

Erschließung eines Nassabbaus zur Gewinnung von Sand und Kies östlich von Grafenrheinfeld

Untersuchung der Staubimmissionen durch den Fahrverkehr auf den geplanten Transportrouten im Nahbereich der Abbauflächen

Auftraggeber: Glöckle GmbH

Wirsingstraße 15 97424 Schweinfurt

Berichtsnummer: L0525.011.02.002

Dieser Bericht umfasst 42 Seiten Text und 30 Seiten Anhang.

Höchberg, 01.03.2022

B. Sc. T. Pillhofer

Bearbeitung

Dr. rer. nat. M. Barthel

Prüfung und Freigabe / fachliche Verantwortung

Änderungsindex

		Geänderte	Hinzugefügte	
Version	Datum	Seiten	Seiten	Erläuterungen
001	02.11.2021	-	-	Erstellung
002	01.03.2022	-	-	Ergänzung Immissionsorte IO 3 – IO 5

Berichtsnummer

L0525.011.02.002

Inhaltsverzeichnis

1	1 Aufgabenstellung	3
2	2 Unterlagen, Abkürzungen	4
	2.1 Unterlagenverzeichnis2.2 Abkürzungsverzeichnis	
3	3 Örtliche Situation	6
4	4 Vorgehensweise und Beurteilungsgrundlagen	9
	 4.1 Schutz der menschlichen Gesundheit	
5	5 Ermittlung der Emissionen	11
	5.1 Vorhabenbeschreibung	
6		
7	7 Immissionsberechnung	
8	8 Ergebnisse	
	 8.1 Zusatzbelastung 8.2 Vorbelastung 8.3 Gesamtbelastung 	
9	9 Bewertung	42

Berichtsnummer L0525.011.02.002

Anhang

Planunterlagen	
Übersichtslageplan mit Eintrag der Immissionsorte	A1
Lageplan Abbauabschnitte	
Liste der Eingabedaten	A3
AUSTAL2000 .log-Datei PM2.5	
AUSTAL2000 .log-Datei PM10 und TSP	

1 Aufgabenstellung

Zur Sicherstellung der regionalen Versorgung des Oberzentrums Schweinfurt mit Verflechtungsbereichen mit Sand und Kies strebt die Firma Glöckle GmbH & Co. KG eine Erweiterung der Rohstoffgewinnungsflächen im Raum Schweinfurt in der Nähe zum bestehenden Kieswerk im Gemeindegebiet Grafenrheinfeld an. Um den Bedarf an Sand und Kies in der Region weiterhin zu sichern, beantragt die Firma Glöckle die Förderung von Sanden und Kiesen im Nassabbauverfahren auf einer Fläche von rd. 45,3 ha. In diesem Zusammenhang soll ein Zwischenlager für Abraum auf einer ehemaligen, als Ackerfläche rekultivierten, angrenzenden Abbaufläche mit einer Fläche von rd. 1,9 ha eingerichtet werden. Das gesamte Vorhabengebiet umfasst somit 47,2 ha. Das entsprechende Raumordnungsverfahren wurde erfolgreich abgeschlossen.

Aufgrund der derzeit noch nicht absehbaren Flächenverfügbarkeit kann der Abtransport von Sand und Kies ab Abbaustelle bis in das an der Gochsheimer Straße gelegene Werksgelände nicht wie ursprünglich geplant mittels Bandstraße garantiert werden. Im Rahmen der vorliegenden Untersuchung sollen die Staubimmissionen durch das "worst-case-Szenario" für den Materialtransport sowie das Einbringen von Verfüllmaterial mittels Lkw untersucht werden.

Die durch den Fahrverkehr zum Abtransport von Sand und Kies sowie zur Verfüllung bereits abgebauter Bereiche zu erwartenden Staubimmissionen im Nahbereich der geplanten Transportrouten sollen – insbesondere im angrenzenden Natura 2000-Gebiet "Maintal zwischen Schweinfurt und Dettelbach" sowie auf gemäß Flächennutzungsplan möglichen Wohnbauflächen östlich von Grafenrheinfeld – durch eine Ausbreitungsrechnung ermittelt und anhand der Immissionswerte der TA Luft beurteilt werden. Ggf. sind zur Einhaltung der Immissionswerte erforderliche Minderungsmaßnahmen aufzuzeigen.

2 Unterlagen, Abkürzungen

2.1 Unterlagenverzeichnis

Nr.	Dokument/Quelle	Bezeichnung / Beschreibung
1	arc.grün landschaftarchitekten.stad tplaner gmbh, Kitzingen	Planunterlagen Unterlagen Raumordnungsverfahren Landesplanerische Beurteilung vom 30.10.2019 Lageplan, Vorgangszahlen, Jahresdurchsatzmengen
2	Glöckle GmbH, Schweinfurt	Vorhabenträger
3	BImSchG	Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz - BImSchG), Neugefasst durch Bekanntmachung vom 17.5.2013, Geändert durch Art. 1 des Gesetzes vom 2.7.2013
4	39. BImSchV	39. Verordnung zur Durchführung des Bundes- Immissionsschutzgesetzes (39. BImSchV). Verordnung über Luftqualitätsstandards und Emissionshöchstmengen, 02.08.2010
5	TA Luft	Technische Anleitung zur Reinhaltung der Luft (TA Luft)
		Erste Allgemeine Verwaltungsvorschrift zum Bundes- Immissionsschutzgesetz, 24.07.2002
6	EU-Nonroad-Richtlinie 97/68/EG	Directive 97/68/EC of the European parliament and of the council on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery, 16.12.1997, zuletzt geändert durch 2012/46/EU
7	VDI 3790, Blatt 2	VDI Richtlinie 3790: Umweltmeteorologie: Emission von Gasen, Gerüchen und Stäuben aus diffusen Quellen. Blatt 2: Deponien 06/2017
	VDI 3790, Blatt 3	VDI Richtlinie 3790: Umweltmeteorologie: Emission von Gasen, Gerüchen und Stäuben aus diffusen Quellen. Blatt 3: Lagerung, Umschlag und Transport von Schüttgütern, 01/2010
	VDI 3790, Blatt 4	VDI Richtlinie 3790: Umweltmeteorologie: Emission von Gasen, Gerüchen und Stäuben aus diffusen Quellen. Blatt 4: Staubemissionen durch Fahrzeugbewegungen auf gewerblichem/industriellem Betriebsgelände, 09/2018
8	VDI 3945, Blatt 3	VDI Richtlinie 3945: Umweltmeteorologie, Atmosphärische Ausbreitungsmodelle. Blatt 3: Partikelmodell, 09/2000.
9	HBEFA 4.1	Handbuch Emissionsfaktoren des Straßenverkehrs 4.1, erarbeitet durch INFRAS AG Bern/CH, 28.06.2019
10	European Environment Agency, EMEP / EEA	Air pollutant emission inventory guidebook 2013.

Berichtsnummer

L0525.011.02.002

11	Environmental Protection Agency, USA	Compilation of air pollutant emission factors, Volume I: stationary point and area sources. AP-42, Fifth Edition, January 1995.
12	Betriebliche Umweltdatenberichterstatt ung (BUBE)	Fachhilfe zur Emissionsberechnung (11. BImSchV), Emissionsspektren und Emissionsfaktoren, Version 2.2 vom 01.12.2016
13	Bundesministerium f. Wirtschaft, Familie u. Jugend, Wien, Österreich	Technische Grundlage zur Beurteilung diffuser Staubemissionen, Wien 2013
14	HLNUG, Wiesbaden	Luftmessnetz Hessen: http://www.hlnug.de/start/luft/luftmessnetz.html
15	HLNUG, Wiesbaden	Lufthygienische Jahresberichte 2015 - 2020. Hessisches Landesamt für Naturschutz, Umwelt und Geologie, Teil I: Kontinuierliche Messungen. Wiesbaden.
16	Bayerisches Landesamt für Umwelt, Augsburg	Lufthygienisches Landesüberwachungssystem Bayern (LÜB): http://www.lfu.bayern.de/luft/index.htm
17	Bayerisches Landesamt für Umwelt, Augsburg	Lufthygienische Jahresberichte 2016 - 2020. Bayerisches Landesamt für Umwelt, Augsburg.
18	Düring et al., 2014	Düring, I., Sörgel, C., 2014: Anwendung der Richtlinie VDI 3790 Blatt 3 in der Praxis. Gefahrstoffe – Reinhaltung der Luft, 1/2, 2014.
19	Wölfel Engineering GmbH + Co. KG, Höchberg	"IMMI" Release 20210722, Programm zur Schallimmissionsprognose, geprüft auf Konformität gemäß den QSI-Formblättern zu VDI 2714:1988-01, DIN ISO 9613-2:1999-10, Schall 03: 1990/2015, RLS-90:1990, VDI 2720 Blatt1:1997-03
20	Ingenieurbüro Janicke, Überlingen	"AUSTAL2000", Version 2.6: Programmsystem zur Berechnung der Ausbreitung von Schadstoffen und Geruchsstoffen gemäß VDI $3945-3$.
21	IfU GmbH, Frankenberg	Detaillierte Prüfung der Repräsentativität meteorologischer Daten nach VDI Richtlinie 3783 Blatt 20 für Ausbreitungsrechnungen nach TA Luft an einem Anlagenstandort in Grafenrheinfeld, DPR.20210702-01, 28. Juli 2021
22	Institut für Faunistik, Heiligkreuzsteinach	Erweiterung der Abbauflächen von Sand und Kies in Grafen- rheinfeld (BY) FFH-Verträglichkeitsprüfung Natura 2000-Gebiet Nr. 6027-471 "Maintal zwischen Schweinfurt und Dettelbach"

2.2 Abkürzungsverzeichnis

Abkürzung	Bedeutung
J00	Jahresmittelwert der Konzentration/Geruchstundenhäufigkeit
PM2.5	Massenfraktion der luftgetragenen Partikel, die einen Einlass mit einer 50 %igen
	Abscheideeffizienz bei 2.5 µm aerodynamischem Durchmesser passiert
PM10	Massenfraktion der luftgetragenen Partikel, die einen Einlass mit einer 50 %igen
	Abscheideeffizienz bei 10 μm aerodynamischem Durchmesser passiert
T00/T35	Maximaler Tagesmittelwert ohne bzw. mit 35 Überschreitungen pro Jahr
TSP	Gesamtstaub (Total Suspended Particles)

Örtliche Situation

Planungsabsicht/Vorhaben

Zur Sicherstellung der regionalen Versorgung des Oberzentrums Schweinfurt mit Verflechtungsbereichen mit Sand und Kies strebt die Firma Glöckle GmbH & Co. KG eine Erweiterung der Rohstoffgewinnungsflächen im Raum Schweinfurt in der Nähe zum bestehenden Kieswerk im Gemeindegebiet Grafenrheinfeld an.

Um den Bedarf an Sand und Kies in der Region weiterhin zu sichern, beantragt die Firma Glöckle die Förderung von Sanden und Kiesen im Nassabbauverfahren auf einer Fläche von rd. 45,3 ha. In diesem Zusammenhang soll ein Zwischenlager für Abraum auf einer ehemaligen, als Ackerfläche rekultivierten, angrenzenden Abbaufläche mit einer Fläche von rd. 1,9 ha eingerichtet werden. Das gesamte Vorhabengebiet umfasst somit 47,2 ha.

Geographische Lage/Standort

Das Vorhabengebiet liegt im Gemeindegebiet Grafenrheinfeld, südwestlich der Stadt Schweinfurt im Naturraum Schweinfurter Becken - Maintalaue. Es erstreckt sich zwischen der Siedlungsbebauung Grafenrheinfelds im Westen und dem Vogelschutzgebiet "Maintal zwischen Schweinfurt und Dettelbach" sowie Bereichen ehemaliger Rohstoffgewinnungsfelder und Baggerseen im Osten. Nach Norden grenzt die Kreisstraße SW 3 (Gochsheimer Straße). Im Süden schließen weitere Ackerflächen an.

Flächennutzung/tatsächliche Nutzung

Das hier beantragte Abbaugebiet mit einer Gesamtfläche von rd. 47,2 ha unterliegt bisher ausschließlich einer landwirtschaftlichen Nutzung.

Hierbei entfallen rd. 45,9 ha auf intensiv landwirtschaftlich genutzte Flächen (Acker- und Grünlandnutzung). Der verbleibende Flächenanteil verteilt sich auf Wege- und Straßenflächen und sonstige Überbauungen (Scheunen) inklusive angrenzender Saumbereiche sowie kleinflächige Gehölzbereiche im Randbereich des geplanten Erdlagers.

Das Vorhabengebiet weist eine sehr flache Morphologie in einer Höhenlage von ca. 205 m ü. NN auf. Die Haupterschließung der Flächen erfolgt über zwei befestigte Ost-West verlaufende Wirtschaftswege (Kapellenweg, Fronseeweg). Über weitere Grün- und Schotterwege erfolgt in Teilbereichen eine kleinräumigere Erschließung der landwirtschaftlichen Nutzflächen. Zwei sich am nördlichen Wirtschaftsweg (Kapellenweg) gegenüberstehende Scheunen dienen als landwirtschaftliche Lagerräume.

Im Weiteren wird das Gebiet von einer 20-kV- und einer 110-kV- Stromleitung überspannt. Der südliche Teil des Abbaugebietes wird von letztgenannter Leitung lediglich überspannt, da die Maststandorte außerhalb des Plangebietes liegen. Dagegen durchläuft die 20-kV-Leitung den nördlichen Abbaubereich von Ost nach West. Auch durchläuft eine unterirdische Leitungstrasse, bestehend aus Steuerkabeln (Glasfaser) und Leerrohren, mit einer Länge von rd. 550 m den nördlichen Abbaubereich in Nord-Süd-Richtung.

Die ursprünglichen Planungen sahen den Transport des Abbaumaterials mittels Bandstraßen zum nördlich gelegenen Kieswerk an der Gochsheimer Straße vor. Im Rahmen der vorliegenden Untersuchung sollen auf Grund der derzeit nicht absehbaren Flächenverfügbarkeit die Auswirkungen des alternativ geplanten Materialtransports mittels LKW auf den bestehenden Feld- und Wirtschaftswegen untersucht werden. Die Betrachtung des Anlagengesamtbetriebs ist nicht Gegenstand der vorliegenden Untersuchung. Die im Zusammenhang mit dem Kiesabbau und der Verfüllung bereits abgebauter Bereiche zu erwartenden Staubimmissionen werden zur Berücksichtigung einer erhöhten Vorbelastung dennoch überschlägig modelliert.

 $\begin{array}{c} \text{Berichtsnummer} \\ L0525.011.02.002 \end{array}$

Die Staubimmissionen werden flächendeckend im Bereich des östlich der Fahrwege liegenden Natura 2000-Gebiet ermittelt und beurteilt. Zusätzlich wird der Immissionsanteil an fünf maßgeblichen Immissionsorten östlich des Ortsrands von Grafenrheinfeld ermittelt. Die nächstgelegenen Immissionsorte IO 1 und IO 2, an welchen der Flächennutzungsplan mögliche Wohnbauflächen vorsieht, sind durch einen 150 m breiten Pufferstreifen von den Abbauflächen getrennt.

IO 1	WA FLNP Nord	FlNr. 1645	WA
IO 2	WA FLNP Mitte	FlNr. 869	WA
IO 3	BPlan Altmainschleife Nord	FlNr. 3670	MI
IO 4	BPlan Kapellenweg III	FlNr. 1554/2	WA
IO 5	Kleingartenanlage	FlNr. 1744	MI

Für die maßgeblichen Immissionsorte werden die Staubimmissionen des zu beurteilenden Anlagenbetriebs ermittelt und detailliert dokumentiert. Weitere Immissionsorte in der Anlagenumgebung können anhand der flächenhaften Darstellung der Immissionskonzentration bewertet werden.

Die Koordinaten der Abbauflächen betragen im UTM-Netz in etwa:

Rechtswert:	32 586 723	bis	32 587 613
Hochwert:	5 539 140	bis	5 540 251
Höhe über NN:	ca. 202 m	bis	ca. 205 m

Einen Übersichtslageplan mit Darstellung der Immissionsorte und eines vereinfachten Höhenmodells zeigt Abbildung 1.

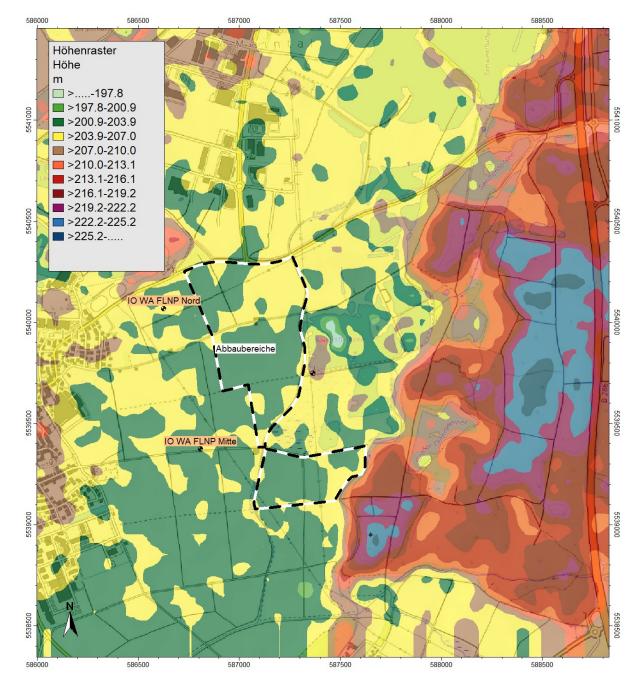


Abbildung 1: Übersichtslageplan mit Höhenmodell sowie des Abbaubereichs (schwarz-weiß-gestrichelt) und der maßgeblichen Immissionsorte.

4 Vorgehensweise und Beurteilungsgrundlagen

Durch den Anlagenbetrieb ist v. a. mit diffusen Staubemissionen durch Materialumschlag und Fahrbewegungen zu rechnen. Zur Abschätzung möglicher Beeinträchtigungen durch Staubimmissionen wird der zu erwartende Emissionsmassenstrom aus dem geplanten Fahrverkehr auf den Transportrouten zuzüglich der überschlägigen Vorbelastung aus dem Materialumschlag im Rahmen der Aufbereitung sowie der Verfüllung auf Grundlage der VDI-Richtlinie 3790, Blatt 3 und Blatt 4 /7/ ermittelt und dem Bagatellmassenstrom der TA Luft /5/ gegenübergestellt. Dies entspricht aus fachlicher Sicht dem worstcase-Szenario.

Der Bagatellmassenstrom für Staub aus diffusen Emissionen liegt nach Ziffer 4.6.1.1 der TA Luft bei 10 von Hundert des Bagatellmassenstroms für gerichtete Emissionsquellen. Dies entspricht einem Wert von 0,1 kg/h bzw. nach der Rundungsregel gemäß Ziffer 2.9 der TA Luft einem Massenstrom ≤ 0,149 kg/h. Bei Unterschreitung des Bagatellmassenstroms kann gemäß Nr. 4.1 der TA Luft davon ausgegangen werden, dass schädliche Umwelteinwirkungen durch die Anlage nicht ursächlich hervorgerufen werden.

Wird der Bagatellmassenstrom nach TA Luft überschritten, so sind die Staubimmissionen im Anlagenumfeld zu ermitteln.

Zur Beurteilung der Staubimmissionen wird auf die Immissionswerte der TA Luft zurückgegriffen. Die TA Luft unterscheidet zwischen der Vor- und Zusatzbelastung. Die Vorbelastung ist bei Betrachtung des Anlagengesamtbetriebs die ohne die zu untersuchende Anlage vorhandene Luftschadstoffbelastung. Die Zusatzbelastung ist die vom zukünftigen Gesamtbetrieb der Anlage ausgehende Belastung. Die Summe aus Vor- und Zusatzbelastung ist die prognostizierte Gesamtbelastung. Die Gesamtbelastung wird anhand von Immissionswerten (Jahres- sowie ggf. Kurzzeitmittelwerte) bewertet.

Die TA Luft unterscheidet zwischen folgenden Immissionswerten:

- 1. Immissionswerte zum Schutz der menschlichen Gesundheit (Nr. 4.2 der TA Luft)
- 2. Immissionswerte zum Schutz vor erheblichen Belästigungen oder erheblichen Nachteilen durch Staubniederschlag (Nr. 4.3 der TA Luft)
- 3. Immissionswerte zum Schutz vor erheblichen Nachteilen, insbesondere Schutz der Vegetation und von Ökosystemen (Nr. 4.4 der TA Luft)
- 4. Immissionswerte zum Schutz vor schädlichen Umwelteinwirkungen durch Schadstoffdeposition (Nr. 4.5 der TA Luft)

Die maßgeblichen Immissionswerte sind im Folgenden spezifiziert.

4.1 Schutz der menschlichen Gesundheit

Der Schutz vor Gefahren für die menschliche Gesundheit ist sichergestellt, wenn die ermittelte Gesamtbelastung die nachstehenden Immissionsgrenzwerte an keinem Beurteilungspunkt überschreitet.

	Mittelungszeitraum	Immissionsgrenzwert	Überschreitungen
Schwebstaub PM10	24 Stunden	$50 \mu g/m^3$	max. 35 pro Jahr
Schwedstaud I WHO	Jahr	$40 \mu g/m^3$	

Berichtsnummer L0525.011.02.002

4.2 Schutz vor erheblichen Belästigungen oder Nachteilen

Der Schutz vor erheblichen Belästigungen oder erheblichen Nachteilen durch Staubniederschlag ist sichergestellt, wenn die ermittelte Gesamtbelastung den in der nachfolgenden Tabelle bezeichneten Immissionsgrenzwert an keinem Beurteilungspunkt überschreitet.

	Mittelungszeitraum	Deposition
Staubniederschlag (nicht gefährdender Staub)	Jahr	$0.35 \text{ g/(m}^2 \cdot \text{d)}$

4.3 Irrelevanzregelungen

Gemäß Nr. 4.2.2 der TA Luft darf die Genehmigung nicht versagt werden, wenn die Kenngröße für die Zusatzbelastung durch die Emission der Anlage 3 % des Immissions-Jahreswertes nicht überschreitet. Für Schwebstaub (PM10) beträgt der Irrelevanzwert nach dieser Definition 1,2 μg/m³.

Der Irrelevanzwert für Staubniederschlag beträgt nach Nr. 4.3.2 der TA Luft 10,5 mg/(m²·d).

4.4 **Immissionsgrenzwert PM2.5**

Für die Feinstaubfraktion PM2.5 ist nach der aktuellen Fassung der TA Luft kein Beurteilungswert vorgesehen. Hier wird ersatzweise auf den Grenzwert der Neununddreißigsten Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (39. BImSchV) /4/ zurückgegriffen. Der zum Schutz der menschlichen Gesundheit definierte Immissionsgrenzwert beträgt:

	Mittelungszeitraum	Immissionsgrenzwert
PM2.5	Jahr	$25 \mu g/m^3$

5 Ermittlung der Emissionen

5.1 Vorhabenbeschreibung

Zur Sicherstellung der regionalen Versorgung des Oberzentrums Schweinfurt mit Verflechtungsbereichen mit Sand und Kies strebt die Firma Glöckle GmbH & Co. KG eine Erweiterung der Rohstoffgewinnungsflächen im Raum Schweinfurt in der Nähe zum bestehenden Kieswerk im Gemeindegebiet Grafenrheinfeld an.

Um den Bedarf an Sand und Kies in der Region weiterhin zu sichern, beantragt die Firma Glöckle die Förderung von Sanden und Kiesen im Nassabbauverfahren auf einer Fläche von rd. 45,3 ha. In diesem Zusammenhang soll ein Zwischenlager für Abraum auf einer ehemaligen, als Ackerfläche rekultivierten, angrenzenden Abbaufläche mit einer Fläche von rd. 1,9 ha eingerichtet werden. Das gesamte Vorhabengebiet umfasst somit 47,2 ha.

Rohstoffgewinnung und Verfüllung

Die Rohstoffgewinnung ist als rotierender Abbaubereich innerhalb des gesamten Abbaugebietes zu beschreiben. Pro Jahr wird auf einer Fläche von ca. 2 ha Sand und Kies gewonnen. Insgesamt wird die Abbaufläche sowie die um jeweils rund ein Jahr verzögert stattfindende Verfüllung und Rekultivierung einen Gesamtumfang von ca. 6 ha nicht überschreiten.

Bei der Rohstoffgewinnung soll das Vorkommen von Sand und Kies bis in eine Tiefe von ca. 8 m u. GOK zur anstehenden Schicht des Unteren Keupers gewonnen werden.

