br>0,00 | 0,00<br>3,62<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>15,58<br>0,00   | 0,255       | 305,76<br>SonstigeVe | 305,09<br>rlust = 0, | 2,82<br>003 m |             | 86,73       | 302,27          | 116,88       |            |             |
| <b>0+224,79</b><br>1 | 0,61<br>8,67<br>4,71  | 2,70<br>3,66<br>4,31 | 0,00<br>0,02<br>0,01 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,255       | 305,76               | 305,76               | 3,49          | 0,00        | 0,00        | 302,27          | 0,000        | -1,85      | 3,2         |
| <b>0+238,54</b><br>1 | 0,00<br>9,28<br>4,57  | 0,00<br>6,26<br>4,23 | 0,00<br>0,02<br>0,02 | 30,0<br>30,0<br>30,0 | 13,75<br>13,75<br>13,75 | 0,255       | 305,76               | 305,76               | 3,39          | 0,00        | 0,00        | 302,37          | 0,000        | -1,93      | 3,2         |
| <b>0+238,55</b> 4    | 0,00<br>0,13<br>0,00  | 0,00<br>1,26<br>0,00 | 0,00<br>2,03<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,255       | 305,97<br>Stossver   | 305,76<br>lust = 0,  | 3,39<br>206 m |             | 24,71       | 302,37          | 24,852       |            |             |
| <b>0+256,93</b><br>4 | 0,00<br>0,13<br>0,00  | 0,00<br>1,26<br>0,00 | 0,00<br>2,03<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>18,38<br>0,00   | 0,255       | 306,43               | 306,22               | 3,75          |             | 24,72       | 302,47          | 24,853       |            |             |
| <b>0+256,94</b><br>1 | 12,41<br>8,15<br>5,69 | 7,25<br>3,45<br>4,77 | 0,01<br>0,01<br>0,01 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,255       | 306,43               | 306,42               | 3,95          | 0,00        | 0,00        | 302,47          | 0,000        | -5,58      | 3,2         |
| <b>0+260,00</b><br>1 | 8,83<br>11,36<br>5,14 | 5,98<br>4,23<br>4,55 | 0,01<br>0,01<br>0,01 | 30,0<br>30,0<br>30,0 | 3,06<br>3,06<br>3,06    | 0,255       | 306,43               | 306,43               | 3,93          | 0,00        | 0,00        | 302,49          | 0,000        | -5,22      | 3,2         |
| <b>0+280,00</b><br>1 | 1,76<br>11,78<br>3,68 | 3,27<br>4,40<br>3,95 | 0,01<br>0,02<br>0,01 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,255       | 306,43               | 306,43               | 3,82          | 0,00        | 0,00        | 302,61          | 0,000        | -2,84      | 2,8         |
| <b>0+300,00</b><br>1 | 0,00<br>10,81<br>3,13 | 0,00<br>6,76<br>3,72 | 0,00<br>0,02<br>0,01 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,255       | 306,43               | 306,43               | 3,72          | 0,00        | 0,00        | 302,71          | 0,000        | -1,84      | 2,8         |
| <b>0+304,04</b><br>1 | 0,00<br>10,40<br>3,12 | 0,00<br>6,70<br>3,71 | 0,00<br>0,02<br>0,01 | 30,0<br>30,0<br>30,0 | 4,04<br>4,04<br>4,04    | 0,255       | 306,43               | 306,43               | 3,70          | 0,00        | 0,00        | 302,73          | 0,000        | -1,74      | 2,8         |
| <b>0+304,05</b><br>4 | 0,00<br>0,13<br>0,00  | 0,00<br>1,26<br>0,00 | 0,00<br>2,03<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,255       | 306,64<br>Stossver   | 306,43<br>lust = 0,  | 3,70<br>206 m |             | 24,71       | 302,73          | 24,852       |            |             |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt : Schnitt 7 - Vorflutgraben 5 Entwässerungsabschnitt 7 - Entlastungsabfluss RRB

