

Bauherr: Konrad Müller, Poschinger Hütte 5, 93471 Arnbruck

Hydraulische Berechnung

Wasserkraftanlage:

1.) Bemessung des Feinrechens an der Ausleitung

Vorgaben:

lichte Stabweite = 15mm

max. Fließgeschwindigkeit durch den Rechen =

0,5 m/s 1900 l/s

max. Durchflußmenge gem. Turbinenleistung =

Rechenstäbe:

z.B. Flachstahl 50x8mm

Berechnung:

A erf. = erforderlicher lichter Querschnitt des Rechens

A ges. = erforderliche Gesamtfläche des Rechens

v max = max. Fließgeschwindigkeit Q max = max. Durchflußmenge

A erf. = Q max. / v max

 $A \, erf. = 1,90 \, m^3/s / 0,5 \, m/s =$

3,80 m²

 $A_{ges.} = 3,80 \text{ m}^2 / 15 \text{mm} * (15+8 \text{mm}) =$

5,83 m²

gewählt:

 $A_{gew} = 4,50 \text{ m} * 1,30 \text{ m} =$

 $5,85 \text{ m}^2 > A \text{ ges.}$

Größe des Feinrechens:

Im wasserrechtl. Verfahren geprüft

Amtl. Sachverständiger Wasserwirtschaftsamt

30/65

Degreenforf, den .

Dr. Schramm Oberregierungsrat Länge = 4,50 m

Höhe = 1,30 m

Gebrüft:

Der amtliche Sachverständige

genoun.

Wasserwirtschaftsamt

Dr. Schramm Oberregierungsrat

Deggendorf, 21.01.2011

Bauherr: Konrad Müller, Poschinger Hütte 5, 93471 Arnbruck

Hydraulische Berechnung

Wasserkraftanlage:

2.) Berechnung der max. Fließgeschw. an der Einleitung

Vorgaben:	Mittelwasserabfluß, MQ = mittlerer Niedrigwasserabfluß, MNQ = Restwassermenge, Q _R =	1200 l/s 400 l/s
	max. Durchflußmenge gem. Turbinenleistung, Q _a =	100 l/s 1900 l/s
	Rohrquerschnitt an der Einleitung, Durchmesser =	1,40 m

Berechnung: A Einl. = Querschnittsfläche Einleitungsrohr

v max = max. Fließgeschwindigkeit v ø = mittlere Fließgeschwindigkeit

 $A_{Einl} = 0.70 \text{ m}^2 \times \pi = 1.54 \text{ m}^2$

 $v_{max} = Q_a / A_{Einl.}$

 $v \max = 1,90 \text{ m}^3/\text{s} / 1,54 \text{ m}^2 =$ 1,23 m/s

Im wasserrechtl. Verfahren geprüft Amtl. Sachverständiger Wasserwirtschaftsamt

Deggendom, den ..

Dr. Schramm Oberregierungsrat

Deggendorf, 21.01.2011

Bauherr: Konrad Müller, Poschinger Hütte 5, 93471 Arnbruck

Hydraulische Berechnung

Wasserkraftanlage:

3.) Berechnung der mittl. Fließgeschw. an der Einleitung

Vorgaben:Mittelwasserabfluß, MQ =
mittlerer Niedrigwasserabfluß, MNQ =
Restwassermenge, Q_R =
max. Durchflußmenge gem. Turbinenleistung, Q_a =
Rohrquerschnitt an der Einleitung, Durchmesser =1200 l/s
100 l/s
1900 l/s

Berechnung: A Einl = Querschnittsfläche Einleitungsrohr

v max = max. Fließgeschwindigkeit v Ø = mittlere Fließgeschwindigkeit

 $A_{Einl} = 0.70 \text{m}^2 * \pi = 1,54 \text{ m}^2$

 $v_{\varnothing} = (MQ - Q_R) / A_{Einl.}$

 $v_{\varnothing} = (1,20 \text{ m}^3/\text{s} - 0,10 \text{ m}^3/\text{s}) / 1,54 \text{ m}^2 =$ 0,71 m/s