Gewinnungsprozess

Das Abbaukonzept sieht vor, dass der nördlichste Teil des Gebiets (BA-A) in der Nähe des bestehenden Kieswerkes zuerst erschlossen wird. Danach erfolgt der sukzessive Gewinnungsprozess je nach Flächenverfügbarkeit auf den weiteren Flurstücken des gesamten Abbaugebietes.

Die Sand- und Kiesgewinnung erfolgt anfangs bzw. je nach verfügbaren Flächenzuschnitt mit einem Langstielbagger. Sobald eine wirtschaftlich sinnvoll zusammenhängende Abbaufläche erschlossen ist, erfolgt der Abbau mittels Saugbagger. Über ein Schwimmrohr wird das Rohmaterial (Gemisch aus Sand, Kies und Wasser) dem Schöpfrad am Rande der Abbaustätte zugeführt. Dort werden lagerstätteneigene Feinanteile von Sand- und Kiesanteilen getrennt und verbleiben am Abbaustandort. Tagesaktuelle Haufwerke aus Sand und Kies werden mittels Radlader auf LKWs verladen und in das bestehende Kieswerk verbracht. Eine weitere Aufbereitung (Siebung/Waschung) des gewonnenen Rohmaterials erfolgt ausschließlich innerhalb dieses Kieswerks und ist somit kein Bestandteil der vorliegenden Antragsunterlagen.

Umgang mit Abraum

Die Baufeldräumung erfolgt mittels Langstielbagger. Der Abtrag, der Transport sowie die Lagerung erfolgt gemäß den Maßnahmen zum Bodenschutzkonzept. Abzuräumender Unterboden, welcher unterhalb des Grundwasserstandes liegt, wird mittels Sieblöffel abgetragen. Hierbei ist ein Abtropfen des Baggergutes sichergestellt und es werden keine reinen Grundwassermengen entnommen.

Mit Beginn der Baufeldräumung auf den ersten zwei Hektar Abbaufläche wird der Ober- und bindige Unterboden in seitlichen Erdmieten (Einwallung des Abbaubereichs) gelagert sowie zu Teilen veräußert, da dieser im vorliegenden Umfang für die künftigen Rekultivierungsziele im BA-A nicht benötigt wird.

Der Abraum der hierauf folgenden zwei Hektar Abbaufläche wird auf dem Erdzwischenlager (Fl. Nr. 2008 und 2008/3) sowie ebenfalls in seitlichen Erdmieten gelagert. In den nachfolgenden Abbauabschnitten wird für die Rekultivierung /Wiederherstellung der oberen Bodenschichten der Abraum des jeweils anschließenden Abbaubereichs sowie das Erdmaterial aus der rückzubauenden Einwallung verwendet.

Hiermit entsteht eine rotierende Umlagerung der oberen Bodenschichten zur Rekultivierung der landwirtschaftlichen Nutzflächen innerhalb des Abbaugebietes. Lange Lagerzeiten der Erdmassen können so zu großen Teilen vermieden werden.

Verfüllung

Die Verfüllung mit externem Material (Z0) erfolgt bis Oberkante des ursprünglichen Sand- und Kiesvorkommens. Hiermit wird die Anbindung des Grundwassers an die oberen Bodenschichten (bindiger Unterboden und Oberboden) gewährleistet, da das Sand- und Kiesvorkommen unterhalb des hiesigen Grundwasserstandes liegt.

Der Antransport der Verfüllmaterials zur Nassverfüllung (Z0) erfolgt über die Kreisstraße SW3 (Gochsheimer Straße) in das bestehende Werksgelände der Antragstellerin.

Der im Rahmen der vorliegenden Untersuchung als Alternative zum geplanten Materialtransport mittels Bandstraße zu untersuchende Fahrverkehr verläuft ausgehend vom Anlagengelände des Kieswerks an der Gochsheimer Straße zunächst über das Grundstück mit der Fl.-Nr. 2008/3 unmittelbar südwestlich des Kieswerks. Die Erschließung der Abbauabschnitte A und B erfolgt unmittelbar nach Verlassen des Grundstücks mit der Fl.-Nr. 2008/3 in westlicher Richtung über den befestigten Kapellenweg. Die weiter südlich gelegenen Abbauabschnitte C und D werden zunächst über den ebenfalls befestigten Flurweg Fl.-Nr. 883 nach Süden und dann je nach Abbaufortschnitt über unbefestigte Wege in die jeweiligen Abbauabschnitte erschlossen.

Als worst-case-Szenario wird der Fahrverkehr im Zusammenhang mit dem Abbau im südlich des Natura 2000-Gebiet gelegenen Abbauabschnitt D untersucht. Gemäß Betreiberangaben ist im Tagzeitraum zwischen 06:00 und 18:00 Uhr mit Lkw-Fahrten zu rechnen. Aus dem jährlichen Abbauvolumen von ca. 165.000 t ergeben sich unter Annahme einer Zuladung von ca. 25 t je 40t-Lkw ca. 6.600 Lkw pro Jahr für den Abtransport des abgebauten Materials. Legt man ca. 200 Arbeitstage zu Grunde, so ist von ca. 33 Lkw pro Tag auszugehen. Für die Verfüllung ist mit einem vergleichbaren Fahrzeugaufkommen zu rechnen, so dass insgesamt 66 Lkw pro Tag (jeweils Hin- und Rückfahrt, entsprechend 132 Fahrbewegungen pro Tag) in Ansatz gebracht werden.

Die Vorbelastung durch die Umschlag- und Aufbereitungsvorgänge im Bereich des an der Gochsheimer Straße gelegenes Kieswerks sowie durch die Verfüllung bereits abgebauter Bereiche wird explizit berücksichtigt. Ebenso wird die Vorbelastung durch den Fahrverkehr landwirtschaftlicher Fahrzeuge auf den bestehenden Flurwegen im Nahbereich der Abbauabschnitte berücksichtigt. Hierfür wird von rund 12 Fahrten pro Arbeitstag ausgegangen.

Die Jahresdurchsatzleistungen sind gemäß Betreiberangaben /1/ wie folgt anzusetzen:

Output Tagebauprodukte "Kies" 165.000 t/a Input Verfüllmaterial "Erdaushub" 165.000 t/a

Eine Übersicht über die Abbaubereiche und Transportrouten zeigt Abbildung 2:

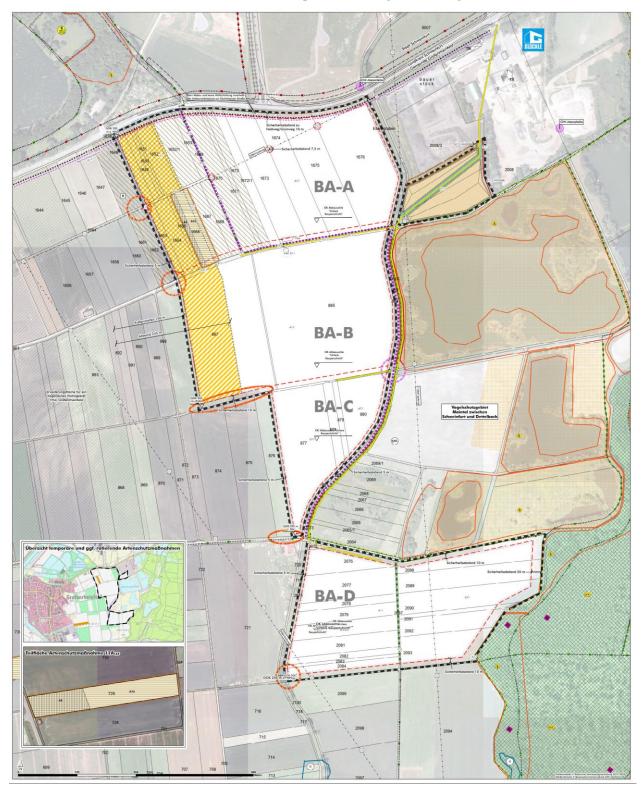


Abbildung 2: Lageplan Abbaubereiche, Quelle: arc.grün /1/.

5.2 Betriebszeiten

Gemäß Planerangaben /1/ ist die Regelbetriebszeit des Kies- und Sandabbaus mit den Betriebszeiten des angrenzenden Werksgeländes gleichzusetzen. Dementsprechend erfolgt der Abbau- bzw. Verfüllbetrieb Mo – Sa von 06:00 bis 18:00 Uhr.

Im Rahmen der vorliegenden Untersuchung werden die Betriebszeiten der Anlage wie folgt angenommen:

	Tage	Wochentage	Uhrzeit
Ganzjährig	ca. 240 Tage	Mo Fr.	ca. 06:00 – 18:00 Uhr
	ca. 48 Tage	Sa.	ca. $06:00 - 18:00$ Uhr

Die Anzahl von ca. 240 + 48 = 288 Arbeitstagen ergibt sich aus der Gesamtzahl von 365 Tagen pro Jahr abzüglich Sonn- und Feiertagen und unter Berücksichtigung einer witterungsbedingten zwei- bis vierwöchigen arbeitsfreien Zeit. Insgesamt ergeben sich ca. 3.456 Betriebsstunden pro Jahr. Die o.g. Annahme deckt auch ein Betriebsszenario mit abweichender Anzahl an Arbeitstagen ab, da sich dann die Emissionsmassenströme pro Zeiteinheit entsprechend verändern.

5.3 Übersicht der emissionsrelevanten Vorgänge

Durch den Fahrverkehr, bei den Umschlag- und Aufbereitungsvorgängen von abgetrocknetem Abbaumaterial sowie durch die Verfüllung bereits abgebauter Bereiche werden v. a. diffuse Staubemissionen freigesetzt. Gefasste Emissionen in Form von Auspuffemissionen der LKW und der Baumaschinen sind gemäß Erfahrungswerten demgegenüber vernachlässigbar und werden nicht explizit berücksichtigt.

Gasförmige Emissionen, z. B. durch den Betrieb der LKW, der Aggregate sowie der Baumaschinen werden ebenfalls als vernachlässigbar eingestuft.

Die nachfolgend aufgelisteten Vorgänge sind Gegenstand des Betriebsablaufs. Die in Klammern gesetzten Vorgänge tragen dabei auf Grund der außergewöhnlich hohen Materialfeuchte, die sich durch den Nassabbau bzw. die Nassaufbereitung ergibt, nicht zu den Staubemissionen bei und werden nur informativ aufgezeigt.

- 1. Allgemeiner Anlagenverkehr
 - LKW-Fahrten zum Abtransport der Endprodukte, sowie Anlieferung von Verfüllmaterial

2. Kiesabbau

- [Betrieb Vorsiebanlage Gewinnungsgerät]
- [Abwurf auf Transportband]
- [Abwurf von Transportband auf Halde]
- [Aufnahme mit Radlader]
- [Abwurf mit Radlader in Lkw]

3. Aufbereitung Kies

- Abkippen Lkw
- Aufnahme mit Radlader
- Abwurf in Aufgabetrichter Aufbereitung
- Betrieb Kiesaufbereitung (Siebanlage)
- Abwurf von Transportband
- Aufnahme mit Radlader
- Abwurf mit Radlader in Lkw

4. Verfüllung

- Abkippen Lkw
- Einschieben mit Kettenraupe

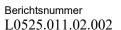
5.4 Berechnung der diffusen Staubemissionen durch Materialumschlag

Zur Berechnung der diffusen Staubemission ist gemäß Nr. 6.2.3 der VDI-Richtlinie 3790, Blatt 3 /7/ die "Staubneigung" des gehandhabten Materials zu verwenden. Sie wird in folgende 5 Klassen eingeteilt, wobei die Materialfeuchte und die Korngrößen die maßgeblichen Größen für die Einteilung darstellen:

Tabelle 1: Staubneigungsklassen gemäß VDI 3790, Blatt 3 /7/.

Klasse	Klasse Staubneigung	
0	außergewöhnlich feuchtes/staubarmes Gut	$\sqrt{10^0}$
2	Staub nicht wahrnehmbar	$\sqrt{10^2}$
3	schwach staubend	$\sqrt{10^3}$
4	(mittel) staubend	$\sqrt{10^4}$
5	stark staubend	$\sqrt{10^5}$

Das im Nassabbau geförderte Rohmaterial bedarf der Entwässerung und die entsprechenden Vorgänge werden folglich im Rahmen der vorliegenden Untersuchung nicht betrachtet.


Relevante Staubemissionen sind bei Umschlag- und Aufbereitungsvorgängen auf dem Anlagengelände des Kieswerks zu erwarten, sobald das Material auf Grund der Zwischenlagerung eine gewisse Materialfeuchte unterschreitet. Für das Abbaumaterial wird ab Erreichen des Kieswerks auf Grund der immer noch zu erwartenden Restfeuchte die Staubneigungsklasse 2, entsprechend der Staubneigung "Staub nicht wahrnehmbar", angenommen. Dies entspricht der nach VDI 3790, Blatt 3 für "Sand, feucht" vorgesehenen Staubneigung.

Für erdfeuchten Oberboden sieht die VDI 3790, Blatt 3 die Staubneigungsklasse 2 vor. Im Rahmen der vorliegenden Untersuchung wird auf der sicheren Seite liegend die Staubneigungsklasse 3, schwach staubend, für den Erdaushub, der als Verfüllmaterial in die bereits abgebauten Bereiche eingebracht wird, angesetzt.

Die verwendeten Parameter, die resultierenden Gewichtungsfaktoren a und die mittleren Schüttdichten gemäß VDI 3790, Blatt 3 sind in Tabelle 2 zusammengefasst:

Tabelle 2: Staubneigungsklasse und Gewichtungsfaktor a gemäß VDI 3790, Blatt 3 sowie mittlere Schüttdichte der gehandhabten Materialien.

Parameter	Abbaumaterial (Kies, feucht)	Erdaushub
Staubneigungsklasse nach VDI	2	2
Staubneigungsklasse, gewählt	2	3
Gewichtungsfaktor a	10	31,6
mittlere Schüttdichte ρ_s in t/m^3	1,7	1,7

Die Berechnung der Emissionsfaktoren der diffusen Staubemissionen für diskontinuierliche bzw. kontinuierliche Abwurfverfahren erfolgt gemäß VDI 3790, Blatt 3 nach

$$q_{norm} = a \cdot 2.7 \cdot M^{-0.5}$$
 bzw. $q_{norm} = a \cdot 83.3 \cdot \dot{M}^{-0.5}$

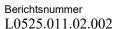
 q_{norm} steht für den normierten Emissionsfaktor, a ist der materialspezifische Gewichtungsfaktor, M bezeichnet die Abwurfmenge in [t/Abwurf] und \dot{M} den Mengenstrom bei kontinuierlichen Verfahren in [t/h]. Zur Festlegung eines individuellen Emissionsfaktors q_{AB} für den Abwurf von Schüttgütern gilt folgender allgemeiner Ansatz:

$$q_{AB} = q_{norm,korr} \cdot \rho_S \cdot k_U$$
 mit
$$q_{norm,korr} = q_{norm} \cdot k_H \cdot 0.5 \cdot k_{Ger\"{a}t}$$

 $q_{norm,korr}$ ist der korrigierte Emissionsfaktor, der die Faktoren k_H (Auswirkungsfaktor) und $k_{Gerät}$ (Geräte-Korrekturfaktor) berücksichtigt. ρ_s steht für die Schüttdichte in $[t/m^3]$ und k_U für den Umfeldfaktor.

Im folgenden Kapitel werden die Ergebnisse der Emissionsberechnungen für die relevanten Vorgänge inklusive der verwendeten Parameter tabellarisch zusammengefasst.

Für die gehandhabten Materialien sind in der nachfolgenden Tabelle die Jahresdurchsatzleistungen sowie die Staubneigungsklassen gemäß VDI 3790, Blatt 3 aufgeführt:


Tabelle 3: Staubneigungsklassen und Jahresdurchsätze der gehandhabten Materialien.

Material	Staubneigungsklasse	Jahresdurchsatz in t
Abbaumaterial Kies	2	165.000
Verfüllmaterial Erdaushub	3	165.000

Die emissionsrelevanten Vorgänge sind:

Tabelle 4: Emissionsrelevante Vorgänge.

ID-Nr.	Material	Vorgang
2.1	Kies	Abkippen LKW
2.2	Kies	Aufnahme mit Radlader
2.3	Kies	Abwurf in Aufgabetrichter Aufbereitung
2.4	Kies	Betrieb Kiesaufbereitung
2.5	Kies	Abwurf von Transportband
2.6	Kies	Aufnahme mit Radlader
2.7	Kies	Abwurf mit Radlader in LKW
3.1	Erdaushub	Abkippen LKW
3.2	Erdaushub	Einschieben mit Kettenraupe

Die zur Ermittlung der Staubemissionen verwendeten Ansätze und Annahmen sind im Folgenden zusammengefasst:

- Für das Abbaumaterial werden im Rahmen des Nassabbaus keine Staubemissionen angesetzt.
- Die in Tabelle 3 angegebenen Staubneigungsklassen beziehen sich ausschließlich auf die gehandhabten Stoffe. Die Staubneigung von Fahrwegen im Abbaubereich und auf dem Betriebsgelände wird separat über entsprechende Schluffauflagen (befestigte Fahrwege) bzw. über den Feinkornanteil (unbefestigte Fahrwege) berücksichtigt.
- Die Fahrgeschwindigkeiten der Lkw bzw. landwirtschaftlichen Zugmaschinen werden mit 30 km/h auf den Flurwegen sowie im Abbaubereich in Ansatz gebracht.
- Für den Abwurf durch die LKW werden eine Abwurfhöhe von 0,75 m und eine Masse von durchschnittlich 25 t / Abwurf angesetzt.
- Das Fassungsvermögen der Radlader-Schaufel wird mit 7 t und die Abwurfhöhe auf den LKW mit 1 m, gerechnet ab Ladekante, berücksichtigt.
- Entsprechend VDI 3790 Blatt 3 werden Umfeldfaktoren zur Berücksichtigung der Umgebungsbedingungen angesetzt. Für den Aufgabetrichter der Aufbereitungsanlagen wird ein Umfeldfaktor von 1 (Trichter nicht abgesaugt, praktisch ohne Seitenwände) angesetzt. Alle weiteren Vorgänge werden mit dem Faktor 0,9 (Halde, LKW geöffnet) berücksichtigt.
- Für das oberflächlich abgetrocknete Abbaumaterial Kies wird von der Staubneigung "Staub nicht wahrnehmbar" ausgegangen.
- Für das Verfüllmaterial Erdaushub wird von der Staubneigung "schwach staubend" ausgegangen.
- Der Anteil des Feinstaubs PM10 bzw. PM2.5 wird mit 40 % bzw. 32 % an der Gesamtstaubemission angesetzt. Dies entspricht aus fachlicher Sicht einer deutlich konservativen Vorgehensweise. Der verbleibende Anteil von 60 % wird der Korngrößenklasse PM_unbekannt (pm u) zugeordnet.
- Für die Aufbereitungsanlage auf dem bestehenden Anlagengelände an der Gochsheimer Straße wird eine Durchsatzleistung von 350 t/h angenommen.
- Die Emissionsfaktoren für den Betrieb der Brech- und Siebanlagen werden gemäß /12/ wie folgt angesetzt:
 - Sieben/Klassieren von festen trockenen Stoffen: 15 g/t
- Die Abwurfhöhe des Transportbands im Rahmen der Aufbereitung wird mit 4 m berücksichtigt.
- Der Einsatz der Kettenraupe zum Einschieben von Verfüllmaterial wird ersatzweise in Analogie zum Einsatz eines Radladers mit einer Aufnahmekapazität von 7 t angesetzt.

Eine Übersicht der Geometrie des Berechnungsmodells zeigt Abbildung 3:

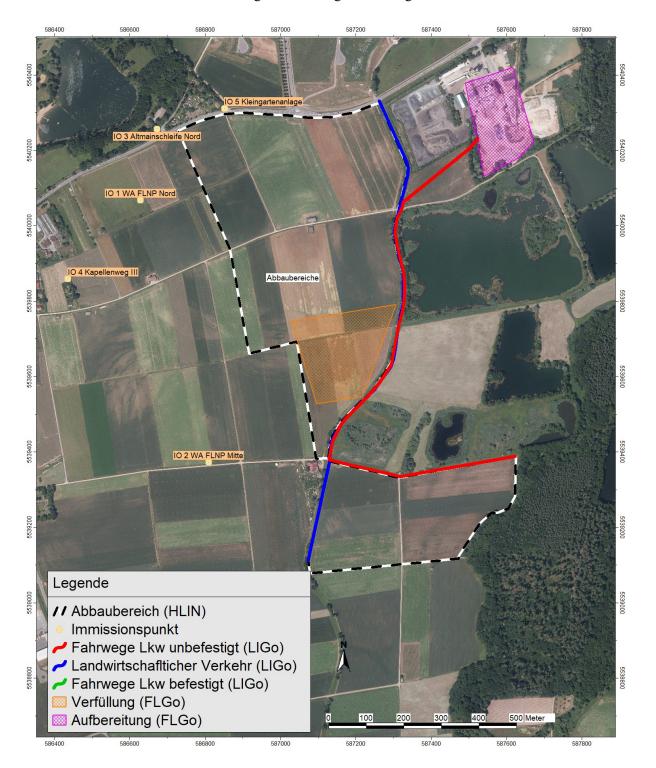


Abbildung 3: Geometrie Berechnungsmodell. Quelle Bildhintergrund: arc.grün /1/.

Für die betrachtete Anlage errechnen sich mit den zugrunde gelegten Jahresdurchsatzleistungen die in Tabelle 5 angegebenen Staubmassenströme:

rabelle 3 angegebellen	. ~	ш	uo	111	ubi	301	115		111	С.
[8] A\noissim3	8	168	254	716	3868	168	254	266	2286	8064
Emission/a [kg]	291	280	876	2475	13367	280	876	920	7902	27868
Winderung in %	0	0	0	0	0	0	0	0	0	
[1] siesdorobseidel	165000	165000	165000	165000	165000	165000	165000	165000	165000	
d₅p	1,8		5,3	15,0	81,0		5,3	5,6		
^{‡ne} b		3,5				3,5			47,9	
G norm,korr	1,2		3,2		53,0		3,2	3,8		
monP	5,4	2,4	10,2		44,5	2,4	10,2	17,1	32,2	
[^e m\t] ejrləibİtürləS	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	
Umfeldfaktor k∪	6'0	6′0	1		6′0	6′0	1	6'0	0,9	
Korrekturfaktor k _{Gerät}	1,5		1,5		1		1,5	1,5		
Auswirkungsfaktor k _H	0,29		0,42		2,38		0,42	0,29		
[m] əhönhuwdA	0,75		Ι		4		1	0,75		
Abwurfmasse [t/Hub bzw. t/h]	25	130	4		058	130		25	7	
Gewichtungsfaktor a	10	10	10	10	10	10	10	31,6	31,6	
leineteM	Kies	Kies	Kies	Kies	Kies	Kies	Kies	Oberboden	Oberboden	
Vorgang	Abkippen LKW K	Aufnahme mit Radlader	Abwurf in Aufgabetrichter Aufbereitung K	Betrieb Kiesaufbereitung K	Abwurf von Transportband K	Aufnahme mit Radlader	Abwurf mit Radlader in LKW	Abkippen LKW C	Einschieben mit Kettenraupe	Summe
N.	2.1	2.2	2.3	2.4	2.5	5.6	2.7	3.1	3.2	

Tabelle 5: Berechnungsparameter und Emissionen der emissionsrelevanten Vorgänge.

Die in Tabelle 5 wiedergegebene Genauigkeit der Staubemissionen ergibt sich rein rechnerisch und spiegelt nicht die tatsächliche Genauigkeit wieder. Die einzelnen Werte sind gerundet, weshalb sich bei der Summenbildung geringe Abweichungen ergeben können.

5.5 Staubemissionen durch den Fahrverkehr

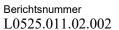
5.5.1 Allgemeines

Gemäß VDI 3790, Blatt 4 ist bei den Staubemissionen durch den Fahrverkehr zwischen befestigten und unbefestigten Fahrwegen zu unterscheiden. Unter einem befestigten Fahrweg versteht man einen Fahrweg, dessen Deckschicht dauerhaft gebunden ist (z. B. durch Bitumen oder Zement) und aus dem sich durch Abrieb oder Erosion nur irrelevante Mengen des Oberflächenmaterials lösen. Ein unbefestigter Fahrweg ist ein Fahrweg, dessen Oberflächenmaterialien nicht dauerhaft fest miteinander verbunden sind und deshalb leicht abgetragen werden können, z.B. verdichtete Erde, Kies oder Schotter.

Die Transportrouten für den Transport des Abbaumaterials sowie für die Verfüllung sind teilweise befestigt (entlang der Nord-Süd-Achse verlaufender Wirtschaftsweg parallel zum Natura 2000-Gebiet) und teilweise unbefestigt (entlang der Ost-West-Achse verlaufender Wirtschaftsweg nördlich von Abbauabschnitt D sowie Route südwestlich des Kieswerks an der Gochsheimer Straße).