| Profil-km<br>-Art    | A<br>(m2)               | Lu<br>(m)              | v<br>(m/s)           | kst                  | Länge<br>(m)            | Q<br>(m3/s) | E-Linie<br>(m+NN)  | Wsp<br>(m+NN)       | Tiefe<br>(m)   | Frou-<br>de | S<br>(N/m2) | Sohle<br>(m+NN) | Je<br>(o/oo) | Wsp.<br>li | -Ufer<br>re |
|----------------------|-------------------------|------------------------|----------------------|----------------------|-------------------------|-------------|--------------------|---------------------|----------------|-------------|-------------|-----------------|--------------|------------|-------------|
| <b>0+446,67</b><br>4 | 0,00<br>0,12            | 0,00<br>1,26           | 0,00<br>2,06         | 0,0<br>60,0          | 0,00<br>142,62          | 0,255       | 310,26             | 310,05              | 6,73           |             | 25,45       | 303,32          | 25,872       |            |             |
|                      | 0,00                    | 0,00                   | 0,00                 | 0,0                  | 0,00                    |             | SonstigeVe         | erlust = 0          | ,002 m         |             |             |                 |              |            |             |
| <b>0+446,68</b><br>1 | 0,00<br>25,48<br>0,00   | 0,00<br>16,62<br>0,00  | 0,00<br>0,01<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,255       | 310,26             | 310,26              | 6,94           | 0,00        | 0,00        | 303,32          | 0,000        | -1,78      | 2,          |
| <b>0+474,00</b><br>1 | 14,95<br>16,86<br>27,55 | 8,60<br>2,69<br>10,72  | 0,00<br>0,01<br>0,00 | 30,0<br>30,0<br>30,0 | 27,32<br>27,32<br>27,32 | 0,255       | 310,26             | 310,26              | 6,87           | 0,00        | 0,00        | 303,39          | 0,000        | -4,12      | 5,          |
| <b>0+494,00</b><br>1 | 24,69<br>12,33<br>26,90 | 10,17<br>2,02<br>10,59 | 0,00<br>0,01<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,255       | 310,26             | 310,26              | 6,71           | 0,00        | 0,00        | 303,55          | 0,000        | -5,00      | 5           |
| <b>0+504,00</b><br>1 | 26,91<br>9,09<br>26,86  | 10,49<br>1,63<br>10,59 | 0,00<br>0,01<br>0,00 | 30,0<br>30,0<br>30,0 | 10,00<br>10,00<br>10,00 | 0,255       | 310,26             | 310,26              | 6,67           | 0,00        | 0,00        | 303,59          | 0,000        | -5,00      | 5           |
| <b>0+504,01</b><br>4 | 0,00<br>0,13<br>0,00    | 0,00<br>1,26<br>0,00   | 0,00<br>2,03<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,255       | 310,47<br>Stossver | 310,26<br>rlust = 0 | 6,75<br>,004 m |             | 24,71       | 303,51          | 24,852       |            |             |
| <b>0+508,97</b><br>4 | 0,00<br>0,13<br>0,00    | 0,00<br>1,26<br>0,00   | 0,00<br>2,03<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>4,96<br>0,00    | 0,255       | 310,59             | 310,38              | 6,86           |             | 24,71       | 303,52          | 24,849       |            |             |
| <b>0+508,98</b><br>1 | 27,82<br>9,23<br>29,09  | 10,74<br>1,54<br>11,05 | 0,00<br>0,01<br>0,00 | 30,0<br>30,0<br>30,0 | 0,01<br>0,01<br>0,01    | 0,255       | 310,59             | 310,59              | 6,93           | 0,00        | 0,00        | 303,65          | 0,000        | -5,00      | 5           |
| <b>0+522,51</b><br>1 | 27,14<br>9,82<br>28,99  | 10,66<br>1,55<br>11,02 | 0,00<br>0,01<br>0,00 | 30,0<br>30,0<br>30,0 | 13,53<br>13,53<br>13,53 | 0,255       | 310,59             | 310,59              | 6,83           | 0,00        | 0,00        | 303,76          | 0,000        | -5,00      | 5           |
| <b>0+528,98</b><br>1 | 27,63<br>10,35<br>27,73 | 10,74<br>1,61<br>10,81 | 0,00<br>0,01<br>0,00 | 30,0<br>30,0<br>30,0 | 6,47<br>6,47<br>6,47    | 0,255       | 310,59             | 310,59              | 6,75           | 0,00        | 0,00        | 303,84          | 0,000        | -5,00      | 5           |
| <b>0+548,98</b><br>1 | 25,85<br>11,81<br>10,26 | 10,39<br>1,89<br>7,95  | 0,00<br>0,01<br>0,00 | 30,0<br>30,0<br>30,0 | 20,00<br>20,00<br>20,00 | 0,255       | 310,59             | 310,59              | 6,56           | 0,00        | 0,00        | 304,03          | 0,000        | -5,00      | 2           |
| <b>0+567,13</b> 1    | 20,36<br>13,11<br>13,40 | 8,72<br>2,17<br>8,30   | 0,00<br>0,01<br>0,00 | 30,0<br>30,0<br>30,0 | 18,15<br>18,15<br>18,15 | 0,255       | 310,59             | 310,59              | 6,24           | 0,00        | 0,00        | 304,35          | 0,000        | -5,00      | 3           |
| <b>0+567,14</b><br>4 | 0,00<br>0,13<br>0,00    | 0,00<br>1,26<br>0,00   | 0,00<br>2,03<br>0,00 | 0,0<br>60,0<br>0,0   | 0,00<br>0,01<br>0,00    | 0,255       | 310,80<br>Stossver | 310,59<br>rlust = 0 | 6,26<br>,016 m |             | 24,71       | 304,33          | 24,848       |            |             |