Im wasserrechtl. Verfahren geprüft Amtl. Sachverständiger Wasserwirtschaftsamt

Dr. Schramm Oberregierungsrat

Deggendorf, 21.01.2011

Bauherr: Konrad Müller, Poschinger Hütte 5, 93471 Ambruck

Hydraulische Berechnung

Wasserkraftanlage:

3.) Berechnung der mittl. Fließgeschw. an der Einleitung

Berechnung: A Eint = Querschnittsfläche Einleitungsrohr

v max = max. Fließgeschwindigkeit v ø = mittlere Fließgeschwindigkeit

 $A_{Eint} = 0.70 \text{m}^2 \times \pi = 1.54 \text{ m}^2$

 $v_{\varnothing} = (MQ - Q_R) / A_{Einl.}$

 $v_{\varnothing} = (1.20 \text{ m}^3/\text{s} - 0.40 \text{ m}^3/\text{s}) / 1.54 \text{ m}^2 =$

0.52 m/s

Im wasserrechtl. Verfahren geprüft Amtl. Sachverständiger Wasserwirtschaftsamt

Solve

Oberregierungsrat

Deggendorf, 06.08.2012

Bauherr: Konrad Müller, Poschinger Hütte 5, 93471 Arnbruck

Hydraulische Berechnung

Variante A: 100% des verbleibenden Restwassers werden über das bestehende Mühlenwasserrad geleitet

7.) Berechnung der Schützöffnung

Berechnung gem. Schneider Bautabellen für Ingenieure, 19. Auflage Kapitel 3.6.10 c) Vollkommener Ausfluss unter Schütz

Vorgaben:	Mittelwasserabfluß, MQ =	1200 l/s

mittlerer Niedrigwasserabfluß, MNQ = 400 l/s Restwassermenge über Fischtreppe, MNQ*5/12= 167 l/s ergänzende Restwassermenge, Q $_{\rm erf.}$ = 233 l/s Wasserspiegel = 500,44 m üNN Einlaufsohle Mühlrad = 499,62 m üNN Stauhöhe h = 0.82 m

Stauhöhe h = 0.82 mBreite des Schützes, b = 1.05 m

Berechnung: $Q = \mu * a * b * \sqrt{(2g * h)}$

μ = Abflußbeiwert für senkrechte scharfkantige Schütz

a =Öffnungshöhe des Schütz0,091 mg =Erdbeschleunigung9,81 m/s²

Abflußbeiwert gemäß Tabelle (Schneider Bautabellen):

h/a = 0.82/0.091 = 9.0 0.61

erforderliche Schützöffnungshöhe:

h >= 0.091 m

Zur Erreichung der erforderlichen Restwassermenge ergeben sich keine planerischen Änderungen der Ausleitungsstelle und der Schützanlagen.

Deggendorf, 07.08.2012

Im wasserrechtl. Verfahren geprüft Amtl. Sachverständiger Wasserwirtschaftsamt

Deggendorf, den 30/05/13

Dr. Schramm Oberregierungsrat

Bauherr: Konrad Müller, Poschinger Hütte 5, 93471 Arnbruck

Hydraulische Berechnung

Variante B: 100% des verbleibenden Restwassers werden über das bestehende Sägewasserrad geleitet

Berechnung der Schützöffnung 8.)