Neben der Beschaffenheit der Fahrwege stellen die Fahrzeugmassen einen wesentlichen Faktor für die Ermittlung der Staubemissionen dar. Der Materialtransport im Zusammenhang mit dem geplanten Abbau sowie der Verfüllung erfolgt mittels 40t-Lkw. Als Vorbelastung sind auf den Fahrwegen landwirtschaftliche Zugmaschinen zu berücksichtigen. Die Fahrzeugmassen ergeben sich wie folgt:

Tabelle 6: Massen der eingesetzten Fahrzeuge.


Fahrzeug	Masse (leer) in t	Masse (beladen) in t	Mittlere Masse
Lkw	15,0	40,0	27,5
Zugmaschine mit Anhänger	8,0	18,8	13,4

Aus der Jahresdurchsatzleistung des zu bewegenden Materials und der Ladekapazität der jeweiligen Fahrzeuge wird die Anzahl der erforderlichen Fahrten berechnet. Mit Hilfe des digitalen Berechnungsmodells wird für die typischen Fahrbewegungen eine durchschnittliche Strecke abgeschätzt, welche durch Multiplikation mit der Anzahl der Fahrten die Gesamtstrecke der jeweiligen Fahrzeuge in km pro Jahr ergibt. Für die einzelnen Fahrstrecken wird zwischen unbefestigt und befestigt unterschieden.

Die ermittelten Fahrstrecken sind in Tabelle 7 zusammengefasst.

Tabelle 7: Eingangsparameter zur Ermittlung der fahrzeugbedingten Staubemissionen.

Fahrzeug	Material in t	Mittlere Beladung in t	Fahrten pro Jahr	Durchschn. Fahrstrecke in m
Unbefestigte Fahrwege				
Lkw Transport Abbaumaterial	165.000	25	6.600	1.520 ⁽¹⁾
Lkw Transport Verfüllmaterial	165.000	25	6.600	1.520 ⁽¹⁾
Befestigte Fahrwege	•			•

Lkw Transport Abbaumaterial	165.000	25	6.600	1.500 ⁽¹⁾
Lkw Transport Verfüllmaterial	165.000	25	6.600	1.500 ⁽¹⁾
Zugmaschinen Vorbelastung	-	10	3.200(2)	1.310

⁽¹⁾ Die Fahrstrecke berücksichtigt Hin- und Rückfahrt.

Die Staubemissionen in g/h werden jeweils unter der Annahme von 3.456 Stunden ermittelt und angesetzt (vgl. Abschnitt 5.2)

5.5.2 Staubemissionen auf unbefestigten Fahrwegen

Die Staubemissionen durch Fahrverkehr auf unbefestigten Fahrwegen setzen sich aus folgenden Beiträgen zusammen:

- a. Staubaufwirbelungen beim Fahren
- b. Reifen- und Bremsenabrieb
- c. Abrieb vom Straßenbelag
- d. Motoremissionen

Zu a.) und b.):

 k_M

Die Ermittlung der Staubemissionen durch Aufwirbelung beim Fahren sowie Reifen- und Bremsenabrieb auf unbefestigten Fahrwegen erfolgt gemäß der VDI-Richtlinie 3790, Blatt 4, Gl. 1. Demnach berechnet sich der Emissionsfaktor q_{uF} nach

$$q_{uF} = k_{Kgv} \cdot \left(\frac{s}{12}\right)^a \cdot \left(\frac{W}{2.7}\right)^b \cdot \left(1 - \frac{p}{365}\right) \cdot (1 - k_M)$$

mit

q_{uF} (in g/(km·Kfz))	Emissionsfaktor in Gramm pro Kilometer Fahrweg und Fahrzeug
k_{Kgv} (dimensionslos)	Faktor zur Berücksichtigung der Korngrößenverteilung (vgl. Tabelle 8)
a	korngrößenabhängiger Exponent (vgl. Tabelle 8)
b	Exponent (vgl. Tabelle 8)
s (in %)	Feinkornanteil $< 75~\mu m$ des Straßenmaterials (vgl. /7/, Tabelle 2)
W(in t)	Mittlere Masse der Fahrzeugflotte
p	Anzahl der Tage pro Jahr mit mindestens 1 mm natürlichem Niederschlag

Kennzahl für Wirksamkeit von Emissionsminderungsmaßnahmen

⁽²⁾ Annahme: 16 Fahrten pro Tag an 5 Tagen pro Woche und 40 Wochen pro Jahr ergeben 3.200 Fahrten pro Jahr.

Tabelle 8: Faktor kKgv und Exponenten a und b zur Berücksichtigung der Korngrößenverteilung.

Korngrößen in µm	PM2.5	PM10	PM30 (TSP)
k_{Kgv}	42	422	1.381
а	0,9	0,9	0,7
b	0,45	0,45	0,45

Die mittlere Anzahl der Niederschlagstage (Tage mit Niederschlagsmengen von mindestens 1,0 mm) wird auf Basis von langjährigen Messreihen abgeschätzt. Gemäß VDI 3790, Blatt 4, Abbildung A1 wurde im Bereich Grafenrheinfeld im Zeitraum von 1961 – 1990 an mindestens 110 Tagen vom Deutschen Wetterdienst eine entsprechende Niederschlagsmenge registriert.

Die Kennzahl zur Maßnahmenwirksamkeit k_M beträgt gemäß /7/ 0,5 für manuelle Befeuchtung (Befeuchtung mit Tankfahrzeug bzw. Vakuumfass von Betriebsbeginn bis Betriebsende mindestens alle drei Stunden mit 3 l/m²) und bis zu 0,8 für automatische Befeuchtungssysteme, die eine dauerhafte und gleichmäßige Befeuchtung der Fahrwege sicherstellen. Zusätzlich stellt eine Reduzierung der Fahrgeschwindigkeit eine Minderungsmaßnahme dar.

Im vorliegenden Fall ist keine Befeuchtung der Fahrwege vorgesehen. Auf den Transportwegen ist bei den Lkw und landwirtschaftlichen Zugmaschinen von Fahrgeschwindigkeiten bis 30 km/h auszugehen, weshalb auch hierfür keine Emissionsminderung anzusetzen ist

Für den Feinkornanteil wird in Abhängigkeit von der Anlagenart ein Wert von 5 bis 10 % angegeben. Im vorliegenden Fall wird der gemäß VDI 3790, Blatt 4 /7/ für die Werkstraße einer Sand- und Kiesverarbeitung empfohlene mittlere Feinkornanteil von 4,8 % angesetzt.

Es ergeben sich die in Tabelle 9 gelisteten Emissionsfaktoren q_{uF} .

Tabelle 9: Parameter zur Berechnung der Staubemissionen auf unbefestigten Fahrwegen.

Bezeichnung		Lkw
Mittlere Masse der Fahrzeugflotte W in t	Mittlere Masse der Fahrzeugflotte W in t	
Feinkornanteil s in %	Feinkornanteil s in %	
Anzahl Niederschlagstage (≥ 1 mm) p	Anzahl Niederschlagstage (≥ 1mm) <i>p</i>	
Kennzahl für Wirksamkeit von Minderungsmaßnahmen k_M		
Emissionsfaktor q_{uF} in $g/(km \cdot Kfz)$	PM2.5	36,6
	PM10	367,3
	TSP	1.443,7

Zu c.):

Die Emissionen durch den Abrieb vom Straßenbelag werden auf Grundlage von Angaben der European Environment Agency, EEA /10/ angesetzt. Dabei werden die Radlader als "Heavy duty vehicles" eingestuft.

Zu d.):

Die Motoremissionen, die durch den Lkw-, Zugmaschinen- und Radlader-Fahrverkehr auf dem Anlagengelände entstehen, werden mittels des Handbuchs für Emissionsfaktoren /9/ ermittelt. Auf der sicheren Seite liegend werden die Fahrten mit einer Steigung von +/- 6 % als Schwer-Nutzfahrzeuge (SNF) im Stop-and-go-Verkehr angesetzt. Die Motoremissionen werden vollständig der Größenfraktion PM2.5 zugeschrieben. Gemäß HBEFA 4.1 /9/ ergibt sich ein Emissionsfaktor von

 $0.139 \text{ g/(Kfz} \cdot \text{km)}$.

Die Emissionsfaktoren auf unbefestigten Fahrwegen lassen sich wie folgt zusammenfassen:

Tabelle 10: Staubemissionen durch Fahrbewegungen auf unbefestigten Fahrwegen.

Emissionen, unbefestigte Fahrwege	Lkw			
Größenfraktion	PM2.5 PM10 TS			
Emissionsfaktor q _{uF} in g/(km·Kfz)	36,6	367,3	1.443,7	
Straßenabrieb in g/(km·Kfz)	0,021	0,038	0,076	
Motoremissionen in g/(km·Kfz)	0,139	-	-	
Anzahl Fahrten pro Jahr	13.200			
Strecke pro Fahrzeug in km	1,52			
Staubemissionen in kg/a	737	6.633	21.598	
Staubemissionen in g/h	213 1.919 6.249			

Die Emissionen der Lkw-Fahrwege werden als Linienquelle modelliert.

5.5.3 <u>Staubemissionen auf befestigten Fahrwegen</u>

Die Staubemissionen durch Fahrverkehr auf befestigten Fahrwegen setzen sich analog zu den Emissionen auf unbefestigten Fahrwegen aus

Berichtsnummer

L0525.011.02.002

- a. Staubaufwirbelungen beim Fahren
- b. Reifen- und Bremsenabrieb
- c. Abrieb vom Straßenbelag
- d. Motoremissionen

zusammen.

Zu a.) und b.):

Die Ermittlung der Staubemissionen durch Aufwirbelung beim Fahren sowie Reifen- und Bremsenabrieb auf befestigten Fahrwegen erfolgt gemäß der VDI-Richtlinie 3790, Blatt 4, Gl. 2. Demnach berechnet sich der Emissionsfaktor q_{bF} nach

$$q_{bF} = k_{Kgv} \cdot (sL)^{0.91} \cdot (1.1 \cdot W)^{1.02} \cdot \left(1 - \frac{p}{3 \cdot 365}\right) \cdot (1 - k_M)$$

mit

q_{bF} (in g/(km·Kfz))	Emissionsfaktor in Gramm pro Kilometer Fahrweg und Fahrzeug
k_{Kgv} (dimensionslos)	Faktor zur Berücksichtigung der Korngrößenverteilung (vgl. Tabelle 11)
sL (in g/m ²)	Flächenbeladung des befestigten Fahrwegs
W(in t)	Mittlere Masse der Fahrzeugflotte
p	Anzahl der Tage pro Jahr mit mindestens 1 mm natürlichem Niederschlag
k_M	Kennzahl für Wirksamkeit von Emissionsminderungsmaßnahmen

Tabelle 11: Faktor k_{Kgv} zur Berücksichtigung der Korngrößenverteilung auf befestigten Fahrwegen

Korngrößen in µm	PM2.5	PM10	PM30 (TSP)		
k_{Kgv}	0,15	0,62	3,23		

Gemäß /11/ sind für öffentliche befestigte Fahrwege Flächenbeladungen zwischen 0,03 und maximal 0,6 g/m² anzunehmen. Für Betriebsstraßen sind gemäß /13/ Staubbeladungen zwischen 1 g/m² (geringe Verschmutzung) und 60 g/m² (hohe Verschmutzung) anzunehmen. Da im Bereich der befestigten Flurwege der Einsatz einer Kehrmaschine zwar nicht vorgesehen ist, die Verschmutzungen aber primär auf den Streckenabschnitten anzunehmen ist, welche an den jeweils genutzten Abbau- bzw. Verfüllebreich angrenzen, wird im vorliegenden Fall für die Flächenbeladung sL ein Wert von 15 g/m² auf der gesamten Länge des befestigten Fahrwegs angesetzt, was gemäß Tabelle 4 der VDI 3790, Blatt 4 einer mäßigen bis starken Verschmutzung entspricht.

Die oben angegebene Formel gilt für eine Fahrgeschwindigkeit von ca. 30 km/h. Für k_M kann bei einer Reduktion der Fahrgeschwindigkeit um 10 km/h ein Wert von 0,2 angesetzt werden. Im vorliegenden Fall ist keine weitere Reduktion der Fahrgeschwindigkeit vorgesehen, weshalb die Kennzahl zur Maßnahmenwirksamkeit mit $k_M = 0$ angesetzt wird.

Die Anzahl der Niederschlagstage wird gemäß Abschnitt 5.5.2 übernommen. Folgende Parameter gehen in die Berechnung des Emissionsfaktors ein:

Tabelle 12: Parameter zur Berechnung des Staubemissionsfaktors auf befestigten Fahrwegen.

Bezeichnung	LKW	Zugmaschinen	
Mittlere Masse der Fahrzeugflotte W in t	27,5	13,4	
Flächenbeladung des befestigten Fahrwegs sL in g/n	15	15	
Anzahl Niederschlagstage (≥ 1 mm) p	110	110	
Kennzahl für Wirksamkeit von Minderungsmaßnah	men k_M	0	0
Emissionsfaktoren q_{bF} in g/(km·Kfz)	PM2.5	52,8	25,4
	PM10	218,3	104,8
	TSP	1.137	546,1

Zu c.):

Die Emissionen durch den Abrieb vom Straßenbelag werden analog zu Kapitel 5.5.2 angesetzt. Dabei werden die LKW als "Heavy duty vehicles" eingestuft.

Zu d.):

Die Motoremissionen werden analog zu Kapitel 5.5.2 angesetzt.

Die Emissionsfaktoren auf befestigten Fahrwegen lassen sich wie folgt zusammenfassen:

Tabelle 13: Staubemissionen durch Fahrbewegungen auf befestigten Fahrwegen.

Emissionen befestigte Fahrwege	Lkw Zugmaschinen					en
Größenfraktion	PM2.5	PM10	TSP	PM2.5	PM10	TSP
Emissionsfaktor q _{bF} in g/(km·Kfz)	84,0	347,4	1809,9	40,4	166,9	869,3
Straßenabrieb in g/(km·Kfz)	0,021	0,038	0,076	0,021	0,038	0,076
Motoremissionen in g/(km·Kfz)	0,139	-	-	0,139	-	-
Anzahl Fahrten pro Jahr		13.200			3.200	
Strecke pro Fahrzeug in km		1,5	1,5			
Staubemissionen in kg/a	1.049	3.274	18.192	107 333 1		1.850
Staubemissionen in g/h	303	947	5264	31	96	535

5.6 Summe der Staubemissionen

Die Summe der Staubemissionen gemäß den Abschnitten 5.4 bis 5.5 ergibt sich zu:

Tabelle 14: Ermittlung der Gesamtstaubemissionen pro Jahr in kg/a.

Quelle	PM2.5	PM10	TSP
Umschlagvorgänge, diffuse Emissionen in kg/a	8.918	11.147	27.868
Fahrverkehr auf unbefestigten Wegen in kg/a	737	7.370	28.967
Fahrverkehr auf befestigten Wegen in kg/a	1.156	4.762	24.804
Summe in kg/a	10.810	23.279	81.639

Zusammenfassend ist festzuhalten, dass alle Werte auf der sicheren Seite liegend angenommen und die tatsächlich zu erwartenden Emissionen damit abgedeckt sind. Zusätzlich zeigen Untersuchungen von Düring und Sörgel /18/, dass die Berechnungsansätze gemäß VDI 3790, Blatt 3 die tatsächlichen Verhältnisse um den Faktor 2 bis 3 überschätzen.

Die nachfolgende Tabelle zeigt eine Übersicht über die für jede Quelle angesetzten Emissionsstärken in den einzelnen Korngrößenklassen:

Tabelle 15: Übersicht Emissionsquellstärken in g/h.

Quellenname	d < 2.5	2.5 < d < 10	10 < d < 50	PM_unbekannt	Quellart / Vorgänge	Emissionsdauer h/a
Abbau	1.763,5	440,9		3.306,6	Flächenquelle 1.1 - 1.7	3.456
V = = 6211 =	016.0	204.2		4 524 6		2.456
Verfüllung	816,8	204,2		1.531,6	Flächenquelle 2.1 - 2.2	3.456
LKW Fahrweg Nord unbefestigt	71,0	639,8	2.083,1		Linienquelle	3.456
LKW Fahrweg Süd unbefestigt	142,1	1.279,6	4.166,2		Linienquelle	3.456
LKW Fahrweg befestigt	303,4	947,2	5.264,0		Linienquelle	3.456
Zugmaschinen Fahrweg befestigt	31,0	96,2	535,3		Linienquelle	3.456

5.7 Vergleich mit dem Bagatellmassenstrom nach TA Luft

Unter Annahme einer Betriebszeit der Anlage von ca. 3.456 Stunden pro Jahr errechnet sich aus Tabelle 14 ein Emissionsmassenstrom von ca. 23,6 kg/h. Der Bagatellmassenstrom nach TA Luft von 0,1 kg/h für diffuse Emissionen ist somit deutlich überschritten und die Staubimmissionen müssen ermittelt werden.

6 Meteorologische Daten

Die Ausbreitung von Luftschadstoffen wird wesentlich von den meteorologischen Parametern Windrichtung, Windgeschwindigkeit und Ausbreitungsklasse bestimmt. Bei den Ausbreitungsklassen handelt es sich um Beschreibungen des Stabilitätszustandes der bodennahen atmosphärischen Luftschicht. Dieser Stabilitätszustand bestimmt, wie stark eine Schadstoffwolke beim Transport durch die Atmosphäre verdünnt wird. Die Bedeutung der einzelnen Ausbreitungsklassen sowie die Auswirkungen auf eine Schadstoffwolke sind in nachfolgender Tabelle dargestellt:

Tabelle 16: Ausbreitungsklassen nach Klug/Manier.

Ausbreitungsklasse	Schichtungsstabilität	Auswirkung auf Schadstoffwolke
I	sehr stabil	kaum Verdünnung
II	stabil	naum v Graumang
III / 1	neutral - stabil	mäßige Verdünnung
III / 2	neutral - labil	masige verdumling
IV	labil	starke Verdünnung
V	sehr labil	Starke Verdumung

Die Ausbreitungsberechnung wird über eine Ausbreitungsklassen-Zeitreihe (AKTerm) angetrieben. Eine Prüfung der Übertragbarkeit der meteorologischen Ausbreitungsbedingungen von gegebenen Messdaten /21/ ergab, dass die Daten der Station Würzburg im Zeitraum 23.06.2014 – 23.06.2015 für den Anlagenstandort verwendet werden können. Die Ersatzanemometerposition beträgt in UTM-Koordinaten:

Anemometerposition (UTM): RW: 32 587 650 HW: 5 538 950

Die Wahl der zugehörigen Anemometerhöhe wird entsprechend der Rauhigkeitslänge getroffen (vgl. Kapitel 7.4). Folgende Anemometerhöhen sind möglich:

Anemometerhöhen in m	7,1	8,7	11,5	14,2	17,8	24,3	31,4	36,9	41,6
Rauhigkeitslänge in m	0,01	0,02	0,05	0,1	0,2	0,5	1,0	1,5	2,0

Die Richtungsverteilung aller Windgeschwindigkeiten ist nachfolgender Windrose zu entnehmen. Die Verteilung zeichnet sich durch zwei ausgeprägte Maxima bei Winden aus Süd- bzw. Nordwest aus. Ein Nebenmaximum findet sich bei Winden aus Südsüdost.

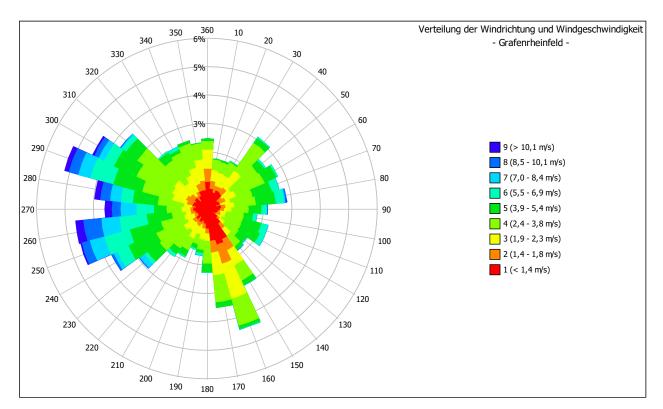


Abbildung 4: Windrose der Station Würzburg für den Zeitraum 23.06.2014 – 23.06.2015 /21/.

Die relative Häufigkeit der Windgeschwindigkeits- und Ausbreitungsklassen ist in Abbildung 5 dargestellt.

Auf Grund der topografischen Gegebenheiten ist nicht mit relevanten Kaltluftströmungen im Untersuchungsgebiet zu rechnen. Zudem kann der Einfluss nächtlicher Kaltluftströmungen auf die Staubausbreitung aufgrund des ausschließlich am Tage stattfindenden Betriebs als vernachlässigbar eingestuft werden.

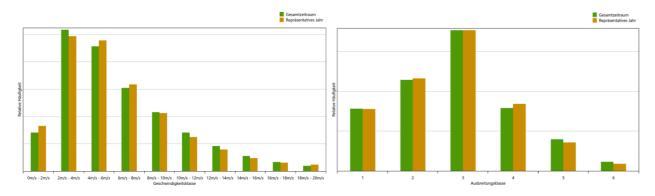


Abbildung 5: Relative Häufigkeit der Windgeschwindigkeits- und Ausbreitungsklassen für die Station Würzburg /21/.

7 Immissionsberechnung

7.1 Verwendetes Programmsystem

Die Berechnung der zu erwartenden Immissionswerte erfolgt unter Verwendung der Software IMMI /19/mit AUSTAL2000 /20/ nach dem Partikelmodell gemäß TA Luft bzw. VDI 3945, Blatt 3 /8/. Die Windfeldberechnung wird mit dem in AUSTAL2000 integrierten diagnostischen Windfeldmodell TALdia durchgeführt.

Wie den austal 2000. log-Dateien im Anhang entnommen werden kann, wurde die Prognose mit einer Qualitätsstufe $q_S=0$ durchgeführt. Die Qualitätsstufe (Wertebereich: -4 bis +4, Standardwert: 0) legt die Freisetzungsrate der Partikel fest. Eine Erhöhung der Qualitätsstufe um 1 bewirkt eine Verdoppelung der Partikelzahl und damit eine Verringerung der statistischen Unsicherheit. Gemäß Anhang 3, Abschnitt 9 der TA Luft soll die modellbedingte statistische Unsicherheit 3 % des Jahresimmissionswertes nicht überschreiten. Im vorliegenden Fall werden bei einer Qualitätsstufe von 0 die Anforderungen an die statistische Unsicherheit an den maßgeblichen Immissionsorten eingehalten (vgl. Tabelle 19). Eine Erhöhung der Qualitätsstufe ist demnach nicht erforderlich.

7.2 Geländesteilheit

Die Geländetopografie wird durch ein digitales Geländemodell des Untersuchungsgebietes mit einer horizontalen Auflösung von 20 m berücksichtigt.

Die Geländesteilheit des untersuchten Gebiets sollte bei der Verwendung von AUSTAL2000 kleiner als 0,20 sein. Dabei ist nicht die maximale Geländesteigung gemäß der Protokolldatei austal2000.log ausschlaggebend, sondern der Flächenanteil und die Lage der Überschreitung der Geländesteilheit von 0,20.

Die nebenstehende Abbildung zeigt die Geländesteilheit mit der Auflösung des für die Berechnung verwendeten Rasters. Es wird deutlich, dass die Forderung zur Verwendung von AUSTAL2000 großflächig erfüllt wird. Es liegen nur kleine Bereiche mit Steigungen größer 0,20 vor.

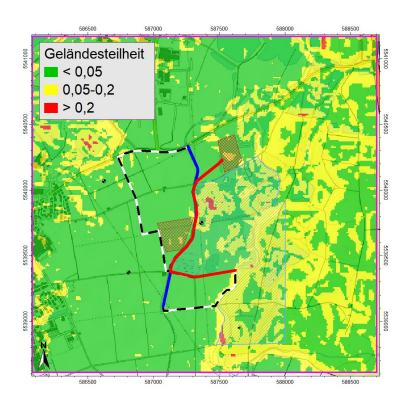


Abbildung 6: Geländesteilheit im Untersuchungsgebiet.

Demzufolge sind bei der Windfeldberechnung keine unrealistischen Ergebnisse mit hohen Vertikalwindgeschwindigkeiten zu erwarten.