Ing.-Büro Christofori u. Partner \* Gewerbestraße 9 \* 91560 Heilsbronn

Projekt : Schnitt 7 - Vorflutgraben 5 Entwässerungsabschnitt 7 - Entlastungsabfluss RRB

| Profil-km            | A                    | Lu                   | v                    | kst                | Länge                 | Q      | E-Linie | Wsp    | Tiefe | Frou- | S      | Sohle  | Je     | Wsp. | -Ufer |
|----------------------|----------------------|----------------------|----------------------|--------------------|-----------------------|--------|---------|--------|-------|-------|--------|--------|--------|------|-------|
| -Art                 | (m2)                 | (m)                  | (m/s)                |                    | (m)                   | (m3/s) | (m+NN)  | (m+NN) | (m)   | de    | (N/m2) | (m+NN) | (o/oo) | li   | re    |
| <b>0+586,78</b><br>4 | 0,00<br>0,13<br>0,00 | 0,00<br>1,26<br>0,00 | 0,00<br>2,03<br>0,00 | 0,0<br>60,0<br>0,0 | 0,00<br>19,64<br>0,00 | 0,255  | 311,29  | 311,08 | 6,54  |       | 24,71  | 304,54 | 24,852 |      |       |

Programm: Rehm / REBECK

Ing.-Büro Christofori u. Partner \* 91560 Heilsbronn

Projekt: B 470, A 7 AS Bad Windsheim - Neustadt a. d. Aisch

Ortsumgehung Lenkersheim

## Dükerberechnung

Dükernummer: 0

Bezeichnung: Düker - Kronengraben

| Nennweite des Zulaufs                 | DNZu = | 1000 mm    |
|---------------------------------------|--------|------------|
| Nennweite des Ablaufs                 | DNab = | 1000 mm    |
| Krümmerwinkel am Zulauf               | KWz =  | 45,00°     |
| Krümmerwinkel am Ablauf               | KWa =  | 45,00°     |
| Bemessungswassermenge                 | Q =    | 384,00 l/s |
| Nennweite des Dükers                  | DN =   | 1000 mm    |
| Länges des Dükers                     | L =    | 17,80 m    |
| Rauhigkeitsbeiwert des Dükers         | kb =   | 1,50 mm    |
| Differenzhöhe zwischen Zu- und Ablauf | dH =   | 0,04 m     |
| D. J. 1111                            |        | 0.705 3    |
| Rohrquerschnitt                       | A =    | 0,785 m²   |
| Fließgeschwindigkeit                  | v =    | 0,489 m/s  |
| Zulaufverlust                         | hz =   | 0,000 m    |
| Ablaufverlust                         | ha =   | 0,000 m    |
| Reibungsverlust                       | hr =   | 0,005 m    |
| Krümmerverlust                        | hk =   | 0,006 m    |
| Gesamtverlusthöhe                     | hg =   | 0,011 m    |