> Berechnung gem. Schneider Bautabellen für Ingenieure, 19. Auflage Kapitel 3.6.10 c) Vollkommener Ausfluss unter Schütz

Vorgaben:	Mittelwasserabfluß	MO =	1200 l/s
Volgaboli.	MILLOWASSOCIASIAIS	IVICK	1200 113

mittlerer Niedrigwasserabfluß, MNQ =		
Restwassermenge über Fischtreppe, MNQ*5/12=	167 l/s	
ergänzende Restwassermenge, Q _{erf.} =	233 l/s	
Wasserspiegel = 500,44	m üNN	
Einlaufsohle Sägewasserrad = 499,58	3 m üNN	
Stauhöhe h =	0,86 m	

Breite des Schützes, b = 1,40 m

Berechnung: $Q = \mu * a * b * \sqrt{(2g * h)}$

μ = Abflußbeiwert für senkrechte scharfkantige Schütz

a = Öffnungshöhe des Schütz 0,064 m g = Erdbeschleunigung 9,81 m/s²

Abflußbeiwert gemäß Tabelle (Schneider Bautabellen):

h/a = 0.86/0.064 = 13.40,636

 $Q = \mu * a * b * \sqrt{2q * h}$ $Q = 0.636 * 0.064 * 1.40 * \sqrt{(2*9.81 * 0.86)}$

0,234 m³/s $Q >= Q_{erf.}!$

erforderliche Schützöffnungshöhe:

h >= 0.064 m

Zur Erreichung der erforderlichen Restwassermenge ergeben sich keine planerischen Änderungen der Ausleitungsstelle und der Schützanlagen.

Deggendorf, 07.08.2012

Im wasserrechtl. Verfahren geprüft Amtl. Sachverständiger Wasserwirtschaftsamt

Oberregierungsrat

Bauherr: Konrad Müller, Poschinger Hütte 5, 93471 Arnbruck

Hydraulische Berechnung

Variante C: 50% des verbleibenden Restwassers werden über das bestehende Mühlenwasserrad geleitet

9.) Berechnung der Schützöffnung

> Berechnung gem. Schneider Bautabellen für Ingenieure, 19. Auflage Kapitel 3.6.10 c) Vollkommener Ausfluss unter Schütz

Vorgaben:	Mittelwasserabfluß, MQ =	1200 l/s

mittlerer Niedrigwasserabfluß, MNQ =		400 l/s
Restwassermenge über Fischtreppe, MNQ*5/1	2=	167 l/s
ergänzende Restwassermenge, Q _{erf.} =		233 l/s
Wasserspiegel =	500,44	m üNN
Einlaufsohle Mühlrad =	499,62	m üNN
Stauhöhe h =		0,82 m

Breite des Schützes, b = 1.05 m

 $Q = \mu * a * b * \sqrt{(2g * h)}$ Berechnung:

μ = Abflußbeiwert für senkrechte scharfkantige Schütz

a = Öffnungshöhe des Schütz 0,042 m g = Erdbeschleunigung 9,81 m/s²

Abflußbeiwert gemäß Tabelle (Schneider Bautabellen):

h/a = 0.82/0.042 = 19.50,67

 $Q = \mu * a * b * \sqrt{2g * h}$ $Q = 0.67 * 0.042 * 1.05 * \sqrt{(2*9.81 * 0.82)}$

0,118 m3/s Q >= 50% Qert. !

erforderliche Schützöffnungshöhe:

h >= 0.042 m

Die restlichen 50% des verbleibenden Restwassers werden über das bestehende Sägewasserrad geleitet.

Deggendorf, 07.08.2012

Im wasserrechtl. Verfahren geprüft Amtl. Sachverständiger Wasserwirtschaftsamt

Oberregierungsrat

Bauherr: Konrad Müller, Poschinger Hütte 5, 93471 Arnbruck

Hydraulische Berechnung

Variante C: 50% des verbleibenden Restwassers werden über das bestehende Sägewasserrad geleitet

10.) Berechnung der Schützöffnung

Berechnung gem. Schneider Bautabellen für Ingenieure, 19. Auflage Kapitel 3.6.10 c) Vollkommener Ausfluss unter Schütz