7.3 Rechengebiet und Rasterweite

Das Rechengebiet für eine gefasste einzelne Emissionsquelle ist nach TA Luft das Innere eines Kreises um den Ort der Quelle, dessen Radius das 50-fache der Schornsteinbauhöhe beträgt. Tragen mehrere Quellen zur Zusatzbelastung bei, dann besteht das Rechengebiet aus der Vereinigung der Rechengebiete der einzelnen Quellen. Bei einer Austrittshöhe von weniger als 20 m soll der Radius mindestens 1 km betragen. Bei besonderen Geländebedingungen kann es erforderlich sein, das Rechengebiet größer zu wählen. Im vorliegenden Fall handelt es sich um bodennahe, diffuse Quellen. Das Rechengebiet umfasst ein Gebiet östlich von Grafenrheinfeld mit einer Ausdehnung von 2.620 m auf 2.560 m.

Die Rasterweite (Kantenlänge der einzelnen Rasterpunkte) ist gemäß TA Luft so zu wählen, dass Ort und Betrag der Immissionsmaxima mit hinreichender Sicherheit bestimmt werden können. Dies ist in der Regel der Fall, wenn die horizontale Maschenweite die Schornsteinbauhöhe nicht überschreitet. Da es sich im vorliegenden Fall vornehmlich um bodennahe, diffuse Quellen handelt, wird eine horizontale Maschenweite von 10 m gewählt. Es ergeben sich 67.591 Rasterpunkte im untersuchten Gebiet.

7.4 Rauhigkeitslänge

Die Bodenrauhigkeit des Geländes wird durch die mittlere Rauhigkeitslänge z_0 beschrieben. Für das untersuchte Gebiet ist ein Rauhigkeitskataster im Berechnungsverfahren hinterlegt.

Im vorliegenden Fall wird eine durchschnittliche Rauhigkeitslänge von 0,042 m ermittelt und programmintern auf 0,050 m gerundet.

Die Verdrängungshöhe d₀ gibt an, wie weit die theoretischen meteorologischen Profile auf Grund von Bewuchs oder Bebauung in der vertikalen zu verschieben sind. Sie ist als das 6-fache der Rauhigkeitslänge z₀ anzusetzen und beträgt im vorliegenden Fall somit 0,3 m.

Mit diesem Wert ergibt sich die für die Ausbreitungsrechnung festzulegende Anemometerhöhe zu 11,5 m.

Tabelle 17: Mittlere Rauhigkeitslänge in Abhängigkeit von den Landnutzungsklassen des CORINE-Katasters.

z ₀ in m	CORINE-Kataster
0,01	Strände, Dünen und Sandflächen; Wasserflächen
0,02	Deponien und Abraumhalden; Wiesen und Weiden; Natürliches Grünland; Flächen mit spärlicher Vegetation; Salzwiesen; In der Gezeitenzone liegende Flächen; Gewässerläufe; Mündungsgebiete
0,05	Abbauflächen; Sport- und Freizeitanlagen; Nicht bewässertes Ackerland ; Gletscher und Dauerschneegebiete; Lagunen
0,10	Flughäfen; Sümpfe; Torfmoore; Meere und Ozeane
0,20	Straßen, Eisenbahn, Städtische Grünflächen; Weinbauflächen; Komplexe Parzellenstrukturen; Landwirtschaft und natürliche Bodenbedeckung; Heiden und Moorheiden; Felsflächen ohne Vegetation
0,50	Hafengebiete; Obst- und Beerenobstbestände; Wald-Strauch-Übergangsstadien
1,00	Nicht durchgängig städtische Prägung, Industrie- und Gewerbeflächen; Baustellen; Nadelwälder
1,50	Laubwälder; Mischwälder
2,00	Durchgängig städtische Prägung

7.5 Berücksichtigung der Bebauung

Beträgt die Schornsteinbauhöhe mehr als das 1,2fache der Gebäudehöhen oder haben Gebäude für die diese Bedingung nicht erfüllt ist, einen Abstand von mehr als dem 6fachen ihrer Höhe von der Emissionsquelle, kann folgendermaßen verfahren werden:

- a. Beträgt die Schornsteinhöhe mehr als das 1,7fache der Gebäudehöhen, ist die Berücksichtigung der Bebauung durch die Rauhigkeitslänge (vgl. Kapitel 7.4) ausreichend.
- b. Beträgt die Schornsteinhöhe weniger als das 1,7fache der Gebäudehöhen und ist eine freie Abströmung gewährleistet, kann der Gebäudeeinfluss mit Hilfe eines diagnostischen Windfeldmodells berücksichtigt werden.

Maßgeblich für die Beurteilung der Gebäudehöhe (GH) nach Buchstabe a. oder b. sind alle Gebäude, deren Abstand von der Emissionsquelle geringer ist als das 6fache der Schornsteinbauhöhe (SH). Je nach Abstand ist folgendermaßen vorzugehen:

Tabelle 18: Maßgaben zur Berücksichtigung des Gebäudeeinflusses nach TA Luft.

Bedingung	Berücksichtigung des Gebäudeeinflusses über
Abstand > 6fache Quellhöhe	Rauhigkeitslänge bzw. Verdrängungshöhe
Abstand < 6fache Quellhöhe 1,7fache GH < SH	Rauhigkeitslänge bzw. Verdrängungshöhe
Abstand < 6fache Quellhöhe 1,2fache GH < SH < 1,7fache GH	Diagnostisches Windfeldmodell oder Rauhigkeitslänge bzw. Verdrängungshöhe in Verbindung mit Vertikalkomponenten
Abstand < 6fache Quellhöhe SH < 1,2fache GH	Prognostisches Windfeldmodell oder Rauhigkeitslänge bzw. Verdrängungshöhe in Verbindung mit Vertikalkomponenten

Im vorliegenden Fall kann der Einfluss der vorhandenen Gebäude als vernachlässigbar eingestuft werden. Es werden keine Gebäude im Untersuchungsgebiet berücksichtigt.

7.6 Abgasfahnenüberhöhung

Auf Grund der Temperaturdifferenz zwischen Abgas und Umgebungsluft (thermischer Anteil) sowie des dynamischen Impulses des Abgases (kinetischer Anteil) ist bei der Ableitung von Abgasen über einen Schornstein eine Abgasfahnenüberhöhung zu berücksichtigen. Für die Abgase der technischen Aggregate wird auf der sicheren Seite liegend die thermische und kinetische Abgasfahnenüberhöhung vernachlässigt. Im Falle der diffusen Quellen ist generell keine Abgasfahnenüberhöhung zu berücksichtigen.

8 Ergebnisse

8.1 Zusatzbelastung

Die anlagenbedingte Zusatzbelastung für PM2.5, PM10 und Staubdeposition ist farbgrafisch in Abbildung 7 bis Abbildung 9 dargestellt. Die Tabelle 19 weist die Immissionskenngrößen für die Zusatzbelastung an den maßgeblichen Immissionsorten aus.

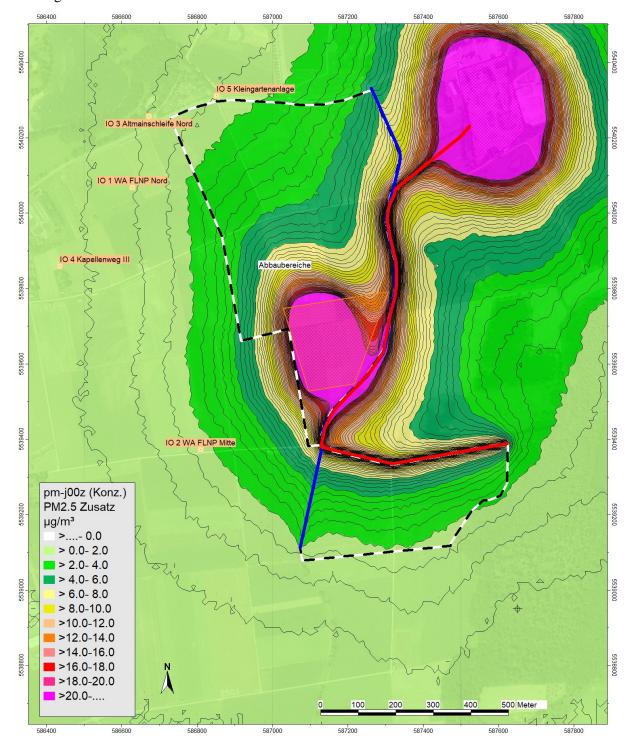


Abbildung 7: Immissionszusatzbelastung PM2.5 im Jahresmittel in μg/m³, Übersichtsraster.

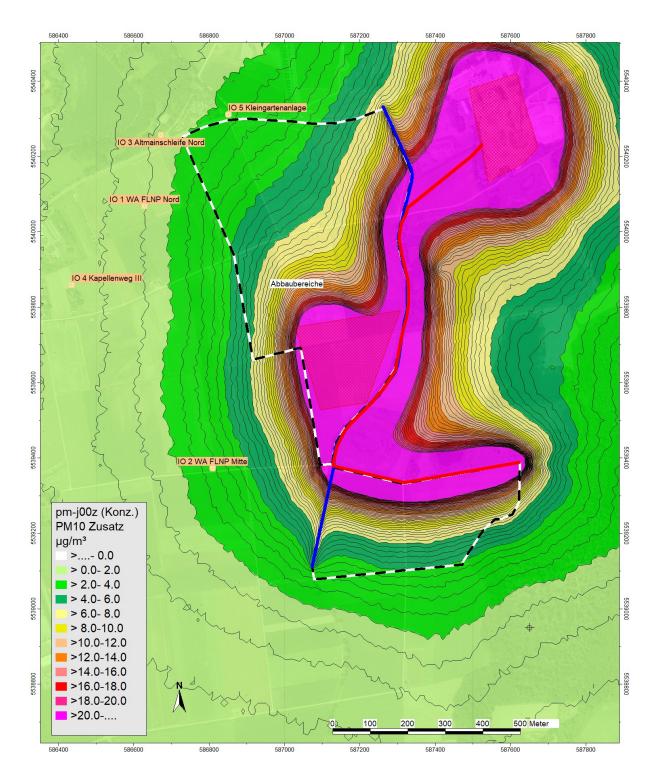


Abbildung 8: Immissionszusatzbelastung PM10 im Jahresmittel in $\mu g/m^3$, Übersichtsraster.

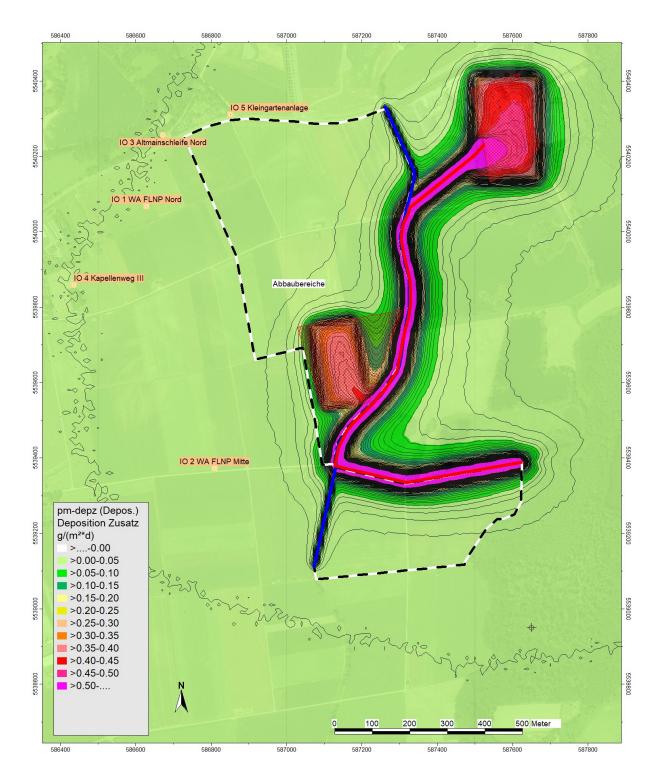


Abbildung 9: Immissionszusatzbelastung Staubdeposition im Jahresmittel in $g/(m^2 \cdot d)$, Übersichtsraster.

Tabelle 19: Zusatzbelastung PM2.5, PM10 und Staubdeposition an den maßgeblichen Immissionsorten im Jahresmittel.

	Zusatzbelastung und statistische Unsicherheit (1,5 m über GOK)								
Immissionsort	PM	2.5	PM	110	Staubde	position			
	Jahres	mittel	Jahres	smittel	Jahresmittel				
	μg/m ³	%	μg/m³	%	g/(m ² ·d)	%			
IO 1, FlNr. 1645	1,1	3,3	1,6	3,3	0,001	11,9			
IO 2, FlNr. 869	1,7	2,9	2,7	2,6	0,004	10,2			
IO 3, FlNr. 3670	1,2	3,4	1,7	3,4	0,001	12,1			
IO 4, FlNr. 1554/2	0,7	3,6	1,0	3,6	0,001	11,8			
IO 5, FlNr. 1744	1,6	2,9	2,2	2,9	0,002	10,9			
Irrelevanzschwelle	-		1,2 μ	ig/m ³	0,0105 g/(m ² ·d)				

Die Zusatzbelastung für PM10 liegt an IO 1, IO 2, IO 3 und IO 5 über dem Irrelevanzwert nach TA Luft von 1,2 μ g/m³. Folglich ist die Gesamtbelastung zu ermitteln.

8.2 Vorbelastung

Das Bayerische Landesamt für Umwelt (LfU) betreibt ein lufthygienisches Landesüberwachungssystem /16/ mit Messstationen unterschiedlicher Gebietseinstufung. Zur Ermittlung der Vorbelastung im Untersuchungsgebiet werden die Daten der Messstation "Aschaffenburg Bussardweg" (vorstädtisches Gebiet), der Messstation "Schweinfurt Obertor" (städtisches Gebiet) und der Messstation Kleinwallstadt (vorstädtisches Gebiet) herangezogen. Die Station Schweinfurt steht etwa 5 km nördlich, die Station Würzburg etwa 30 km südwestlich, die Station Aschaffenburg etwa 80 km westlich und die Station Kleinwallstadt etwa 75 km südwestlich. An den Stationen Würzburg und Schweinfurt werden die PM10-Konzentrationen erfasst. PM2.5 wird in Aschaffenburg, Würzburg und Kleinwallstadt gemessen. Die Jahresmittelwerte für die Jahre 2016-2020 (LfU) sind in Tabelle 20 zusammengefasst /17/.

Tabelle 20: Immissionskenngrößen der nächstgelegenen für die Jahre 2016-2020 /17/.

		Jahresmittelwerte								
			PM10					PM2.5		
Bezugszeit			Jahr					Jahr		
Grenzwert		4	40 μg/m	3			2	25 μg/m	3	
				Jahre	esmittelv	wert in µ	.g/m³			
Jahr	2016	2017	2018	2019	2020	2016	2017	2018	2019	2020
Aschaffenburg vorstädtischer HG	-	-	-	-	-	11,0	12,0	12,0	10,0	10,0
Würzburg Kopfklinik vorstädtischer HG	15,0	16,0	17,0	15,0	14,0	11,0	12,0	12,0	9,0	9,0
Schweinfurt Obertor städtischer HG	16,0	16,0	18,0	17,0	14,0	-	-	-	-	-
Kleinwallstadt vorstädtischer HG	-	-	-	-	-	11,0	11,0	12,0	10,0	9,0
Angenommene Vorbelastung	18 μg/m ³					1	12 μg/m	3		

Für die Vorbelastung der Staubdeposition werden Depositionsmesswerte der nächstgelegenen Messstationen des hessischen Landesmessnetzes berücksichtigt. Es wird der ungünstigste Mittelwert von $0.098~g/(m^2 \cdot d)$ aus dem Jahr 2018 in Ansatz gebracht.

Tabelle 21: Depositionsmesswerte der nächstgelegenen Messstationen des hessischen Landesmessnetzes für die Jahre $2015-2019\ /15/$.

Messgebiet	Anzahl der Messpunkte	Größe des Messgebietes in km²	Umgebung	Jahresmittelwert der Staubdeposition in g/(m²·d)				
				2015	2016	2017	2018	2019
Untermain	111	73	Stadtgebiet, teilweise Industrie	0,063	0,072	0,074	0,098	0,087

8.3 Gesamtbelastung

Die Gesamtbelastung unter Berücksichtigung der Vorbelastung und der fahrwegs- bzw. anlagenbedingten Zusatzbelastung für PM2.5, PM10 und Staubdeposition ist farbgrafisch in Abbildung 10 bis Abbildung 12 dargestellt. Die Tabelle 22 und Tabelle 24 weisen die Immissionskenngrößen für die Gesamtbelastung an den maßgeblichen Immissionsorten sowie die Überschreitungshäufigkeit der Kurzzeitmittelwerte für PM10 aus.

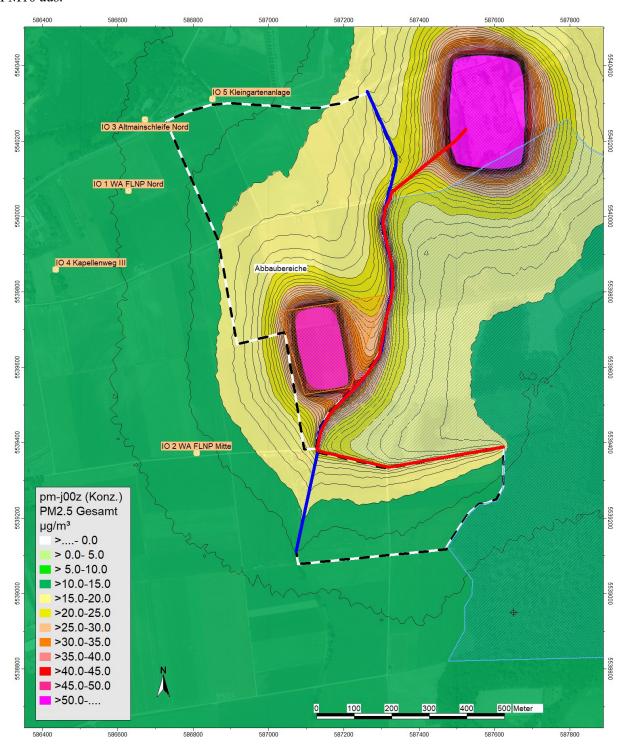


Abbildung 10: Immissionsgesamtbelastung PM2.5 im Jahresmittel in μg/m³, Übersichtsraster.

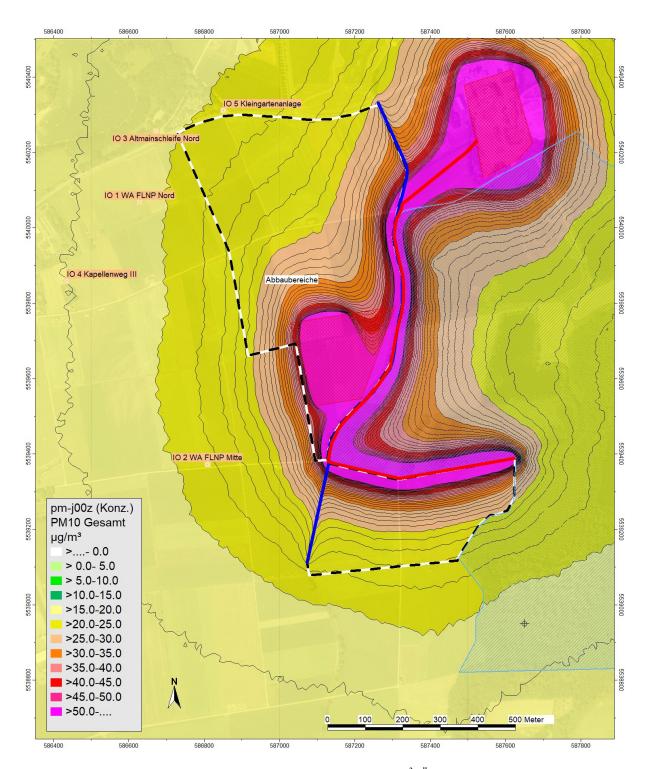


Abbildung 11: Immissionsgesamtbelastung PM10 im Jahresmittel in $\mu g/m^3$, Übersichtsraster.



Abbildung 12: Immissionsgesamtbelastung Staubdeposition im Jahresmittel in $g/m^2 \cdot d$, Übersichtsraster.

Die Immissionskenngrößen für die Gesamtbelastung an PM2.5, PM10 und Staubdeposition an den Immissionsorten betragen:

Tabelle 22: Gesamtbelastung PM2.5, PM10 und Staubdeposition an den Immissionsorten im Jahresmittel.

		PM2.5 Jahr	esmittelwert	
Immissionsort	Vorbelastung in μg/m³	Zusatzbelastung in µg/m³	Gesamtbelastung in μg/m³	Grenzwert in μg/m³
IO 1		1,1	13,1	
IO 2		1,7	13,7	
IO 3	12,0	1,2	13,2	25
IO 4		0,7	12,7	
IO 5		1,6	13,6	
		PM10 Jahr	esmittelwert	
	Vorbelastung in μg/m³	Zusatzbelastung in µg/m³	Gesamtbelastung in μg/m³	Grenzwert in μg/m³
IO 1		1,6	19,6	
IO 2		2,7	20,7	
IO 3	18,0	1,7	19,7	40
IO 4		1,0	19,0	
IO 5		2,2	20,2	
		Staubdeposition	Jahresmittelwert	
	Vorbelastung in g/m²·d	Zusatzbelastung in g/m²·d	Gesamtbelastung in g/m²·d	Grenzwert in g/m²·d
IO 1		0,001	0,099	
IO 2		0,004	0,102	
IO 3	0,098	0,001	0,099	0,350
IO 4		0,001	0,099	
IO 5		0,002	0,100	

Zur Bestimmung des PM10-T35-Wertes (Tagesmittelwert, welcher an 35 Tagen des Jahres überschritten wird) wird nach der Nr. 4.7.2 b) der TA Luft verfahren. Danach gilt: "Im Übrigen ist der Immissions-Tageswert eingehalten, wenn die Gesamtbelastung – ermittelt durch die Addition der Zusatzbelastung für das Jahr zu den Vorbelastungskonzentrationswerten für den Tag – an den jeweiligen Beurteilungspunkten kleiner oder gleich dem Immissionstageswert (Konzentration) für 24 Stunden ist oder …]". Die Vorbelastungskonzentrationswerte für den T35-Wert an der ungünstigsten und gleichzeitig nächstgelegenen Messstation Schweinfurt Obertor aus den Jahren 2018 – 2020 zeigt Tabelle 23:

Tabelle 23: Vorbelastungskonzentrationswerte für den Tag an der Messstation Schweinfurt Obertor /16/.

	PM10-T35-Wert in μg/m³			Anzahl der Grenzwert- überschreitungen		
Messstation (Hintergrundbelastung)	2018	2019	2020	2018	2019	2020
Schweinfurt Obertor (städtischer Hintergrund)	27,1	27,2	23,5	4	7	1

Mit der maßgeblichen PM10-Immissionszusatzbelastung im Jahresmittel an IO 2 von 2,7 μ g/m³ ergeben sich folgende Gesamtbelastungen:

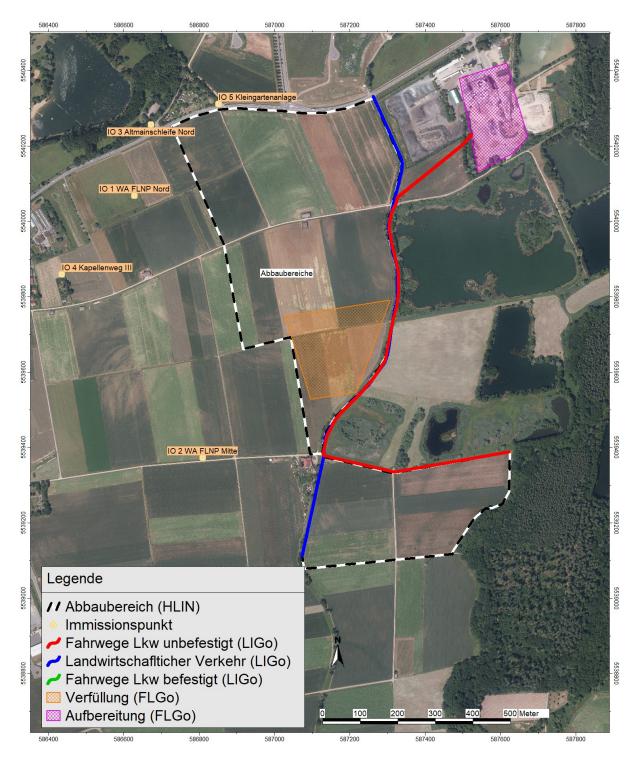
Tabelle 24: PM10-T35-Werte durch Überlagerung der Vorbelastungskonzentrationswerte für den Tag und der Zusatzbelastung für das Jahr am maßgeblichen Immissionsort IO 2.

	PM10-T35-Wert in μg/m³					
Messstation (Hintergrundbelastung)	2018	2019	2020	Grenzwert		
Schweinfurt Obertor (städtischer Hintergrund)	29,8	29,9	26,2	50		

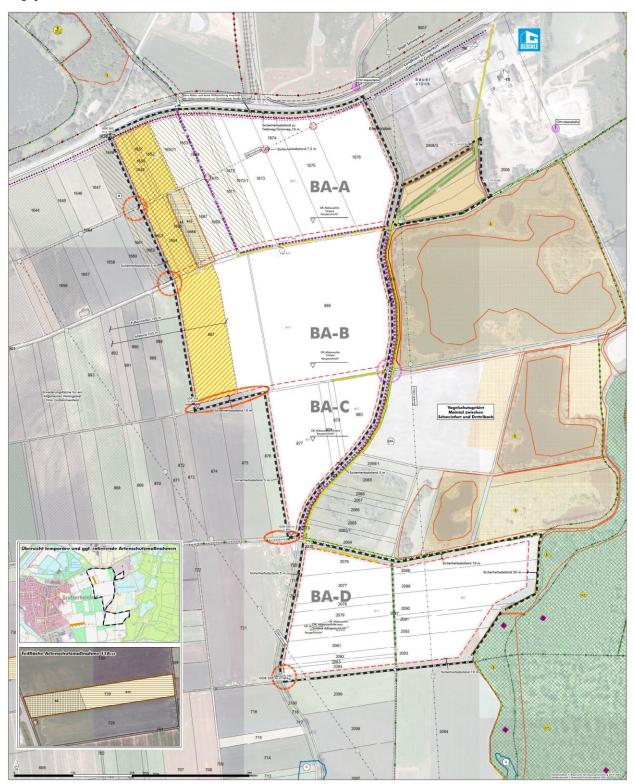
9 Bewertung

Die Ergebnisse der Berechnungen zeigen, dass die aus der Nutzung der untersuchten Lkw-Transportrouten im Nahbereich des geplanten Kiesabbaus resultierenden Emissionen unter Berücksichtigung der Zusatzbelastung durch den Betrieb des Kieswerks sowie durch die Verfüllung bereits abgebauter Abschnitte im Bereich der schutzbedürftigen Nutzungen am Ortsrand von Grafenrheinfeld eine Gesamtbelastung für PM2.5, PM10 und Staubdeposition verursachen, die jeweils deutlich unterhalb des zulässigen Grenzwerts der Immissionsbelastung liegt.

Aus lufthygienischer Sicht ist somit nicht mit schädlichen Umwelteinwirkungen auf das Schutzgut Mensch zu rechnen.


Im Bereich des östlich gelegenen Natura 2000-Gebiet wurden die Gesamtbelastungen für PM2.5, PM10 und Staubdeposition flächendeckend ermittelt. Im unmittelbaren Nahbereich der Transportrouten kann es lokal zu Überschreitungen der für das Schutzgut Mensch geltenden Grenzwerte für PM2.5 und PM10 sowie Staubdeposition kommen. Ab einer Entfernung von ca. 25 m vom Rand der Transportrouten ist der für den Schutz vor erheblichen Nachteilen oder Belästigungen relevante Grenzwert für die Staubdeposition von 0,35 g/m²·d eingehalten. Die Beurteilung der Staubimmissionen und –deposition in Hinblick auf die Auswirkungen auf das Natura 2000-Gebiet ist Gegenstand einer FFH-Verträglichkeitsprüfung durch das Institut für Faunistik, Dr. Weinhold /22/.

Anhang


Planunterlagen

Übersichtslageplan mit Eintrag der Immissionsorte

Lageplan Abbauabschnitte

Datum Seite 01.03.2022 A3

Liste der Eingabedaten

Projekt Eigenschaften						
Prognosetyp:	Schadstoffe					
Prognoseart:	AUSTAL2000					
Beurteilung nach:	Keine Beurteilung	Nr.	Zeitraum	Dauer /h		
		1	Tag	16.00		
Projekt-Notizen						

Arbeitsbereich								
Koordinatensystem:	UTM (Streifenbreite 6°), nördliche He	misphäre						
Koordinatendatum:	WGS84 (Weltweit GPS), geozentrisch	n						
Meridianstreifen:	32	32						
	von	bis	Ausdehnung	Fläche				
x /m	584460.00	590330.00	5870.00	20.84 km²				
y /m	5537970.00	5541520.00	3550.00					
z /m	-50.00	80.00	130.00					
Geländehöhen in den Eckpunkten								
xmin / ymax (z4)	0.00	0.00 xmax / ymax (z3) 0.00						
xmin / ymin (z1)	0.00	xmax / ymin (z2)	0.00					

Zuordnung von Elementgruppen zu den Varianten						
Elementgruppen	Variante 0	PM2.5	TSP			
Gruppe 0	+	+	+			
TSP Quellen	+		+			
PM2.5 Quellen	+	+				
standby	+					

Verfügbare Raster											
Name	x min /m	x max /m	y min /m	y max /m	dx /m	dy /m	nx	ny	Bezug	Höhe /m	Bereich
Raster 10 m	586080.00	588700.00	5538610.00	5541170.00	10.00	10.00	263	257	relativ	1.50	Rechteck

Parameter der Bibliothek: Schadstoffe	Kopie von "Referenzeinstellung"					
Prognoseart:	AUSTAL2000					
Meteorologie	Zeitreihe: Grafenrheinfeld					
Qualitätsstufe	0					
Windfeldbibliothek neu berechnen	Nein					
Nur Windfeldbibliothek berechnen	Nein					
Anzahl Rechenkerne	4					
Gebäudeumströmung rechnen	Ja					
Gebäude aufrastern	Ja					
Nasse Deposition	Nein					
Anemometer: x /m *)	587650.00					
Anemometer: y /m *)	5538950.00					
Anemometerhöhe /m	11.50					
Gasarten	AUSTAL-Gase					
Anzahl Gase	74					
Joker-Gas	xx					
Rauhigkeitslänge z0 /m	0.05					
Verdrängungshöhe d0 /m	0.30					
Diese Rauhigkeitslänge immer verw.	Nein					
*) = Dieser Parameter gilt für alle Berechnungseinstellungen.						

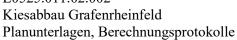
Parameter der Bibliothek: Schadstoffe	Kopie v	on "Referenzeinstellung"		
Gasarten und Immissionsrichtwerte	RW Immisskonz.	RW Immisskonz.	RW Immisskonz.	RW Deposition
	Jahr /(µg/m³)	Tag /(µg/m³)	Stunde /(µg/m³)	/(mg/(m²*d))
SO2	50.000	125.000	350.000	2.740
NOx	30.000	0.000	0.000	0.000
NO2	40.000	0.000	200.000	1.096

Bzl	5.000	0.000	0.000	0.000
TCE	10.000	0.000	0.000	0.000
F	0.400	0.000	0.000	0.000
NH3	3.000	0.000	0.000	1.096
PM	40.000	50.000	0.000	350.000
As	0.000	0.000	0.000	0.004
Pb	0.500	0.000	0.000	0.100
Cd	0.020	0.000	0.000	0.002
Ni	0.000	0.000	0.000	0.015
Hg	0.000	0.000	0.000	0.001
П	0.000	0.000	0.000	0.002
xx	1000000.000	0.000	0.000	1000.000
ODOR	0.100	0.000	0.000	0.000
Hg0	0.000	0.000	0.000	0.001
BAe	0.000	0.000	0.000	0.000


Emissionsvariar	missionsvarianten						
T1	so2						
T2	nox						
Т3	no						
T4	no2						
T5	bzl						
Т6	tce						
T7	f						
Т8	nh3						
Т9	hg						
T10	PM 2.5µm						
T11	PM 2.5µm-10µm						
T12	PM 10µm-50µm						
T13	PM >50µm						
T14	PM unbek.						
T15	As 2.5µm						
T16	As 2.5µm-10µm						
T17	As 10μm-50μm						
T18	As >50µm						

Linien-Quell	inien-Quelle /Poll (4) PM2.3							
LIGo009	Bezeichnung	Landwirtschaftlicher Verkehr 1 pro	Wirkradius /m	99999.00				
	Gruppe	PM2.5 Quellen	Lw (Tag) /dB(A)	31.17				
	Knotenzahl	21	Effektive Quellhöhe	dir. Eingabe				
	Länge /m	1310.29						
	Länge /m (2D)	1310.16						
	Fläche /m²							
	Gasart	Qi /(g/h)	Gasart	Qi /(g/h)				
	so2	0.00	nox	0.00				
	no	0.00	no2	0.00				
	bzl	0.00	tce	0.00				
	f	0.00	nh3	0.00				
	hg	0.00	PM 2.5µm	0.00				
	PM 2.5µm-10µm	0.00	PM 10μm-50μm	0.00				
	PM >50µm	0.00	PM unbek.	0.00				
	As 2.5µm	0.00	As 2.5μm-10μm	0.00				
	As 10μm-50μm	0.00	As >50µm	0.00				
	As unbek.	0.00	Pb 2.5µm	0.00				
	Pb 2.5µm-10µm	0.00	Pb 10µm-50µm	0.00				
	Pb >50µm	0.00	Pb unbek.	0.00				
	Cd 2.5µm	0.00	Cd 2.5µm-10µm	0.00				
	Cd 10µm-50µm	0.00	Cd >50µm	0.00				
	Cd unbek.	0.00	Ni 2.5µm	0.00				
	Ni 2.5µm-10µm	0.00	Ni 10µm-50µm	0.00				
	Ni >50μm	0.00	Ni unbek.	0.00				

Kiesabbau Grafenrheinfeld Planunterlagen, Berechnungsprotokolle


		Ha 2	.5µm						0.0	00							Ha 2	.5um-	-10µm	1				0.0	00						
		_	0μm-5	i0μm					0.0								Hg >			•				0.0							
		+	nbek.						0.0	00							TI 2.5							0.0	00						
		TI 2.	5µm-1	0µm					0.0	00							TI 10	μm-5	0µm					0.0	00						
		TI >5	50μm						0.0	00							TI un	bek.						0.0	00						
		xx							0.0	00							xx 2.	5µm						0.0	00						
		xx 2.	5µm-1	0µm					0.0	00							xx 10	μm-5	0μm					0.0	00						
		xx >	50µm						0.0								xx un	bek.						0.0							
		odor							0.0								odor_							0.0							
		+	_050						0.0								odor_							0.0							
		+	_075						0.0								odor_	_100						0.0							
		bae-	_150						0.0								hg0 bae-2	2						0.0							
		bae-							0.0								bae-4							0.0							
		bae-							0.0								bap-							0.0							
		bap-							0.0								bap-3							0.0							
		bap-							0.0	00							bap-ı							0.0	00						
		dx-1							0.0	00							dx-2							0.0	00						
		dx-3							0.0	00							dx-4							0.0	00						
		dx-u							0.0	00							pm25	5-1						0.0	00						
Zeitabhä	ngige Ei	missio	nen																												
pm-1	Jahr	esgan	ıg		Anza	ıhl En	nissio	nstun	den (2	014):	3456																				
Datum	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Januar																				+	+	+	+	+	+		+	+	+	+	+
Februar	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+			
März	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+
April	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	
Mai 	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+
Juni Juli	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
August	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_
Septemb	_	+	+	+	+	+		+	+	+	+	+	+	·	+	+	+	+	+	+		+	+	+	+	+	+		+	+	
Oktober	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+
Novembe	_		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		
Dezembe	r +	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+											
Wocheng	ang																														
	Mont	ag			Die	ensta	g			Mittv	voch			D	onner	stag			F	reitag				Sam	stag			5	Sonnt	ag	
	+					+					+				+					+				+	+						
Tagesga																		_								_					
0	-1h 1	-2h	2-3h	3-4h	ո 4-	5h	5-6h	6-71	_	_	8-9h	_		16	11- 125	12-	13	l la	14- 155	15-	16	· L	17-	18-	1:	9-	20-	21-	2	2-	23-
								+		+	+	+		+	+	+	-	+	+	+		٢	+								
)-1h		1-2	ı la		2-3h		2	-4h		4-5	la l		5-6h	1	6	-7h		7-8	la la		0.06		0	10h		10-11	h	4.	1-12ŀ
g/h	0.000E	_	0.00	0E+0	_	0.000		-	000E+	_	0.00	4-5 0E+0	_	0.000		3	100E+		3 10	00E+0		3.100E	8-9h =+01	3 .	9- 100E	-		00E+0	_	3.100	
9/11		13h		13-14	-		4-15h	_	15-1	_		16-17	_		'-18h	J.	18-1	-+		19-20	+-		-21h	J.	21-:	-+		22-23	_		3-24h
g/h	3.100E			0E+0		3.100			100E+	_		0E+0	_	3.100		0.0	000E+	_		00E+0	+-	0.000E		0.0	000E	-+		00E+0	_	0.000	
<u> </u>					- 1																										
		Geo	metrie	,											Nr					x/m			y/	m		z(a	bs) /n	n		! z(re	el) /m
									\top				- 1	Knote	ո։	1		5	8726	1.50		5540	0332.2	_			205.5	_			0.00
																2		5	87337	7.23		5540)166.0	01			204.50	0			0.00
																3		5	87338	3.87		5540)149.6	63			204.8	1			0.00
																4		5	87336	6.82		5540)131.6	32		- :	205.30	0			0.00
									\perp							5			87310	_			026.0				202.6	+			0.00
		1							\perp							6			8730				9984.4				202.42	_			0.00
									+						-	7			87313				922.				203.5	+			0.00
									+						\bot	8			87326				9873.6				204.0				0.00
															1	9	1	- 5	87326	5.49		5539	9801.2	22			205.69	9			0.00
									+						+							FF0-	700	34			2015	_			0.00
																10		5	87312 87303				9730.8				204.3				0.00

Wölfel

Datum 01.03.2022

 $\begin{array}{c} \text{Seite} \\ A6 \end{array}$

															13 14 15		58	87294 87249 87218	.56	553	9629.2 9565.2 9535.4	1		2	205.7	7		C
																										4		
															15		58	07210	4.5	553	0525	12				_		
<u> </u>														_			- 00	3/210	.45	555	9000.4	13		- 4	204.03	3		C
+															16		58	87166	.75	553	9482.0)2		2	203.82	2		C
															17		58	87146	.69	553	9450.0	9		2	204.1	5		C
															18		58	87134	.40	553	9426.	'6		2	204.78	В		C
															19		58	87131	.54	553	9389.9	92		2	204.60	0		C
															20		58	87131	.54	553	9378.8	37		2	204.38	В		C
															21		58	37073	.81	553	9112.2	28		2	204.30	0		C
ı	Beze	ichnu	ıng					Fa	ahrv	erkehr	BA-E), unt	efesti	gt Nor	d	Wirkr	radius	s /m										99999
-	Grup	ре									en					Lw (T	Гаg) /	dB(A)										24
- 1	Knote	enzał	nl					3								Effek	tive C	Quellh	öhe								di	r. Eing
- 1	Läng	e /m						25	58.20)																		
<u> </u>	Läng	e /m ((2D)					25	58.19	9																		
<u> </u>	Fläch	ie /m²	2						-																			
-	Gasa	rt						Q	i /(g/	/h)						Gasa	ırt					Qi	/(g/h)				
:	so2							0.	00							nox						0.0	00					
1	no							0.	00							no2						0.0	00					
ŀ	bzl							0.	00							tce						0.0	00					
ſ	f							0.	00							nh3						0.0	00					
	hg							0.	00							PM 2.	.5µm					0.0	00					
1	PM 2.	.5µm-	·10µn	1				0.	00							PM 10	0μm-{	50µm				0.0	00					
ı	PM >:	50µm						0.	00							PM u	nbek.					0.0	00					
I	As 2.	5µm						0.	00							As 2.5	5µm-1	10µm				0.0	00					
1	As 10	μm-5	0µm					0.	00							As >5	50µm					0.0	00					
i	As un	bek.						0.	00							Pb 2.	5µm					0.0	00					
1	Pb 2.	5µm-′	10µm					0.	00							Pb 10)μm-5	0µm				0.0	00					
ı	Pb >5	0μm						0.	00							Pb un	nbek.					0.0	00					
(Cd 2.	5µm						0.	00							Cd 2.	.5µm-	10µm				0.0	00					
(Cd 10)µm-5	0μm					0.	00							Cd >5	50µm					0.0	00					
(Cd ur	bek.						0.	00							Ni 2.5	5µm					0.0	00					
ı	Ni 2.5	μm-1	0µm					0.	00							Ni 10	µm-50	0µm				0.0	00					
1	Ni >5	0µm						0.	00							Ni unl	bek.					0.0	00					
- 1	Hg 2.	5µm						0.	00							Hg 2.	.5µm-	10µm				0.0	00					
- 1	Hg 10)µm-5	i0μm					0.	00							Hg >5	50µm					0.0	00					
- 1	Hg ur	bek.						0.	00							TI 2.5	5μm					0.0	00					
-	TI 2.5	μm-1	0µm					0.	00							TI 10µ	μm-50	Dμm				0.0	00					
-	TI >50	Эμт						0.	00							TI unb	bek.					0.0	00					
3	xx							0.	00							xx 2.5	5µm					0.0	00					
1	xx 2.5	μm-1	0µm					0.	00							xx 10	µm-50	0µm				0.0	00					
3	xx >5	0µm						0.	00							xx un	bek.					0.0	00					
(odor							0.	00							odor_	_040					0.0	00					
	odor_	050						0.	00							odor_	_060					0.0	00					
	odor_	075						0.	00							odor_	100					0.0	00					
	odor_	150						0.	00							hg0						0.0	00					
	bae-1							0.	00							bae-2	2					0.0	00					
	bae-3							0.	00							bae-4	4					0.0	00					
	bae-u							0.	00							bap-1	1					0.0	00					
I	bap-2	!						0.	00							bap-3	3					0.0	00					
T)	bap-4							0.	00							bap-u	1					0.0	00					
(dx-1							0.	00							dx-2						0.0	00					
(dx-3							0.	00							dx-4						0.0	00					
	dx-u							0.	00							pm25	5-1					0.0	00					
																						•						
je Emi	issior	nen																										
	sgand	1		Anza	hl Fn	nissi	onstun	den (2	2014): 3456	3																	
Jahres					6	7	_	9	10			13	14	15	16	17	18	19	20 21	22	23	24	25	26	27	28	29	30
Jahres 1		3	4	5							1 '2	- 13	17			· · ·	٠, ٥				_		_5	_0		_0	2	~~
Jahres 1	2	3	4	5	0	<u>'</u>	Ť											l	+ +	+	+	+	+		+	+	+	+
1										+	+	+	+	+		+	+	+	+ +	_	+	+	+	+	+	+	+	+
		+ +	+ +	+ +	+ +	+	+		+	_	+	+	+	+		+	+	+ +	+ + + + +	+	+	+ + +	+ + +	+	+ + +	+ + +	+	+
		Grup Knote Läng Läng Fläch Gasa so2 no bzl f hg PM 2 PM 2 As 2.3 As 10 As un Pb 2.6 Cd 2 Cd 10 Cd ur Ni 2.5 Hg 2 Hg 10 Hg ur TI 2.5 TI >5(xx xx 2.5 odor odor odor odor bae-1 bae-3 bae-u bap-2 bap-4 dx-1 dx-3 dx-u	Gruppe Knotenzal Länge /m Länge /m Länge /m Fläche /m Gasart so2 no bzl f hg PM 2.5µm PM >50µm As 2.5µm As 10µm-5 As unbek. Pb 2.5µm Cd 10µm-5 Cd unbek. Ni 2.5µm Hg 10µm-5 Hg unbek. Tl 2.5µm-1 Tl >50µm xx xx 2.5µm-1 xx >50µm odor odor_050 odor_075 odor_150 bae-1 bae-3 bae-u bap-2 bap-4 dx-1 dx-3	Knotenzahl Länge /m Länge /m (2D) Fläche /m² Gasart so2 no bzl f hg PM 2.5µm-10µm PM >50µm As 2.5µm As 10µm-50µm As 2.5µm Cd 10µm-50µm Cd 2.5µm Cd 10µm-50µm Hg 2.5µm-10µm Hg 2.5µm Hg 10µm-50µm Hg 2.5µm Hg 10µm-50µm Hg 00pm Hg 2.5µm Hg 10µm-50µm Hg 00pm Hg 00pm Hg 00pm TI >50µm Xx xx 2.5µm-10µm xx xx 2.5µm-10µm xx bac-1 bac-3 bac-1 bac-3 bac-4 dx-1 dx-3 dx-u	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Gasart so2 no bzl f hg PM 2.5µm-10µm PM >50µm As 2.5µm As 10µm-50µm As 10µm-50µm Cd 2.5µm-10µm Pb >50µm Cd 10µm-50µm Hg 2.5µm-10µm Tl >50µm Hg 10µm-50µm Hg 10µm-50µm Hg 2.5µm Hg 10µm-50µm Hg 00µm-50µm Hg 10µm-50µm Hg 00µm-50µm xx xx 2.5µm-10µm xx xx >50µm odor odor_050 odor_075 odor_150 bae-1 bae-3 bae-u bap-2 bap-4 dx-1 dx-3 dx-u	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Gasart so2 no bzl f hg PM 2.5µm-10µm PM >50µm As 2.5µm As 10µm-50µm As unbek. Pb 2.5µm-10µm Pb >50µm Cd 10µm-50µm Cd 10µm-50µm Hg 2.5µm Hg 10µm-50µm Hg 2.5µm Hg 10µm-50µm xx xx 2.5µm xx ≥ 2.5µm xx ≥ 50µm xx xx ≥ 50µm xx xx ≥ 50µm xx xx ≥ 50µm xx xx ≥ 50µm dor 0dor 0dor 0dor 0dor 0dor 150 bae-1 bae-3 bae-u bap-2 bap-4 dx-1 dx-3 dx-u	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Gasart so2 no bzl f hg PM 2.5µm-10µm PM >50µm As 2.5µm As 10µm-50µm As unbek. Pb 2.5µm-10µm Pb >50µm Cd 10µm-50µm Cd 10µm-50µm Hg 2.5µm Hg 10µm-50µm Ni >50µm Hg 2.5µm Hg 10µm-50µm Hg 2.5µm Od 10µm-50µm Hg 00µm Hg 2.5µm Hg 10µm-50µm Hg 00µm xx xx 2.5µm-10µm xx xx 2.5µm-10µm xx xx 2.5µm-10µm bae-1 bae-3 bae-u bap-2 bap-4 dx-1 dx-3 dx-u	Gruppe Knotenzahl Länge /m Länge /m Länge /m Länge /m Casart so2 no bzl f hg PM 2.5µm-10µm PM >50µm As 2.5µm As 10µm-50µm As unbek. Pb 2.5µm-10µm Pb >50µm Cd 2.5µm Cd 10µm-50µm Hg 2.5µm-10µm Ni >50µm Hg 2.5µm-10µm Ni >50µm Tl 2.5µm-10µm Tl >50µm Tl >50µm Tl >50µm xx xx 2.5µm-10µm xx xx 2.5µm-10µm xx xx xx 2.5µm-10µm odor odor_050 odor_075 odor_150 bae-1 bae-3 bae-u bap-2 bap-4 dx-1 dx-3 dx-u	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Gasart So2 no no bzl f no PM 2.5µm-10µm PM >50µm As 2.5µm As 10µm-50µm Pb ≥50µm Cd 2.5µm Cd 10µm-50µm Cd 2.5µm Cd 10µm-50µm Cd 2.5µm Cd 10µm-50µm Cd 2.5µm Cd 10µm-50µm Cd 2.5µm On Cd 10µm-50µm Cd 2.5µm On Cd 10µm-50µm Cd 10µm-50µm Cd 10µm-50µm Cd 10µm-50µm Cd 10µm-50µm On Cd	Gruppe	Gruppe	Gruppe	Gruppe PM2.5 Quellen Knotenzahl 3 Länge /m 258.20 Länge /m (2D) 258.19 Fläche /m² Gasart Qi /(g/h) so2 0.00 no 0.00 bzl 0.00 f 0.00 hg 0.00 PM 2.5µm-10µm 0.00 As 2.5µm 0.00 As 10µm-50µm 0.00 As unbek. 0.00 Pb 2.5µm-10µm 0.00 Cd 2.5µm 0.00 Cd 2.5µm 0.00 Cd 10µm-50µm 0.00 Cd unbek. 0.00 Ni 2.5µm-10µm 0.00 Ni 2.5µm 0.00 Ni 2.5µm 0.00 Ng 2.5µm 0.00	Gruppe PM2.5 Quellen Knotenzahl 3 Länge /m 258.20 Länge /m (2D) 258.19 Fläche /m² Gasart Qi /(g/h) so2 0.00 no 0.00 bzI 0.00 f 0.00 hg 0.00 PM 2.5μm-10μm 0.00 PM >50μm 0.00 As 10μm-50μm 0.00 As unbek. 0.00 Pb 2.5μm-10μm 0.00 Cd 2.5μm 0.00 Cd 10μm-50μm 0.00 Cd 10μm-50μm 0.00 Ni 2.5μm-10μm 0.00 Ni 2.5μm-10μm 0.00 Hg 10μm-50μm 0.00 Hg unbek. 0.00 Tl 2.5μm-10μm 0.00 xx 0.00 xx 0.00 xx 0.00 xx 0.00 xx 0.00 xx 0.00 xx	Gruppe PM2.5 Quellen Knotenzahl 3 Länge /m 258.20 Länge /m (2D) 258.19 Fläche /m² Gasart Qi /(g/h) so2 0.00 no 0.00 bzI 0.00 f 0.00 hg 0.00 PM 2-5µm-10µm 0.00 PM 55µm 0.00 As 2,5µm 0.00 As 10µm-50µm 0.00 As unbek. 0.00 Pb 2,5µm-10µm 0.00 Cd 2,5µm 0.00 Cd 10µm-50µm 0.00 Cd 10µm-50µm 0.00 Ni 2,5µm-10µm 0.00 Ni 2,5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg 10µm-50µm 0.00 Tr 2,5µm-10µm 0.00 xx 2,5µm-10µm	Bezeichnung	Bezeichnung	Bezeichnung	Bazeichnung	Bezeichnung	Bazeichnung	Sezeichnung	21 S87073.81 S539112.28	21 \$87073.81 \$539112.28	Bezeichnung	21 \$87073.81 \$539112.28 204.31	Sezeichnung	Sezeichnung