	,	
Vorgaben:	Mittelwasserabfluß, MQ =	1200 l/s

COMMISSION CONTRACTOR OF CONTRACTOR CONTRACT	
mittlerer Niedrigwasserabfluß, MNQ =	400 l/s
Restwassermenge über Fischtreppe, MNQ*5/12=	167 l/s
ergänzende Restwassermenge, Q _{erf.} =	233 l/s
Wasserspiegel = 500	,44 m üNN
Einlaufsohle Mühlrad = 499	,58 m üNN
Stauhöhe h =	0.86 m

Stauhöhe h = 0,86 m
Breite des Schützes, b = 1,40 m

Berechnung:
$$Q = \mu * a * b * \sqrt{(2g * h)}$$

μ = Abflußbeiwert für senkrechte scharfkantige Schütz

a = Öffnungshöhe des Schütz0,028 mg = Erdbeschleunigung9,81 m/s²

Abflußbeiwert gemäß Tabelle (Schneider Bautabellen):

Q =
$$\mu$$
 * a * b * $\sqrt{(2g * h)}$
Q = 0,74 * 0,028 * 1,40 * $\sqrt{(2*9,81*0,86)}$
Q >= 50% Q_{eff} !

erforderliche Schützöffnungshöhe:

h >= 0,028 m

Die restlichen 50% des verbleibenden Restwassers werden über das bestehende Mühlenwasserrad geleitet.

Deggendorf, 07.08.2012

Im wasserrechtl. Verfahren geprüft Amtl. Sachverständiger Wasserwirtschaftsamt

Dr. Schramm Oberregierungsrat

"AMIANTIT

Amitech Germany GmbH Am Fuchsloch 19 04720 Mochau, OT Großsteinbach (bei Döbeln / Sachsen)

Telefon: ++ 49 (0) 3431 7182 - 0

Dawin:

07.05.2009 Jochen Auer

Ceolatsleiter: Michil:

0174-9077771

0911-2527953 0911-2527952

Es liegen folgende Ausgangsdaten vor:

Wassermenge:

Q = 1600 - 1900 l/s max.

Fallhöhe:

h = 10 m

Leitungslänge:

L = 251 mtr

Berechnungsgrundlage:

1600 l/s

Nennweite

DN 1200

1600 l/s 1900 l/s DN 1300 DN 1300

Fließgeschwindigkeit v Verlustgefälle J

1,44 m/s 1,71 m/s1,04 m/km 1,44 m/km 0,36

1,23 m/s1,46 m/s 0.71 m/km0.97 m/km

Druckverlust hv m/ws

0,26 0,0256

0,18 0,0175 0,24 0,0239

Berechnungsgrundlage:

Hy/bar

1600 l/s

1900 l/s

0,0355

1900 l/s

DN 1200

Nennweite

DN 1400

DN 1400

Fließgeschwindigkeit v

1,06 m/s

1,26 m/s

Verlustgefälle J

0.49 m/km0.12

14.06.2010

0.68 m/km

Druckverlust hv m/ws Hy/bar

0,0121

0,17 0,0167

Mit freundlichen Grüßen


Amitech Germany EmbH

Konrad Müller

Zimmerei - Treppenbau Poschinger Hütte 5 • Tel. 09945/2500

93471 Arnbruck

	nterschritter othbach/Böb		Hauptwerte Rothbach/Böbrachmühle
Unter-schreitungs-	Abfluss Pegel Lohberg/weisser Regen	Abfluss Rothbach/Böbra chmühle	MQ: 1,2 m³/s MNQ: 0,4 m³/s
	0,28	0,2968	HQ100: 50 m ³ /s
15			*.
30	0,48	0,5088	li l
60		0,6042	Vertrauensbereich 20 %
90		0,6996	
120		0,7844	
150	0,83	0,8798	4
183		0,9964	
210		1,1342	
240		1,3144	
270		1,5688	
300		1,9398	
330	-	2,5652	
350		3,5616	
357	-	4,4944	
360		5,3424	
362		6,2646	
364	8,11	8,5966	