Datum Seite 01.03.2022 A7

							,									_														-		
Mai		+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+
Juni			+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	
Juli		+	+	+	+	+	-	+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+	ļ	+	+	+	+
Augu		+	+	<u> </u>	+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+	
Septe		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	
Oktob		+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+
Nove	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+		
	engan		т.				Т.		т.		т	т	т	т.		-	т.	т.	т_		т						<u> </u>					
T		Monta	ag			Die	ensta	a			Mittv	voch				Onner	stad			F	reitag				Sam	stag			5	Sonnta	aa	
		+	-				+	3				+				+	9				+		-			_		1			.5	
Tage	sgang																															
	0-1h	1-	-2h	2-3h	3-4h	1 4-	5h	5-6h	6-7h	7-	8h 8	3-9h	9-10	h 1	0-	11-	12-	13	3-	14-	15-	16	3-	17-	18-	1:	9-	20-	21-	22	?-	23-
									+		+	+	+		+	+	+	+		+	+	Τ.	+	+	-11.16	Τ."		7-1-15	7.75			<i>7</i> 4.6
		0)-1h		1-2	:h		2-3h	ı	3	-4h		4-5	5h		5-6h		6-	7h		7-8	h		8-9h		9-	10h		10-11			-12h
g/h	0.0	00E-			00E+0	+	0.000		-	000E-			0E+0	_		DE+00	7.	100E+	-	7.1	00E+0	_		E+01	7.	100E			0E+0	_	.1001	
	ļ .	12-	_		13-14	_		4-15h	_	15-	_		16-17			7-18h		18-1	_		19-20	_		0-21h		21-	_		22-23	_		-24h
g/h	7.1	00E-	+01	7.10	00E+0	1	7.100	E+01	7.	100E-	+01	7.10	0E+0)1	7.10	DE+01	0.	000E+	00	0.0	00E+0	U	ນ.000	E+00	0.0	000E	+00	0.00	0E+0	U C	.0001	=+00
-			Gas	metri						1						Nr					x/m				m		-/-	ahe\ /-			1 7/2-	1) /
			Geo	metric	đ					+					Knote	-	1		F	8752			EE A	y / 0230.4	_		_	203.4	_		! z(re	0.00
															THOR	#II.	2			8749				0202.0	_			204.3	+			0.00
										+						-	3			8732				0064.	_			204.0	_			0.00
LIGo	011		Bez	eichn	ung					Fa	hrver	kehr E	BA-D,	132				Wirkr			0.20		001	0004.	-			204.02	-1		9999	
			Gru							PI	лана. И2.5 (Quelle	n	hofoo	tiet F	MOE		Lw (T	ag) /	dB(A	١)											8.74
			Kno	tenza	hl					18	,							Effek	tive (Quell	höhe									di	r. Ein	gabe
			Läng	ge /m						74	7.89																					
			Län	ge /m	(2D)					74	7.78																					
			Fläc	he /m	2																											
			Gas	art						Qi	/(g/h)						Gasa	rt						Qi	/(g/h	1)					
			so2							0.								nox							0.0							
			no							0.								no2							0.0							
			bzl							0.								tce							0.0							
-			l ba							0.								nh3 PM 2.	5~						0.0							
-			hg PM :	2.5µm	-10um	n				0.								PM 10			1				0.0							
				>50µm		-				0.								PM ur			-				0.0							
				.5µm						0.								As 2.5			1				0.0							
				0μm-5	50µm					0.								As >5							0.0							
			_	nbek.						0.	00							Pb 2.5	_						0.0	00						
			Pb 2	.5µm-	10µm					0.	00							Pb 10)µm-5	50µm					0.0	00						
			Pb >	∙50µm						0.	00							Pb un	bek.						0.0	00						
			_	2.5µm						_	00							Cd 2.		_	1				0.0							
<u></u>			_	0μm-(_					_	00							Cd >5	_	l					0.0							
<u> </u>			_	ınbek.						_	00							Ni 2.5							0.0							
				.5µm-′	ιυμπ					_	00							Ni 10		υμπ					0.0							
			_	50µm 2.5µm						_	00							Ni unl		.10~	<u> </u>				0.0							
-			Ť	5μm 0μm-(_	00							Hg 2.	•	_	-				0.0							
				ınbek.						_	00							TI 2.5	_						0.0							
				5µm-1						_	00							TI 10 _k	_	0µm					0.0							
			-	50µm	•						00							TI unb		•					0.0							
			xx							0.	00							xx 2.5							0.0	00						
			xx 2	.5µm-	10µm					0.	00							xx 10 _l	μm-5	0µm					0.0	00						
			xx >	50µm						0.	00							xx unl	bek.						0.0	00						
			odor							_	00							odor_	040						0.0	00						
<u> </u>				_050						_	00							odor_							0.0							
<u> </u>				_075						_	00							odor_	100						0.0							
<u> </u>				_150						_	00							hg0							0.0							
			bae-							_	00							bae-2							0.0							
			bae-	3						0.	00							bae-4	+						0.0	JU						

Datum 01.03.2022

Seite A8

			bae-ı	ı						0.	00							bap-	1						0.	00						
			bap-2	2						0.	00							bap-	3						0.	00						
			bap-4	1						0.	00							bap-ı	u						0.	00						
			dx-1							0.	00							dx-2							0.	00						
			dx-3							0.	00							dx-4							0.	00						
			dx-u							0.	00							pm25	5-1						0.	00						
Zeitabh	ängige	e Em	nissio	nen																												
pm-1	J	ahre	sgan	g		Anza	hl En	nissio	nstund	den (2	014):	3456																				
Datum		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Januar																					+	+	+	+	+	+		+	+	+	+	+
Februa	r	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+			
März		+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+
April		+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	
Mai		+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+
Juni			+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	
Juli		+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+
August		+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+	
Septem	nber	+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	
Oktobe	r	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+
Novem	ber	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		
Dezeml	ber	+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+											
Woche	ngang																-			-							-					
	M	lonta	ıg			Die	ensta	g			Mitt	woch			D	onner	stag			F	reitag				Sam	stag			5	Sonnta	ag	
		+					+					+				+					+					+						
Tagesg	jang																															
	0-1h	1-2	2h 2	2-3h	3-4h	n 4-	5h	5-6h	6-7h	n 7-	8h	8-9h	9-10)h 1	0-	11-	12-	1:	3-	14-	15-	10	6-	17-	18-	1:	9-	20-	21-	22	2-	23-
									+		+	+	+		+	+	+		+	+	+	1.	+	+	106	- 11		-146	11115	7,1.		71412
						•																										
		0-	·1h		1-2	?h		2-3h	ı	3	-4h		4-5	5h		5-6h		6	-7h		7-8	3h		8-9h		9-	10h		10-11	h	1	1-12h
g/h	0.00	00E+	00	0.00	00E+0	0 (0.000	E+00	0.	000E-	+00	0.00	00E+0	00	0.000	E+00	3.	034E-	+02	3.03	34E+0)2	3.034	E+02	3.	034E	+02	3.03	34E+0	2 3	3.034	E+02
		12-1	3h		13-14	h	14	4-15h		15-1	16h		16-17	7h	1	7-18h		18-	19h		19-20)h	2	0-21h		21-	22h		22-23	h	23	3-24h
g/h	3.03	34E+	02	3.03	34E+0)2 ;	3.034	E+02	3.	034E-	+02	3.03	34E+0)2	3.034	E+02	0.	000E-	+00	0.00	00E+0	00	0.000	E+00	0.	000E	+00	0.00	00E+0	0 0	0.000	E+00
			Geor	netrie	Э											Nr					x/m			y	/m		z(a	bs) /n	n		! z(re	el) /m
															Knote	n:	1		5	8732	6.29		554	0064.	12			204.02	2			0.00
																	2		5	8732	2.89		554	0048.	23			203.5	6			0.00
																	3		5	8731	1.52		554	0025.	38			202.7	0			0.00
																	4		5	8730	7.56		554	0011.	62			202.4	8			0.00
										floor							5		5	8730	3.78		553	9981.	85			202.4	1			0.00
																	6		5	8731	1.31		553	9940.	11			203.0	1			0.00
																	7		5	8732	7.34		553	9873.	10			204.0	7			0.00
																	8		5	8732	9.08		553	9839.	87			204.6	3			0.00
																	9		5	8732	9.67		553	9812.	48			205.5	2			0.00
																	10		5	8732	3.60		553	9774.	29			205.9	7			0.00
																	11		5	8731	3.65		553	9735.	16			204.6	3			0.00
																	12		5	8729	4.25		553	9631.	60			205.7	4			0.00
																	13		5	8726	4.45		553	9585.	98			204.8	4			0.00
																	14		5	8723	0.27		553	9545.	47			204.0	0			0.00
																	15		5	8717	7.78		553	9493.	88			203.8	4			0.00
										1							16			8715				9472.	_			203.80	6			0.00
										1							17			8713				9430.	_			204.6	2			0.00
										1							18			8712				9382.	_			204.5				0.00
LIGo01	2		Beze	ichnı	ung					Fa	hrve	rkehr l	BA-D	, 132	,			Wirk	radiu		<u> </u>								•		999	99.00
			Grup		_					PI	M2.5	Quelle	en			COA		1		dB(A)				l							27.04
			_	enzal	hl					5										Quell					T					di		gabe
				e /m						_	5.25																					
				e /m						_	5.23																					
			_	ne /m																												
			Gasa							Qi	/(g/h	1)						Gasa	art						Q	i /(g/h	1)					
			so2								00							nox							_	00						
										1															1							

Datum 01.03.2022

Seite A9

Decomposition		no	1							0.0	າດ							no2							0.0	00						
F		-								_															_							
PM 2-Spin		f	.1							_															_							
PM 1		ho								_									5um						_							
PM + 55gm				ım-	10um	1				_									_		1				_							
As 2 Sym		_			торпп					_								_		_	,				_							_
As 90pm-50pm		_								_															_							
A unbek	-	_			Jum					_									_	_					_							
Part		_	_		υμιιι					_									_						_							
Pho >60/ym		_			Λ					_									_	-0					_							
		_			υμm					_								_							_							
		_								_															_							
C d unbek		_								_										_	1				_							
Ni 2 Sym Styles		_	_		0µm					_									_	1					_							
Ni Signate		_								_									_						_							
Pig 2.5 ym		_	_		0µm					_									_	i0μm					_							
				_																					_							
		Ηç	2.5µ	ım						0.0	00							Hg 2.	5µm-	-10µm	1				0.0	00						
T1 2 5 jum 1 jum 1 jum 5 jum 5 jum 1 jum 5 jum		Ηç	g 10μι	m-5	0µm					0.0	00									1					0.0	00						
Ti +56pm	·	Ηç	g unb	ek.						0.0	00							TI 2.5	μm						0.0	00						
		TI	2.5µr	n-10)μm					0.0	00							TI 10	μm-5	0µm					0.0	00						
		TI	>50µ	m						0.0	00							TI un	bek.						0.0	00						
		XX								0.0	00							xx 2.	5μm						0.0	00						
Odor		xx	2.5µ	m-1	0µm					0.0	00							_		i0μm					0.0	00						
Odor		xx	>50µ	ım						0.0	00							xx un	bek.						0.0	00						
Oddr_150		od	lor							0.0	00							odor_	040						0.0	00						
Oddr_150		od	lor 05	50						0.0	00							odor	060						0.0	00						
Second		_	_							0.0	00														0.0	00						
Data		od	lor 15	50						0.0	00														0.0	00						
bae-3										_								_)						_							
Dap-2		_								_								bae-4	1						_							
bap-2		_								_															_							
bap-4		_								_															_							
dx-1		_								_															_							
		_								_									4						_							_
Datum 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		_								_															_							
Zeitabhängige Emissionen Pm-1		_								_									: 1						_							
Datum		un	<u> </u>							0.,								pinzo							0.							
Datum 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Januar 4 <	Zeitabhängige E	Emiss	sioner	n																												
Datum 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Januar	nm-1	hresa	ana		- 1	Δnzo	hl ⊑~	niecic	netur	len (2	0141-	3/56																				
Januar			3			_		_	_		_	12	12	1/	15	16	17	12	10	20	21	22	22	2/	25	26	27	28	20	30	31	
Februar +		+	╁	<u> </u>	-	J	0		0	9	10	<u> </u>	14	10	"	13	10	-''	10	10	-						20	+				+
März +		+	+	+	_	_	٠.	,			_	٠.	٠.	_	٠.	٠.		_	_			_		L'		-	_ر	+		-		F
April		_		_	-									_													_	+		1		+
Mai		-		-+	_		Ë			_				_				_		-		_				-	-	+				\vdash
Juni +		_	-+	-+	+		<u> </u>			_				-					+		\vdash			-		+	_	+				\vdash
Juli + <td></td> <td>-</td> <td></td> <td>-+</td> <td>_</td> <td></td> <td></td> <td></td> <td>+</td> <td>_</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>_</td> <td></td> <td>-</td> <td></td> <td>_</td> <td>+</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>+</td> <td></td> <td>+</td> <td></td> <td>+</td>		-		-+	_				+	_		-				+		_		-		_	+	-			-	+		+		+
August		_		_	_		+		-	_				+							+			-		-	_	+				\vdash
September +		-		+	_		<u> </u>			_	+							+		-	$\vdash \vdash$	_		-	+	-	-	1				+
Oktober + </td <td></td> <td>-</td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>_</td> <td></td> <td>-</td> <td>_</td> <td>+</td> <td>+</td> <td></td> <td></td> <td>_</td>		-		_	_			+							+							+		_		-	_	+	+			_
November		-		-+	_	+				_			+					_		+				-		-	+	+				\vdash
Dezember + + + + + + + + +		_		_	_					+							+							+		-		+			+	+
Wochengang Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag + + + + + + + + 1 + + + 1 - 1 <		_		-+	_			+							+			_		-		+	+		+	+	+	+	+	+		_
Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag	Dezember +	- -	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+											Ш
Tagesgang 0-1h 1-2h 2-3h 3-4h 4-5h 5-6h 6-7h 7-8h 8-9h 9-10h 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22-	Wochengang																															
Tagesgang 0-1h 1-2h 2-3h 3-4h 4-5h 5-6h 6-7h 7-8h 8-9h 9-10h 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 22- 23-	-	_				Die	ensta	g			Mittv	voch			D	onner	stag			F	_				Sam	stag			,	Sonnt	ag	
0-1h 1-2h 2-3h 3-4h 4-5h 5-6h 6-7h 7-8h 8-9h 9-10h 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22-		+					+					+				+					+					+						
0 111 1 2 11 0 111 1 0 11 0 11 0 11 0 1	Tagesgang																															
+ + + + + + + + + + + + + + + + + + + +	0-1h	1-2h	2-3	ßh	3-4h	4-	5h	5-6h	6-7h	ı 7-	8h	8-9h	9-10	h 1	0-	11-	12-	13	3-	14-	15-	16)- 'L	17-	18-	1	9-	20-	21-	22	2-	23-
									+		+	+	+	Ţ	+	+	+		+	+	+	Τ	+	+		J."				<u> </u>		
				•																		•				•				•		
0-1h 1-2h 2-3h 3-4h 4-5h 5-6h 6-7h 7-8h 8-9h 9-10h 10-11h 1		0-1h	1		1-2	h		2-3h		3	-4h		4-5	ih		5-6h		6-	-7h		7-8	n		8-9h		9-	10h		10-11	h	11	1-12
g/h 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.421E+02 1.421E+02 1.421E+02 1.421E+02 1.421E+02 1.421E+02 1.421E+02	g/h 0.000	E+00	0	.000	0E+0	0 (0.000	E+00	0.	000E+	+00	0.00	0E+0	00	0.000	E+00	1.4	421E+	-02	1.42	21E+0	2 -	1.421	E+02	1.4	421E	+02	1.42	21E+0	2	.421	E+0

Januar

	Datum 01.03.2022	Seite A10
7011a		

	12-1	3h 13-14	h 14-15	h 1	5-16h	16-17h	17-1	18h	18-19	h 19-2	20h	20-21h	21-22h	22-23	h 23-24h
g/h	1.421E+	·02 1.421E+0	2 1.421E+0	2 1.421	1E+02	1.421E+02	1.421E+	+02 (0.000E+0	0.000E-	+00 (0.000E+00	0.000E+00	0.000E+0	0.000E+00
		Geometrie						Nr		x/m		y/n	n z(a	abs) /m	! z(rel) /m
							Knoten:		1	587128.93		5539382.2	3	204.54	0.00
									2	587131.86		5539378.6	1	204.37	0.00
									3	587151.20		5539374.1	5	203.76	0.00
							•		4	587319.28		5539335.4	6	203.27	0.00
									5	587622.82		5539388.90)	204.33	0.00

	Flächen-Qu	ielle /Po	oll (2	2)																																PM2
Nectorizabl S	FLGo006	В	eze	ichnung							Ab	oba	u/Aufb	ereitu	ng'	*				Wi	rkradiu	s /m													9!	9999.
Lange /m (ZD)		G	rup	pe							P۱	M2.	5 Quel	len						Lw	(Tag)	/dB(A	4)													45.
Lange m (2b)		K	note	enzahl							8									Eff	ektive	Quell	lhö	he											dir. I	Einga
Fische Im 32974.95		Lä	äng	e /m							75	50.7	7																							
Gasart Q1 /(g/h) Gasart Q1 /(g/h)		Lä	äng	e /m (2D)						75	50.6	6																							
So2		FI	läch	ie /m²							32	297	1.95																							
no		G	asa	rt							Qi	i /(g	/h)							Ga	sart								Qi /(ç	J/h)						
bzi		sc	o2								0.0	00								no	(0.00							
F		no	0								0.0	00								noź	2								0.00							
hg 0.00 PM 2.5μm 0.00 PM 10μm-50μm 0.00 PM 2.5μm 10μm 0.00 PM 10μm-50μm 0.00 0.00 AS 2.5μm 0.00 AS 2.5μm 0.00 AS 2.5μm 0.00 AS 10μm-50μm 0.00 AS 2.5μm 0.00 AS 2.5μm 0.00 AS unbek 0.00 0.00 AS 2.5μm 0.00 Pb 2.5μm-10μm 0.00 Pb 10μm-50μm 0.00 AD 0.00 Pb 5-50μm 0.00 Pb 10μm-50μm 0.00 AD 0.00 Cd 10μm-50μm 0.00 Cd 2.5μm 0.00 AD 0.00 Cd 10μm-50μm 0.00 Cd 2.5μm 0.00 AD 0.00 Cd 10μm-50μm 0.00 NI 2.5μm 0.00 AD 0.00 NI 2.5μm 10μm 0.00 NI 10μm-50μm 0.00 AD 0.00 NI 2.5μm 0.00 NI 10μm-50μm 0.00 AD 0.00 NI 2.5μm 0.00 NI 10μm-50μm 0.00 AD 0.00 NI 2.5μm 0.00 NI 10μm-50μm 0.00 AD 0.00 Hg 2.5μm 0.00 NI 10μm-50μm 0.00 AD 0.00 Hg 10μm-50μm 0.00 Hg 2.5μm 0.00 AD 0.00 Hg 10μm-50μm 0.00 TI 1.5μm 0.00 AD 0.00 TI 2.5μm 0.00 AD 0.00 TI 1.5μm 0.00 AD 0.00		bz	zl								0.0	00								tce									0.00							
PM 2.5µm-10µm 0.00 PM 10µm-50µm 0.00 PM >50µm 0.00 PM unbek. 0.00 As 2.5µm 0.00 As 2.5µm 0.00 As 10µm-50µm 0.00 As >50µm 0.00 As unbek. 0.00 Pb 2.5µm 0.00 Pb 2.5µm-10µm 0.00 Pb 10µm-50µm 0.00 Pb 560µm 0.00 Pb unbek. 0.00 Cd 2.5µm 0.00 Cd 2.5µm-10µm 0.00 Cd 10µm-50µm 0.00 Cd 2.5µm-10µm 0.00 Cd 10µm-50µm 0.00 Cd 2.5µm-10µm 0.00 Cd 10µm-50µm 0.00 Ni 2.5µm-10µm 0.00 Ni 2.5µm-10µm 0.00 Ni 10µm-50µm 0.00 Ni 2.5µm-10µm 0.00 Ni 10µm-50µm 0.00 Ni 2.5µm-10µm 0.00 Ni 10µm-50µm 0.00 Hg 2.5µm 0.00 Ni 10µm-50µm 0.00 Hg 2.5µm-10µm 0.00 Hg 2.5µm-10µm 0.00 Hg 2.5µm-10µm 0.00 Hg 2.5µm-10µm <td< td=""><td></td><td>f</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>nh:</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		f									0.0	00								nh:	3								0.00							
PM >50µm		họ	g								0.0	00								PΝ	l 2.5µm								0.00							
As 2.5µm 0.00 As 2.5µm-10µm 0.00 As 10µm-50µm 0.00 As >50µm 0.00 As unbek. 0.00 Pb 2.5µm 0.00 Pb 2.5µm-10µm 0.00 Pb 10µm-50µm 0.00 Cd 2.5µm 0.00 Cd 2.5µm-10µm 0.00 Cd 10µm-50µm 0.00 Cd 2.5µm-10µm 0.00 Cd 10µm-50µm 0.00 N 2.5µm 0.00 N 1.2 5µm-10µm 0.00 N 1.25µm 0.00 N 1.2 5µm-10µm 0.00 N 1.0µm-50µm 0.00 N 1.2 5µm 0.00 N 1.0µm-50µm 0.00 N 1.2 5µm 0.00 N 1.0µm-50µm 0.00 Hg 15µm-50µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 T1 2.5µm-10µm 0.00 T1 2.5µm-10µm 0.00 T1 1.5µm-50µm 0.00 T1 2.5µm-10µm 0.00 T1 1.5µm-50µm 0.00 T1 2.5µm-10µm 0.00 T1 1.5µm-50µm 0.00 T1 550µm 0.00 T1 0.0m-50µm 0.00		PI	M 2	.5µm-10	ım						0.0	00								PΝ	I 10μm	50µn	n						0.00							
As 10µm-50µm 0.00 As >50µm 0.00 As unbek. 0.00 Pb 2.5µm 0.00 Pb 2.5µm-10µm 0.00 Pb 10µm-50µm 0.00 Pb >50µm 0.00 Pb unbek. 0.00 Cd 2.5µm 0.00 Cd 2.5µm-10µm 0.00 Cd 10µm-50µm 0.00 Ni 2.5µm 0.00 Ni 2.5µm-10µm 0.00 Ni 10µm-50µm 0.00 Ni 2.5µm-10µm 0.00 Ni 10µm-50µm 0.00 Ni 2.5µm 0.00 Ni 10µm-50µm 0.00 Hg 2.5µm 0.00 Ni 10µm-50µm 0.00 Hg 2.5µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Ti 2.5µm 0.00 Hg 10µm-50µm 0.00 Ti 1.5µm 0.00 Ti 1.5µm-10µm 0.00 Ti 1.5µm-50µm 0.00 Ti 1.5µm-10µm 0.00 Ti 1.0µm-50µm 0.00 xx 0.00 Ti 1.0µm-50µm 0.00 xx 0.00 xx 2.5µm 0.00 xx		PI	M >:	50µm							0.0	00								PΝ	l unbek								0.00							
As 10µm-50µm 0.00 As >50µm 0.00 As unbek. 0.00 Pb 2.5µm 0.00 Pb 2.5µm-10µm 0.00 Pb 10µm-50µm 0.00 Pb >50µm 0.00 Pb unbek. 0.00 Cd 2.5µm 0.00 Cd 2.5µm-10µm 0.00 Cd 10µm-50µm 0.00 NI 2.5µm 0.00 NI 2.5µm-10µm 0.00 NI 10µm-50µm 0.00 NI 2.5µm-10µm 0.00 NI 10µm-50µm 0.00 NI >50µm 0.00 NI unbek. 0.00 Hg 2.5µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Tl 12.5µm 0.00 Hg 10µm-50µm 0.00 Tl 12.5µm 0.00 Tl 2.5µm-10µm 0.00 Tl 10µm-50µm 0.00 Tl 2.5µm-10µm 0.00 Tl 10µm-50µm 0.00 xx 0.00 Tl unbek. 0.00 xx 0.00 xx 2.5µm 0.00 xx 2		As	s 2.	5µm							0.0	00								As	2.5µm-	10µm	n						0.00							
Pb 2.5µm-10µm 0.00 Pb 10µm-50µm 0.00 Pb 550µm 0.00 Pb unbek. 0.00 Cd 2.5µm 0.00 Cd 2.5µm-10µm 0.00 Cd 10µm-50µm 0.00 Ni 2.5µm 0.00 Ni 2.5µm-10µm 0.00 Ni 10µm-50µm 0.00 Ni >50µm 0.00 Ni 10µm-50µm 0.00 Hg 2.5µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg >50µm 0.00 Hg unbek. 0.00 Tl 2.5µm 0.00 Tl 2.5µm-10µm 0.00 Tl 10µm-50µm 0.00 Tl >50µm 0.00 Tl 10µm-50µm 0.00 xx 0.00 Tl 10µm-50µm 0.00 xx 0.00 x2 5µm 0.00 xx 2.5µm-10µm 0.00 x2 5µm 0.00 xx 2.5µm-10µm 0.00 x2 5µm 0.00 xx 2.5µm-10µm 0.00 x2 5µm					n						0.0	00								As	>50µm								0.00							
Pb 2.5µm-10µm 0.00 Pb 10µm-50µm 0.00 Pb 5-50µm 0.00 Pb unbek. 0.00 Cd 2.5µm 0.00 Cd 2.5µm-10µm 0.00 Cd 10µm-50µm 0.00 Ni 2.5µm 0.00 Ni 2.5µm-10µm 0.00 Ni 10µm-50µm 0.00 Ni 2.5µm-10µm 0.00 Ni unbek. 0.00 Hg 2.5µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg 2.5µm-10µm 0.00 Hg unbek. 0.00 Tl 2.5µm 0.00 Hg 10µm-50µm 0.00 Tl 10µm-50µm 0.00 Tl 2.5µm-10µm 0.00 Tl 10µm-50µm 0.00 xx 0.00 Tl 10µm-50µm 0.00 xx 0.00 Tl 10µm-50µm 0.00 xx 2.5µm 0.00 xx 2.5µm 0.00 xx 2.5µm 0.00 xx 10µm-50µm 0.00 xx 2.5µm 0.00 xx 10µ		As	s un	bek.							0.0	00								Pb	2.5µm								0.00							
Cd 2.5µm 0.00 Cd 2.5µm-10µm 0.00 Cd 10µm-50µm 0.00 Cd >50µm 0.00 Cd unbek. 0.00 Ni 2.5µm 0.00 Ni 2.5µm-10µm 0.00 Ni 10µm-50µm 0.00 Ni >50µm 0.00 Ni 10µm-50µm 0.00 Hg 2.5µm 0.00 Hg 25µm-10µm 0.00 Hg 10µm-50µm 0.00 Tl 2.5µm 0.00 Hg unbek. 0.00 Tl 2.5µm 0.00 Tl 2.5µm-10µm 0.00 Tl 10µm-50µm 0.00 Tl >50µm 0.00 Tl 10µm-50µm 0.00 xx 0.00 Tl unbek. 0.00 xx 0.00 Tl unbek. 0.00 xx 0.00 Xx 2.5µm 0.00 xx 2.5µm-10µm 0.00 xx 10µm-50µm 0.00 xx 2.5µm-10µm 0.00 xx 10µm-50µm 0.00 xx 2.5µm-10µm 0.00 xx 10µm-50µm 0.00 xx 2.5µm-10µm 0.00 xx 10		PI	b 2.	5µm-10µ	m						0.0	00								_		50µm	1						0.00							
Cd 10µm-50µm 0.00 Cd >50µm 0.00 Cd unbek 0.00 Ni 2.5µm 0.00 Ni 2.5µm-10µm 0.00 Ni 10µm-50µm 0.00 Ni >50µm 0.00 Ni unbek 0.00 Hg 2.5µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg >50µm 0.00 Hg unbek 0.00 Ti 2.5µm 0.00 Ti 2.5µm 0.00 Ti 10µm-50µm 0.00 Ti 1.50µm 0.00 Ti 10µm-50µm 0.00 xx 0.00 Ti 1.0µm-50µm 0.00 xx 0.00 xx 2.5µm 0.00 xx 2.5µm 0.00 xx 10µm-50µm 0.00 xx 2.5µm 0.00		PI	b >5	i0μm							0.0	00								Pb	unbek								0.00							
Cd unbek. 0.00 Ni 2.5μm 0.00 Ni 2.5μm-10μm 0.00 Ni 10μm-50μm 0.00 Ni >50μm 0.00 Ni unbek. 0.00 Hg 2.5μm 0.00 Hg 2.5μm-10μm 0.00 Hg 10μm-50μm 0.00 Hg >50μm 0.00 Hg unbek. 0.00 Tl 2.5μm 0.00 Tl 2.5μm-10μm 0.00 Tl 10μm-50μm 0.00 xx 0.00 Tl unbek. 0.00 xx 0.00 xx 2.5μm 0.00 xx 2.5μm-10μm 0.00 xx 10μm-50μm 0.00 xx 50μm 0.00 xx 10μm-50μm 0.00 αdor_000 0.00 0.00 0.00 αdor_050 <td< td=""><td></td><td>C</td><td>d 2.</td><td>5µm</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Cd</td><td>2.5µm</td><td>-10µn</td><td>n</td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		C	d 2.	5µm							0.0	00								Cd	2.5µm	-10µn	n						0.00							
Ni 2.5µm-10µm 0.00 Ni 10µm-50µm 0.00 Ni >50µm 0.00 Ni unbek. 0.00 Hg 2.5µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg >50µm 0.00 Hg 10µm-50µm 0.00 Ti 2.5µm 0.00 Ti 2.5µm 0.00 Ti 1.5µm 0.00 Ti 1.5µm-10µm 0.00 Ti 10µm-50µm 0.00 Ti 1.50µm 0.00 Ti 10µm-50µm 0.00 xx		C	d 10)μm-50μ	m						0.0	00								Cd	>50µm	١							0.00							
Ni >50µm		C	d ur	ıbek.							0.0	00								Ni:	2.5µm								0.00							
Hg 2.5µm 0.00 Hg 2.5µm-10µm 0.00 Hg 10µm-50µm 0.00 Hg >50µm 0.00 Hg unbek. 0.00 Tl 2.5µm 0.00 Tl 2.5µm-10µm 0.00 Tl 10µm-50µm 0.00 xx 0.00 Tl unbek. 0.00 xx 0.00 xx 2.5µm 0.00 xx 2.5µm-10µm 0.00 xx 10µm-50µm 0.00 xx >50µm 0.00 xx 10µm-50µm 0.00 odor 0.00 0.00 0.00 bae-1		N	i 2.5	iμm-10μι	m						0.0	00								Ni	10µm-5	i0μm							0.00							
Hg 10µm-50µm 0.00 Hg >50µm 0.00 Hg unbek. 0.00 Tl 2.5µm 0.00 Tl 2.5µm-10µm 0.00 Tl 10µm-50µm 0.00 Tl >50µm 0.00 Tl unbek. 0.00 xx 0.00 xx 2.5µm 0.00 xx 2.5µm-10µm 0.00 xx 10µm-50µm 0.00 xx >50µm 0.00 xx unbek. 0.00 odor 0.00 odor_040 0.00 odor_050 0.00 odor_060 0.00 odor_075 0.00 odor_100 0.00 odor_150 0.00 hg0 0.00 bae-1 0.00 bae-2 0.00 bae-3 0.00 bae-4 0.00 bap-1 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-3 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00		N	i >5	0µm							0.0	00								Ni	unbek.								0.00							
Hg unbek. 0.00 TI 2.5µm 0.00 TI 2.5µm-10µm 0.00 TI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		H	g 2.	5µm							0.0	00								Hg	2.5µm	-10µn	m						0.00							
T1 2.5μm-10μm 0.00 T1 10μm-50μm 0.00 T1 >50μm 0.00 T1 unbek. 0.00 xx 0.00 xx 2.5μm 0.00 xx 2.5μm-10μm 0.00 xx 10μm-50μm 0.00 xx >50μm 0.00 xx unbek. 0.00 odor 0.00 odor_040 0.00 odor_050 0.00 odor_060 0.00 odor_075 0.00 odor_100 0.00 odor_150 0.00 hg0 0.00 bae-1 0.00 hae-2 0.00 bae-3 0.00 hae-4 0.00 bae-4 0.00 hap-1 0.00 bap-2 0.00 hap-1 0.00 bap-3 0.00 hap-1 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-3 0.00 pm25-1 0.00		H	g 10)µm-50µ	m						0.0	00								Hg	>50µn	1							0.00							
TI >50μm 0.00 TI unbek. 0.00 xx 0.00 xx 2.5μm 0.00 xx 2.5μm-10μm 0.00 xx 10μm-50μm 0.00 xx >50μm 0.00 xx unbek. 0.00 odor 0.00 odor_040 0.00 odor_050 0.00 odor_060 0.00 odor_075 0.00 odor_100 0.00 odor_150 0.00 hg0 0.00 bae-1 0.00 bae-2 0.00 bae-3 0.00 bae-4 0.00 bae-u 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-3 0.00 dx-1 0.00 dx-2 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-3 0.00 dx-4 0.00 dx-4 0.00 dx-4 0.00		H	g ur	ıbek.							0.0	00								TI 2	2.5µm								0.00							
xx 0.00 xx 2.5µm 0.00 xx 2.5µm-10µm 0.00 xx 10µm-50µm 0.00 xx >50µm 0.00 xx unbek. 0.00 odor 0.00 odor_040 0.00 odor_050 0.00 odor_060 0.00 odor_075 0.00 odor_100 0.00 odor_150 0.00 hg0 0.00 bae-1 0.00 bae-2 0.00 bae-3 0.00 bae-4 0.00 bae-u 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-3 0.00 dx-1 0.00 dx-2 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		TI	1 2.5	μm-10μr	n						0.0	00								TI 1	10µm-5	0µm							0.00							
xx 2.5μm-10μm 0.00 xx 10μm-50μm 0.00 xx >50μm 0.00 xx unbek. 0.00 odor 0.00 odor_040 0.00 odor_050 0.00 odor_060 0.00 odor_105 0.00 odor_100 0.00 odor_150 0.00 hg0 0.00 bae-1 0.00 bae-2 0.00 bae-3 0.00 bae-4 0.00 bae-u 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-u 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		TI	l >50	Ͻμm							0.0	00								ΤLι	unbek.								0.00							
xx >50µm 0.00 xx unbek. 0.00 odor 0.00 odor_040 0.00 odor_050 0.00 odor_060 0.00 odor_075 0.00 odor_100 0.00 odor_150 0.00 hg0 0.00 bae-1 0.00 bae-2 0.00 bae-3 0.00 bae-4 0.00 bae-u 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-u 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		XX	ĸ								0.0	00								xx	2.5µm								0.00							
odor 0.00 odor_040 0.00 odor_050 0.00 odor_060 0.00 odor_075 0.00 odor_100 0.00 odor_150 0.00 hg0 0.00 bae-1 0.00 bae-2 0.00 bae-3 0.00 bae-4 0.00 bae-u 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-u 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		XX	x 2.5	iμm-10μ	m						0.0	00								xx	10µm-5	i0μm							0.00							
odor_050 0.00 odor_060 0.00 odor_075 0.00 odor_100 0.00 odor_150 0.00 hg0 0.00 bae-1 0.00 bae-2 0.00 bae-3 0.00 bae-4 0.00 bae-u 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-u 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		XX	x >5	0µm							0.0	00								xx	unbek.								0.00							
odor_075 0.00 odor_100 0.00 odor_150 0.00 hg0 0.00 bae-1 0.00 bae-2 0.00 bae-3 0.00 bae-4 0.00 bae-u 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-u 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		00	dor								0.0	00								odo	or_040								0.00							
odor_150 0.00 hg0 0.00 bae-1 0.00 bae-2 0.00 bae-3 0.00 bae-4 0.00 bae-u 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-u 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		00	dor_	050							0.0	00								odo	or_060								0.00							
bae-1 0.00 bae-2 0.00 bae-3 0.00 bae-4 0.00 bae-u 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-u 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		00	dor_	075							0.0	00								odo	or_100								0.00							
bae-3 0.00 bae-4 0.00 bae-u 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-u 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		00	dor_	150							0.0	00								hg()								0.00							
bae-u 0.00 bap-1 0.00 bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-u 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		ba	ae-1								0.0	00								bae	e-2								0.00							
bap-2 0.00 bap-3 0.00 bap-4 0.00 bap-u 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		ba	ae-3			_					0.0	00						_		bae	e-4					_			0.00	_						
bap-4 0.00 bap-u 0.00 dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		ba	ae-u								0.0	00								ba	o-1								0.00							
dx-1 0.00 dx-2 0.00 dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		ba	ap-2	!							0.0	00								ba	o-3						_		0.00							
dx-3 0.00 dx-4 0.00 dx-u 0.00 pm25-1 0.00		ba	ap-4								0.0	00								ba	o-u								0.00							
dx-u 0.00 pm25-1 0.00		dx	x-1								0.0	00								dx-	2						_		0.00							
		dx	x-3								0.0	00								dx-	4								0.00							
Zeitabhängige Emissionen		d>	x-u								0.0	00								pm	25-1								0.00							
Lettabnangige Emissionen	7-14-1-1-1-1-1																													_						
	Leitabhängi	ge ∟mis	sior	ien																																—
om-1 Jahresgang Anzahl Emissionstunden (2014): 3456	om-1	Jahreso	gano	3	1	Anza	ahl Er	niss	ionstu	nde	n (2	:014): 345	6																						
Datum 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29			_		-+		_	_			_	_	_	_	T	13	14	15	16	17	7 18	19	T	20 2	21	22	23	2	4 2	5	26	27	28	29	3 3	0 3

Februa	ar	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+			
März		+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+
April		+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+	1	+	+	+	
Mai		+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+
Juni			+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	
Juli		+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+
Augus	_	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+	
Septer		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	
Oktobe		+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+
Novem		+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		
Dezem		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+			<u> </u>								
Woche		Monta	20			Dia	ensta	<u> </u>			Mittv	woch				onnei	etaa		1		reitag				Sam	ctag				Sonnta	20	
-		+	ay .			יוט	+	y				+				+	Siay				+				Jain	_				JUITIL	ay .	
Tages	gang						•												l													
19	0-1h	1-3	2h	2-3h	3-4h	1 4-	5h	5-6h	6-7h	n 7-	8h	8-9h	9-10)h 1	0-	11-	12-	10	3-	14-	15-	10	6-	17-	18-	19	9-	20-	21-	22	2-	23-
									+		+	+	+	_ 1	+	+	406	14	+	15h	16h	1-	+	10b +	106	- 20	٥	216	226		16	245
									i .		<u> </u>																		i .			
		0	-1h		1-2	?h		2-3h		3	-4h		4-5	ōh		5-6h		6	-7h		7-8	h		8-9h		9-	10h		10-11	h	11	-12h
g/h	0.0	00E+	-00	0.00	0E+0	0	0.000	E+00	0.	000E-	-00	0.00	0E+0	00	0.000	E+00	1.	764E-	+03	1.76	64E+0	3	1.764	E+03	1.7	764E-	+03	1.76	64E+0	3	.764	E+03
		12-1	I3h		13-14	+-		4-15h		15-	l6h		16-17	_		7-18h		18-1	-		19-20	_		0-21h		21-2	22h		22-23			3-24h
g/h	1.7	64E+	-03	1.76	4E+0	13	1.764	E+03	1.	764E-	+03	1.76	4E+0)3	1.764	E+03	0.	000E-	+00	0.00	00E+0	0	0.000	E+00	0.0	000E-	+00	0.00	00E+0	0 (0.000	E+00
			Geo	netrie)											Nr					x/m			y/	m		z(a	abs) /n	n		! z(re	l) /m
															Knote	n:	1		5	8749	0.65		554	0378.6	61			207.9	8			1.00
																	2		5	8754	0.65		554	0132.8	88			205.2	7			1.00
																	3		5	8763	3.73		554	0181.2	28			203.2	6			1.00
																	4			8767	_			0224.3				204.5	2			1.00
																	5	_		8763	-			0343.	_			205.3	_			1.00
																	6			8762	_			0389.7	_			205.0	_			1.00
																	7			8761	_			0420.6	_			204.5	_			1.00
FL 0-1	207		D								£11.11						8	_		8749	0.65		554	0378.6	61			207.9	8		0000	1.00
FLGo(JU /			ichnu	ing					_	erfüllu	•						Wirk			`										9999	
			Grup	enzal	nl .					5	/IZ.5 (Quelle	n					_		/dB(A Quell					_					di		16.63
				je /m	"					_	4.37							Liler	LIVE	Queii	IIOIIE									ui	r. Ein	yabe
				je /m	(2D)					_	4.35														-							
				ne /m	• •					_	024.8	35													+							
			Gasa	ırt						_	/(g/h							Gasa	art						Qi	/(g/h	1)					
			so2							0.								nox							0.0		<u> </u>					
			no							0.	00							no2							0.0	00						
			bzl							0.	00							tce							0.0	00						
			f							0.	00							nh3							0.0	00						
			hg							0.	00							PM 2	.5µm	1					0.0	00						
			PM 2	!.5µm∙	10µn	1				0.	00							PM 1	0µm	-50µm	1				0.0	00						
			PM >	·50µm	1					_	00							PM u	ınbek	ί.					0.0	00						
			As 2.							0.								As 2.	5µm-	-10µm					0.0							
)µm-5	i0μm					0.								As >							0.0							
				nbek.						0.								Pb 2.							0.0							
				.5µm-						0.								_		50µm					0.0							
				50µm						0.								Pb ur							0.0							
				.5µm	-0					0.								_		-10µm	1				0.0							
				0µm-5	ουμπ					0.								Cd >	_	1					0.0							
-				nbek. 5µm-1	Our-					0.								Ni 2.		50µm					0.0							
-				5μm-1 60μm	υμπ					0.								Ni un		νυμιτι					0.0							
<u> </u>				.5μm						0.								_		-10µm	1				0.0							
				0μm-5	0um					0.								Hg >	_		•				0.0							
				nbek.	- [-111					0.								TI 2.5							0.0							
				5µm-1	0µm					0.								TI 10		i0µm					0.0							
			TI >5		•					0.								TI un		<u> </u>					0.0							
			xx							_	00							xx 2.							0.0							

			yy ?	.5µm-1	Num					n	00							yy 10	um	50µm					0.0	າດ						
				.5μπ 50μm	υμιιι					0.								xx un							0.0							
										0.								odor							0.0							
 			odor	r_050						0.								odor_	_						0.0							
				_030 r_075						0.								odor_	_						0.0							
				_073 r_150						0.								hg0	_100						0.0							
			bae-	_						0.								bae-2	,						0.0							
			bae-							0.								bae-4							0.0							
			bae-							0.								bac							0.0							
			bac-							0.								bap-3							0.0							
			bap-							0.								bap-u							0.0							
			dx-1							0.								dx-2							0.0							
			dx-3							0.								dx-4							0.0							
			dx-u							0.								pm25	5-1						0.0							
				·						1								J														
Zeitabh	hängig	ıe Em	nissic	nen																												
	9-9	,																														
pm-1		Jahre	esgar	na		Anza	hl En	nissio	nstund	len (2	(014):	3456																				
Datum		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Januar	-+																				+	+	+	+	+	+		+	+	+	+	+
Februa	-+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+			
März		+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+
April		+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	
Mai		+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+
Juni			+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	
Juli		+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+
August	t	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+	
Septen		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+	_	+	+	+	+	+	+		+	+	
Oktobe		+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+	1	+	+	+	+	+	+		+	+	+	+	+
Novem	-+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+		
Dezem	ber	+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	+	+	+											
Woche						1	1	1		1											11							1				
		Monta	ag			Die	ensta	g			Mittv	voch			D	onners	stag			F	reitag				Sam	stag				Sonnt	ag	
		+					+					+				+					+					+						
Tages	gang													- 1																		
Ť	0-1h	1-2	2h	2-3h	3-41	1 4-	5h	5-6h	6-7h	7-	8h	8-9h	9-10	h 1	0-	11-	12-	13	3-	14-	15-	16	i- 1	17-	18-	1	9-	20-	21-	2	2-	23-
		1	T				1		+	_	+	+	+	1	+	+	+	14	+	+	+	+	-	+	106	1	136	716	206		214	-741-
		0-	-1h		1-2	?h		2-3h		3	-4h		4-5	h		5-6h		6-	-7h		7-8h	1		8-9h		9-	10h		10-11	h	1	1-12h
g/h	0.0	00E+	+00	0.00	0E+0	0 0	0.000	E+00	0.0	000E	+00	0.00	0E+0	0	0.000	E+00	8.	168E+	-02	8.16	68E+02	2 8	3.168E	+02	8.	168E	+02	8.16	68E+0)2	8.168	E+02
		12-1	13h		13-14	h	14	4-15h		15-	16h		16-17	h	1	7-18h		18-1	l9h		19-20l	1	20-	-21h		21-	22h		22-23	Bh	23	3-24h
g/h	8.1	68E+	+02	8.16	8E+0	2 8	8.168	E+02	8.	168E-	+02	8.16	8E+0	2	8.168	E+02	0.	000E+	-00	0.00	00E+00) (0.000E	E+00	0.0	300E	+00	0.00	00E+0	00	0.000	E+00
						•								•																		
			Geo	metrie)											Nr					x/m			y/	m		z(a	abs) /r	n		! z(re	el) /m
														ŀ	Knote	n:	1			58709	6.06		5539	527.8	_			204.6	_			1.00
										1							2			58721	7.92		5539	547.4	10			204.9	_			1.00
										1							3			58730	6.69			791.1	_			205.6	_			1.00
										T							4			58702			5539					203.1	_			1.00
										T							5			58709	_			527.8	_			204.6	_			1.00
																-																

AUSTAL2000 .log-Datei PM2.5

TalServer:C:\AUSTAL2000\L0525_011\1

Ausbreitungsmodell AUSTAL2000, Version 2.6.11-WI-x Copyright (c) Umweltbundesamt, Dessau-Roßlau, 2002-2014 Copyright (c) Ing.-Büro Janicke, Überlingen, 1989-2014

Arbeitsverzeichnis: C:/AUSTAL2000/L0525_011/1

Erstellungsdatum des Programms: 2014-09-02 09:08:52 Das Programm läuft auf dem Rechner "BARTHELIX".

		=== Beginn der Eingabe =====	
> ti		sabbau_SW_LS_2021_10_20"	
> az		.L0525_011\1\austal2000.akt	erm"
> gh		L0525_011\1\austa12000.top	
> ux	32584460.00	(20323_011 (1 (dd3 2d12000 : cop	
> uy	5537970.00		
> xa	3190.0	' Anemometerposition	
> ya	980.0	Artemonic cer postetori	
> ha	11.5		
> qs	-2		
> sd	11111		
> x0	1615.00		
> y0	635.00		
> dd	10.00		
> nx	263		
> ny	257		
> xq	2801.50		2877.23
·		2878.87	
	2876.82		2850.62
		2841.56	
	2853.72		2866.08
		2866.49	
	2852.57		2843.88
		2839.25	
	2834.62		2789.56
		2758.45	
	2706.75		2686.69
		2674.40	
	2671.54		2671.54
		3063.07	
3039.00		2866.29	
	2862.89		2851.52
		2847.56	
	2843.78	3	
2851.31			2867.34
	_	2869.08	
2869.67	7		2863.60
222		2853.65	2004 45
2834	1.25	2770 27	2804.45
,	2717 70	2770.27	2600 07
4	2717.78		2699.97

2678.35

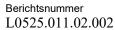
Datum 01.03.2022

Seite

A14

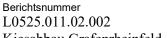
2674 06	2668.93			2604	20
2671.86			2859.28	2691.	20
> yq	3 2362.20	030.65	2636.06		2196.01
	2161.62		2179.63		2056.01
	1952.18		2014.41		1903.67
	1760.81		1831.22		1698.29
	1659.21		1674.84		1595.11
	1512.02		1565.43		1480.09
	1419.92		1456.76		1408.87
2222 65	1419.92		2260.47		1408.87
2232.65	2078.23		2094.12		2055.38
	2011.	85	2041.62		
1970.11		1869.87		1903.10	
1842.48		1765.1	6	1804.29	
1661.	60			1615.9	8
15	23.88	157	75.47	150	2.23
	1412.28		1460.89		
1408.61			1365.46	1404.	15
> hq	0.00	162.88	1557.84		0.00
7 119	0.00		0.00		0.00
			0.00		
	0.00		0.00		0.00
	0.00		0.00		0.00
	0.00		0.00		0.00
	0.00		0.00		0.00
	0.00		0.00		0.00
0.00	0.00		0.00		0.00
	0.00	20	0.00		3.30
0.00	0.			0.00	
		0.00			

0.00)		0.00		
0	0.00	0.00	0.00		
	0.00	0.00	0.00	9	
	0.00	0.00		0.00	
		0.00	0.00		
	1.00	1.00			
> aq	182.64	1.00		16.46	
•		18.13			
	108.81			42.57	
	50.06	63.41		70.46	
	50.06	71.77		72.46	
	63.12	/1.//		23.90	
	33.11	16.30			
	78.36			43.00	
		74.33			
	37.71	26.05		26.37	
	11.05	36.95		272.76	
	11.05	36.79		2/2./0	
221.4	10	16.25			
	25.52			14.32	
		30.01	-		
68.90	42.41		33.28		
00.90		27.40	33.20		
38.6	57	27.10	40.38		
		105.36			
5	4.48		53.00		
	20.04	73.60	46.4	- 4	
	28.04	49.51	46.6	54	
	4.70	49.31		19.85	
			172.47		
		308.22			
	181.91	123.42			
> bq	0.00	0.00		0.00	
	0.00	0.00		0.00	
	0.00	0.00		0.00	
	0.00			0.00	
		0.00			
	0.00	2.22		0.00	
	0.00	0.00		0.00	
	0.00	0.00		0.00	
	0.00	0.00		0.00	
		0.00			
	0.00			0.00	
		0.00			



0.00		0.0	0	
	0.00		0.00	0.00
0.00	0.00		0.00	
		0.00		
0.00		0.00	0.00	
0.0	0		0.00	
	0.00	0.00	0.00)
	0.00	0.00		0.00
	0.00		0.00	0.00
\ 6a	287.75 0.50	0.00 229.84		0.50
> cq	0.50	0.50		0.50
	0.50	0.50		0.50
	0.50			0.50
	0.50	0.50		0.50
	0.50	0.50		0.50
		0.50		
	0.50	0.50		0.50
	0.50			0.50
0.50		0.50 0.5	0	
	0.50		0.50	0.50
0.50	0.50			
0.50		0.50	0.50	
0.50		0.50	0.50	
0.5	0		0.50	
	0.50	0.50	0.56)
		0.50		0.50
	0.50		0.50	0.50
	0.00	0.50 0.00		
> wq	294.50			275.71
	256.07	263.52		257.71
	284.30	281.05		270.32
		258.82		
	262.09	253.49		258.82

Seite A17



Kiesabbau Grafenrheinfeld

Planunterlagen, Berechnungsprotokolle

234.90 223.65 225.93 237.86 242.24 265.55 270.00 257.78 229.13 218.73 257.91 243.56 253.92 262.77 280.24 283.45 272.99 271.24 260.96 255.74 259.39 236.85 229.84 224.50 230.55 242.39 259.03 308.53 347.00 347.04 9.99 0.00 9.12 ? > pm-1 ? 2636.06 2907.37 2168.15 2350.04 > xp 1557.84 1779.08 2097.68 1402.91 > yp

Wölfel

Kiesabbau Grafenrheinfeld Planunterlagen, Berechnungsprotokolle

```
Existierende Windfeldbibliothek wird verwendet.
Die Höhe hq der Quelle 1 beträgt weniger als 10 m.
Die Höhe hq der Quelle 2 beträgt weniger als 10 m.
Die Höhe hq der Quelle 3 beträgt weniger als 10 m.
Die Höhe hq der Quelle 4 beträgt weniger als 10 m.
Die Höhe hq der Quelle 5 beträgt weniger als 10 m.
Die Höhe hq der Quelle 6 beträgt weniger als 10 m.
Die Höhe hq der Quelle 7 beträgt weniger als 10 m.
Die Höhe hq der Quelle 8 beträgt weniger als 10 m.
Die Höhe hq der Quelle 9 beträgt weniger als 10 m.
Die Höhe hq der Quelle 10 beträgt weniger als 10 m.
Die Höhe ha der Quelle 11 beträgt weniger als 10 m.
Die Höhe hq der Quelle 12 beträgt weniger als 10 m.
Die Höhe hq der Quelle 13 beträgt weniger als 10 m.
Die Höhe hq der Quelle 14 beträgt weniger als 10 m.
Die Höhe hq der Quelle 15 beträgt weniger als 10 m.
Die Höhe hq der Quelle 16 beträgt weniger als 10 m.
Die Höhe hq der Quelle 17 beträgt weniger als 10 m.
Die Höhe hq der Quelle 18 beträgt weniger als 10 m.
Die Höhe hq der Quelle 19 beträgt weniger als 10 m.
Die Höhe hq der Quelle 20 beträgt weniger als 10 m.
Die Höhe hq der Quelle 21 beträgt weniger als 10 m.
Die Höhe hq der Quelle 22 beträgt weniger als 10 m.
Die Höhe hq der Quelle 23 beträgt weniger als 10 m.
Die Höhe hq der Quelle 24 beträgt weniger als 10 m.
Die Höhe hq der Quelle 25 beträgt weniger als 10 m.
Die Höhe hq der Quelle 26 beträgt weniger als 10 m.
Die Höhe ha der Quelle 27 beträgt weniger als 10 m.
Die Höhe hq der Quelle 28 beträgt weniger als 10 m.
Die Höhe hq der Quelle 29 beträgt weniger als 10 m.
Die Höhe hq der Quelle 30 beträgt weniger als 10 m.
Die Höhe hq der Quelle 31 beträgt weniger als 10 m.
Die Höhe hq der Quelle 32 beträgt weniger als 10 m.
Die Höhe hq der Quelle 33 beträgt weniger als 10 m.
Die Höhe hq der Quelle 34 beträgt weniger als 10 m.
Die Höhe hq der Quelle 35 beträgt weniger als 10 m.
Die Höhe hq der Quelle 36 beträgt weniger als 10 m.
Die Höhe hq der Quelle 37 beträgt weniger als 10 m.
Die Höhe hq der Quelle 38 beträgt weniger als 10 m.
Die Höhe hq der Quelle 39 beträgt weniger als 10 m.
Die Höhe hq der Quelle 40 beträgt weniger als 10 m.
Die Höhe hq der Quelle 41 beträgt weniger als 10 m.
Die Höhe hq der Quelle 42 beträgt weniger als 10 m.
Die Höhe hq der Quelle 43 beträgt weniger als 10 m.
Die Höhe hq der Quelle 44 beträgt weniger als 10 m.
Die Höhe hq der Quelle 45 beträgt weniger als 10 m.
```

Standard-Kataster z0-utm.dmna (7e0adae7) wird verwendet. Aus dem Kataster bestimmter Mittelwert von z0 ist 0.042 m. Der Wert von z0 wird auf 0.05 m gerundet.

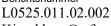
Die maximale Steilheit des Geländes ist 0.51 (0.48).

Datum 01.03.2022

Seite A19

```
Die Zeitreihen-Datei "C:/AUSTAL2000/L0525_011/1/zeitreihe.dmna" wird verwendet.
Die Angabe "az C:\AUSTAL2000\L0525 011\1\austal2000.akterm" wird ignoriert.
Prüfsumme AUSTAL
                 524c519f
Prüfsumme TALDIA 6a50af80
Prüfsumme VDISP
                3d55c8b9
Prüfsumme SETTINGS fdd2774f
Prüfsumme SERIES 1bfd01d9
______
TMT: Auswertung der Ausbreitungsrechnung für "pm"
TMT: 365 Tagesmittel (davon ungültig: 0)
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-j00z" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-j00s" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t35z" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t35s" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t35i" ausgeschrieben. TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t00z" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t00s" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t00i" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-depz" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-deps" ausgeschrieben.
TMT: Dateien erstellt von AUSTAL2000_2.6.11-WI-x.
TMO: Zeitreihe an den Monitor-Punkten für "pm"
TMO: Datei "C:/AUSTAL2000/L0525 011/1/pm-zbpz" ausgeschrieben.
TMO: Datei "C:/AUSTAL2000/L0525_011/1/pm-zbps" ausgeschrieben.
______
Auswertung der Ergebnisse:
DEP: Jahresmittel der Deposition
    J00: Jahresmittel der Konzentration/Geruchsstundenhäufigkeit
    Tnn: Höchstes Tagesmittel der Konzentration mit nn Überschreitungen
    Snn: Höchstes Stundenmittel der Konzentration mit nn Überschreitungen
WARNUNG: Eine oder mehrere Quellen sind niedriger als 10 m.
        Die im folgenden ausgewiesenen Maximalwerte sind daher
        möglicherweise nicht relevant für eine Beurteilung!
Maximalwerte, Deposition
      DEP: 0.0086 \text{ g/(m}^2*\text{d}) (+/- 1.5\%) bei x= 3060 m, y= 2250 m (145,162)
______
Maximalwerte, Konzentration bei z=1.5 m
_____
        J00 : 79.4 \ \mu g/m^3 \ (+/- \ 0.6\%) bei x= 3130 m, y= 2250 m (152,162)
        T35 : 172.7 \mu g/m^3 (+/- 11.0%) bei x= 3130 m, y= 2250 m (152,162)
       T00 : 364.1 \, \mu \text{g/m}^3 \, (+/-7.2\%) bei x= 3040 m, y= 2230 m (143,160)
______
```

Auswertung für die Beurteilungspunkte: Zusatzbelastung



			=======	===		
PUNKT 04		01	02		03	
xp 2350	26	536	2907		2168	
ур 1403	15	558	1779		2098	
hp 1.5	1	5	1.0		1.5	
		+	+		+-	
PM DEP	0.0024 3.	2% 0.0010	4.2%	0.0001	15.4%	0.0002
13.0% g/(m ² *d) PM J00 2.9% μg/m ³	24.8 1.	0% 8.8	1.3%	1.1	3.3%	1.7
PM T35 17.6% μg/m³	73.5 10.	2% 22.2	25.3%	2.7	48.1%	4.4
PM T00 11.7% μg/m³	205.6 8.	7% 54.4	10.6%	12.6	15.0%	30.0
			=======			
			=======			

2021-10-22 12:24:59 AUSTAL2000 beendet.

Datum 01.03.2022 Seite A21

Kiesabbau Grafenrheinfeld Planunterlagen, Berechnungsprotokolle

AUSTAL2000 .log-Datei PM10 und TSP

2021-10-20 16:18:09 ----------TalServer:C:\AUSTAL2000\L0525_011\1

Ausbreitungsmodell AUSTAL2000, Version 2.6.11-WI-x Copyright (c) Umweltbundesamt, Dessau-Roßlau, 2002-2014 Copyright (c) Ing.-Büro Janicke, Überlingen, 1989-2014

Arbeitsverzeichnis: C:/AUSTAL2000/L0525_011/1

Erstellungsdatum des Programms: 2014-09-02 09:08:52 Das Programm läuft auf dem Rechner "BARTHELIX".

```
"L0525.011_Kiesabbau_SW_LS_2021_10_20"
> ti
           "C:\AUSTAL2000\L0525_011\1\austal2000.akterm"
> az
> gh
           "C:\AUSTAL2000\L0525_011\1\austal2000.top"
           32584460.00
> ux
           5537970.00
> uy
                              ' Anemometerposition
           3190.0
> xa
           980.0
> ya
           11.5
> ha
> qs
           -2
> sd
           11111
> x0
              1615.00
               635.00
> y0
                10.00
> dd
> nx
           263
           257
> ny
            2801.50
                                                          2877.23
> xq
                          2878.87
2876.82
                                             2850.62
              2841.56
                                                           2853.72
                            2866.08
2866.49
                                             2852.57
              2843.88
                                                           2839.25
                            2834.62
2789.56
                                             2758.45
              2706.75
                                                           2686.69
                            2674.40
2671.54
                                             2671.54
              3063.07
                                                3039.00
     2866.29
                                                    2862.89
                     2851.52
                                                                    2847.56
                                      2843.78
       2851.31
                                                      2867.34
                       2869.08
2869.67
                                              2863.60
                2853.65
                                                              2834.25
                                2804.45
 2770.27
                                                2717.78
                  2699.97
                                                                2678.35
                                  2668.93
          2671.86
                                                               2691.20
                                       2859.28
```


Wölfel

Berichtsnummer L0525.011.02.002 Kiesabbau Grafenrheinfeld Planunterlagen, Berechnungsprotokolle Datum 01.03.2022

Seite A22

	3030.65		2636.06		2405.04	
> yq	2362.20	2179.63			2196.01	
2161.62				2056.01		
	2014.41	1002 (1952.18	3
1831.22		1903.6	0/	1760.81		
	1698.29				1674.84	1
1505 11		1659.2	21	1565.43		
1595.11	1512.02			1303.43	1480.09)
		1456.7	76			
1419.92	2260.47			1408.87 2232.6	5	
2094.1					78.23	
	205	5.38	2011 05			2041.62
1970	.11		2011.85		1903.10	
		869.87				
1842.48	1765.16			1804.29	1661	1.60
	1703.10	16	515.98		100.	1.00
1575.47				1523.8		
	1502.23		1412.28		14	160.89
1	408.61		1.12120		146	94.15
	2162.88		1365.4 1557.84	16		
> hq	0.00		1557.64		0.00	
		0.00				
0.00	0.00			0.00	0.00	
	0.00	0.00			0.00	
0.00	0.00			0.00	0.00	
	0.00	0.00			0.00	
0.00				0.00		
	0.00	0.00			0.00	
0.00				0.00		
0.00	0.00			0.00 0.	00	
0.00	0.00	9		0.	00	0.00
			0.00			
0.00		.00			0.00	0.00
			0.00			0.00
0.	00	0.00			0.00	0.00
		0.00	0.00	9		0.00
	0.00				0.00	
0.00		0.00			0.00	
		6	0.00			

	1.00	1.00				
> aq	182.64	18.13			16.46	
108.81				42.57		
	63.41	72.46			50.06	
71.77				63.12		
	23.90	78.36			16.30	
43.00				74.33		
	37.71	36.95			26.37	
11.05			:	272.76		
16	36.79 5.25			221.40 25	5.52	
		14.32				30.01
	68.90		42.41		33.28	
		27.40				38.67
	105.36		40.38		54.48	
72.60		53.00		20.04		
73.60	46.64	4		28.04	49.	51
			.70			
	19.85		308.22		172.47	/
, ha	181.91	12	3.42		0.00	
> bq	0.00	0.00			0.00	
0.00	0.00			0.00	0.00	
	0.00	0.00			0.00	
0.00	0.00			0.00	0.00	
	0.00	0.00			0.00	
0.00	0.00			0.00	0.00	
	0.00	0.00			0.00	
0.00	0.00			0.00 0.00		
0.	.00				00	
		0.00	0.00			0.00
	0.00				0.00	
		0.00	0.00			0.00
	0.00	0.00			0.00	0.00
		0.00	0.00	9		0.00
	0.00	0.00			0.00	
0.00)	0.00			0.00	
		0	.00			

> cq	287.75	0.50	229.84			0.50		
		0.50	0.50			0.30		
0.50		0.50			0.50	0.50		
		0.50	0.50			0.30		
0.50		0 50			0.50	0 50		
		0.50	0.50			0.50		
0.50		0.50			0.50	0.50		
		0.50	0.50			0.50		
0.50					0.50			
0	.50	0.50			0.50 0.	.50		
_			0.50				0.50	
	0.50			0.50		0.50		
	0.50		0.50			0.30	0.50	
	0.50	•		0.50		0.50		
	0.50	,	0.50			0.30	0.50	
	a	50		0.5	0	0.50		
	0.	30	0.50			0.30		
0.5	0		0.5	.0		0.50		
	0.00)	0.00	00				
> wq		294.50	263.52			275.71		
256.07			203.32		257.71			
		281.05	270.32			284.30		
258.82			270.32		262.09			
		258.82	224.00			253.49		
223.65			234.90		225.93			
		237.86	265 55			242.24		
270.00			265.55		257.78			
		229.13			218.73			
2	57.91		253.92		24	13.56	262.77	
				280.24				
	283.45	i	271.24			272.99	260.96	
			2,1.24	255.7	4		200.50	
	259.	39	229.84			236.85		
224.50					230.55			
		242.3	9 308.	53	3		259.03	
	347.0	00	500.			347.6)4	
				9.99				

0.00 9.12 > pm-1 ? > pm-2 ?

> pm-3 ? 0.0 0.0 0.0 0.0 > pm-u 0.0 ?


```
2636.06 2907.37 2168.15 2350.04
1557.84 1779.08 2097.68 1402.91
> xp
> yp
           1.50 1.00 6.00
> hp
                                    6.00
-----Ende der Eingabe ------
Die Höhe hq der Quelle 1 beträgt weniger als 10 m.
Die Höhe hq der Quelle 2 beträgt weniger als 10 m.
Die Höhe hq der Quelle 3 beträgt weniger als 10 m.
Die Höhe hq der Quelle 4 beträgt weniger als 10 m.
Die Höhe hq der Quelle 5 beträgt weniger als 10 m.
Die Höhe hq der Quelle 6 beträgt weniger als 10 m.
Die Höhe hq der Quelle 7 beträgt weniger als 10 m.
Die Höhe hq der Quelle 8 beträgt weniger als 10 m.
Die Höhe ha der Quelle 9 beträgt weniger als 10 m.
Die Höhe hq der Quelle 10 beträgt weniger als 10 m.
Die Höhe hq der Quelle 11 beträgt weniger als 10 m.
Die Höhe hq der Quelle 12 beträgt weniger als 10 m.
Die Höhe hq der Quelle 13 beträgt weniger als 10 m.
Die Höhe hq der Quelle 14 beträgt weniger als 10 m.
Die Höhe hq der Quelle 15 beträgt weniger als 10 m.
Die Höhe hq der Quelle 16 beträgt weniger als 10 m.
Die Höhe hq der Quelle 17 beträgt weniger als 10 m.
Die Höhe hq der Quelle 18 beträgt weniger als 10 m.
Die Höhe hq der Quelle 19 beträgt weniger als 10 m.
Die Höhe hq der Quelle 20 beträgt weniger als 10 m.
Die Höhe hq der Quelle 21 beträgt weniger als 10 m.
Die Höhe hq der Quelle 22 beträgt weniger als 10 m.
Die Höhe hq der Quelle 23 beträgt weniger als 10 m.
Die Höhe hq der Quelle 24 beträgt weniger als 10 m.
Die Höhe ha der Quelle 25 beträgt weniger als 10 m.
Die Höhe hq der Quelle 26 beträgt weniger als 10 m.
Die Höhe hq der Quelle 27 beträgt weniger als 10 m.
Die Höhe hq der Quelle 28 beträgt weniger als 10 m.
Die Höhe hq der Quelle 29 beträgt weniger als 10 m.
Die Höhe hq der Quelle 30 beträgt weniger als 10 m.
Die Höhe hq der Quelle 31 beträgt weniger als 10 m.
Die Höhe hq der Quelle 32 beträgt weniger als 10 m.
Die Höhe hq der Quelle 33 beträgt weniger als 10 m.
Die Höhe hq der Quelle 34 beträgt weniger als 10 m.
Die Höhe hq der Quelle 35 beträgt weniger als 10 m.
Die Höhe hq der Quelle 36 beträgt weniger als 10 m.
Die Höhe hq der Quelle 37 beträgt weniger als 10 m.
Die Höhe hq der Quelle 38 beträgt weniger als 10 m.
Die Höhe hq der Quelle 39 beträgt weniger als 10 m.
Die Höhe hq der Quelle 40 beträgt weniger als 10 m.
Die Höhe hq der Quelle 41 beträgt weniger als 10 m.
Die Höhe hq der Quelle 42 beträgt weniger als 10 m.
Die Höhe hq der Quelle 43 beträgt weniger als 10 m.
Die Höhe hq der Quelle 44 beträgt weniger als 10 m.
Die Höhe hq der Quelle 45 beträgt weniger als 10 m.
Die maximale Steilheit des Geländes ist 0.51 (0.48).
```

Existierende Geländedatei zg00.dmna wird verwendet.

Datum Seite 01.03.2022 A28

```
Standard-Kataster z0-utm.dmna (7e0adae7) wird verwendet.
Aus dem Kataster bestimmter Mittelwert von z0 ist 0.042 m.
Der Wert von z0 wird auf 0.05 m gerundet.
Die Zeitreihen-Datei "C:/AUSTAL2000/L0525_011/1/zeitreihe.dmna" wird verwendet.
Die Angabe "az C:\AUSTAL2000\L0525_011\1\austal2000.akterm" wird ignoriert.
Prüfsumme AUSTAL
                   524c519f
Prüfsumme TALDIA
                   6a50af80
Prüfsumme VDISP
                   3d55c8b9
Prüfsumme SETTINGS fdd2774f
Prüfsumme SERIES
                   8dac5175
67591 times wdep>1
```

67591 times wdep>1

```
Datum 01.03.2022
```

Seite A29

```
67591 times wdep>1
______
TMT: Auswertung der Ausbreitungsrechnung für "pm"
TMT: 365 Tagesmittel (davon ungültig: 0)
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-j00z" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-j00s" ausgeschrieben. TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t35z" ausgeschrieben. TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t35s" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t35i" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t00z" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t00s" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-t00i" ausgeschrieben. TMT: Datei "C:/AUSTAL2000/L0525_011/1/pm-depz" ausgeschrieben.
TMT: Datei "C:/AUSTAL2000/L0525 011/1/pm-deps" ausgeschrieben.
TMT: Dateien erstellt von AUSTAL2000 2.6.11-WI-x.
TMO: Zeitreihe an den Monitor-Punkten für "pm"
TMO: Datei "C:/AUSTAL2000/L0525_011/1/pm-zbpz" ausgeschrieben. TMO: Datei "C:/AUSTAL2000/L0525_011/1/pm-zbps" ausgeschrieben.
______
Auswertung der Ergebnisse:
```

DEP: Jahresmittel der Deposition

J00: Jahresmittel der Konzentration/Geruchsstundenhäufigkeit

Tnn: Höchstes Tagesmittel der Konzentration mit nn Überschreitungen Snn: Höchstes Stundenmittel der Konzentration mit nn Überschreitungen

WARNUNG: Eine oder mehrere Quellen sind niedriger als 10 m.
Die im folgenden ausgewiesenen Maximalwerte sind daher
möglicherweise nicht relevant für eine Beurteilung!

Maximalwerte, Deposition

PM DEP: 3.3139 g/(m²*d) (+/- 0.5%) bei x= 2800 m, y= 1380 m (119, 75)

Maximalwerte, Konzentration bei z=1.5 m

PM		10,		,	,	y= 2240 m (144,161)
PM		10.	•	,		y= 2250 m (144,162)
PM	100 :	705.8 μg/m³	(+/- 4	./%) bei	x= 3030 m,	y= 2220 m (142,159)

Auswertung für die Beurteilungspunkte: Zusatzbelastung

PUNKT	01	02	03					
04								
хр	2636	2907	2168					
2350								
ур	1558	1779	2098					
1403								
hp	1.5	1.0	1.5					
1 5								

1.5							
	+		+		+	+	
PM	DEP	0.1448	1.8%	0.1070	1.9%	0.0011 11.9%	0.0038

PM	DEP	0.1448	1.8%	0.10/0	1.9%	0.0011	11.9%	0.0038
10.2%	g/(m²*d)							
PM	J00	36.3	0.9%	19.3	1.0%	1.6	3.3%	2.7
2.6%	μg/m³							
PM	T35	102.6	13.0%	43.5	15.8%	4.5	18.3%	7.8
33.4%	μg/m³							
PM	T00	262.7	7.6%	80.4	14.1%	19.2	18.0%	38.1
12.9%	ιισ/m ³							

2021-10-21 02:00:27 AUSTAL2000 beendet.